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41 Abstract

42 First-order organic matter decomposition models are used within most Earth 

43 System Models (ESMs) to project future global carbon cycling; these models have 

44 been criticized for not accurately representing mechanisms of soil organic carbon 

45 (SOC) stabilization and SOC response to climate change. New soil biogeochemical 

46 models have been developed, but their evaluation is limited to observations from 

47 laboratory incubations or few field experiments. Given the global scope of ESMs, a 

48 comprehensive evaluation of such models is essential using in situ observations of a 

49 wide range of SOC stocks over large spatial-scales before their introduction to ESMs. 

50 In this study, we collected a set of in situ observations of SOC, litterfall and soil 

51 properties from 206 sites covering different forest and soil types in Europe and China. 

52 These data were used to calibrate the model MIMICS (The MIcrobial-MIneral Carbon 

53 Stabilization model), which we compared to the widely used first-order model 

54 CENTURY. We show that, compared to CENTURY, MIMICS more accurately 

55 estimates forest SOC concentrations and the sensitivities of SOC to variation in soil 

56 temperature, clay content and litter input. The ratios of microbial biomass to total 

57 SOC predicted by MIMICS agree well with independent observations from 
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58 globally-distributed forest sites. By testing different hypotheses regarding (by using 

59 alternative process representations) of the physicochemical constraints on SOC 

60 deprotection and microbial turnover in MIMICS, the errors of simulated SOC 

61 concentrations across sites were further decreased. We show that MIMICS can 

62 resolve the dominant mechanisms of SOC decomposition and stabilization and that it 

63 can be a reliable tool for predictions of terrestrial SOC dynamics under future climate 

64 change. It also allows us to evaluate at large scale the rapidly evolving understanding 

65 of SOC formation and stabilization based on laboratory and limited filed observation.

66

67 KEYWORDS

68 Soil organic carbon, soil biogeochemical model, microbial physiology, soil 

69 physicochemical property, soil carbon stabilization, soil carbon classification, climate 

70 change

71 1 | INTRODUCTION

72 Soil organic carbon (SOC) is the largest terrestrial carbon (C) pool (Ciais et al., 

73 2013), and contains more than three times as much C as either the atmosphere or 

74 terrestrial vegetation. Therefore, a small change (< 1 %) in the global SOC pool might 

75 drastically alter the land-atmosphere C balance (Heimann & Reichstein, 2008; Shi et 

76 al., 2018). SOC is also closely related to soil fertility, structure, water holding 

77 capacity and ecosystem biogeochemical cycles (Six et al., 2004; Campbell & Paustian, 

78 2015). Dynamics of SOC have received increasing attention in many research areas 

79 ranging from small-scale projects for preserving or improving soil health, to 

80 large-scale climate change mitigation (e.g. the “4per1000” initiative) (Lal, 2016). Soil 

81 biogeochemical models are the main tools for estimating global land C stock and the 

82 interactions between SOC dynamic and changes in climate and land use.

83 The majority of global soil C models are developed based on first-order kinetics, 

84 in which the decomposition rate of organic matter is proportional to the pool size and 

85 turnover rate, modified by environmental factors (Parton et al., 1987; Manzoni & 

86 Porporato, 2009). These models are mathematically simple and stable, and have been 

87 proven effective for simulating soil organic matter dynamics (e.g. the decreasing trend 
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88 of remaining organic matter mass during decomposition experiments, Barré et al., 

89 2010; Bonan et al., 2013). However, these models are unable to mechanically 

90 represent the transient SOC dynamics in response to increased fresh litter input 

91 (Fontaine et al., 2007; Guenet et al., 2010; Kuzyakov, 2010), likely because they lack 

92 explicit representation of microbial decomposition and SOC stabilization (Schmidt et 

93 al., 2011; Creamer et al., 2015). Earth System Models (ESMs) which use the 

94 first-order soil C models also show poor agreement with global spatial variation of 

95 SOC stock (Todd-Brown et al., 2013; Hararuk & Luo, 2014; Wu et al., 2018). 

96 Moreover, the conceptual SOC pools used in conventional models are largely not 

97 observable (Elliot et al., 1996; Abramoff et al., 2018; Robertson et al., 2019), making 

98 it challenging to validate conventional soil C models using field observations (Six et 

99 al., 2014; Viscarra Rossel et al., 2019).

100 New theories and soil biogeochemical models have been developed to explicitly 

101 represent microbial biomass and physiology (Allison, 2012; Cotrufo et al., 2013; 

102 Wieder et al., 2014b; Campbell et al., 2016; Abramoff et al., 2018, 2019; Huang et al., 

103 2018; Robertson et al., 2019). These microbial models are valuable for testing specific 

104 responses of SOC at small spatial scales, such as the effect of short-term priming 

105 observed during litter manipulation experiments or the addition of labile organic 

106 matter to the incubated soil samples in the lab. However, they introduce parameters 

107 determined from short term experiments or under laboratory conditions. Thus, 

108 microbial models add uncertainty to large-scale simulations (Stockmann et al., 2013; 

109 Wang et al., 2014; Shi et al., 2018; Robertson et al., 2019), because most of these 

110 models are calibrated against observed litter or SOC decomposition rates obtained 

111 from limited laboratory or field experiments (Wieder et al., 2014b; Campbell et al., 

112 2016; Georgiou et al., 2017). Robust datasets which can be used to comprehensively 

113 evaluate the simulated quasi-equilibrium SOC pool sizes are still scarce (Wieder et al., 

114 2014a). Furthermore, it remains difficult to determine whether microbial explicit 

115 models outperform conventional first-order models on predicting large-scale SOC 

116 spatial gradients and temporal dynamics (Campbell & Paustian, 2015; Wieder et al., 

117 2015, 2018). Microbial models have to be carefully calibrated and evaluated before 
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118 they are used to replace conventional first-order models in ESMs (Wieder et al., 2013; 

119 Wang et al., 2014).

120 Several studies have calibrated and validated microbial decomposition models 

121 (Wieder et al., 2013, 2015; Robertson et al., 2019) using globally gridded soil 

122 databases such as the Harmonized Word Soils Database (HWSD, 

123 FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and the Northern Circumpolar Soil Carbon 

124 Database (NCSDC, Tarnocai et al., 2009). However these global databases do not 

125 contain uncertainty estimates (Dai et al., 2018), and previous studies have identified 

126 significant differences between SOC estimates from these databases or between 

127 grid-scale estimates from these databases and point-scale in situ observations (Tifafi 

128 et al., 2018; Fig. S1 in supplementary material). In addition, there is still no reliable 

129 globally gridded database of plant litter input. Uncertainties in the boundary 

130 conditions (e.g. litter inputs simulated by ESMs and soil physical and chemical 

131 properties) used as model forcing data further hamper the use of these global 

132 databases for model evaluation. An alternative approach is to calibrate and evaluate 

133 the microbial-explicit SOC models using extensive in situ observations of SOC 

134 contents, soil properties, litterfall production and climate conditions. Moreover, to 

135 ensure that the tested microbial model can capture many key processes related to SOC 

136 decomposition and stabilization, rather than only simulate the total SOC contents, it is 

137 necessary to evaluate the simulated composition of different C pools to total SOC, the 

138 turnover time of each C pool, and the sensitivity of SOC content to litter input and 

139 soil properties.

140 In this study we compiled a large set of in situ observations of SOC 

141 concentrations for northern forests, as well as related soil property measurements (e.g. 

142 texture, bulk density and pH), annual litter input and climate from 206 forest sites 

143 distributed across different climate zones of Europe and China. Using this database, 

144 we calibrated and evaluated the first-order soil biogeochemical model CENTURY 

145 (Parton et al., 1987) and the microbial trait-based model MIMICS (MIcrobial-MIneral 

146 Carbon Stabilization, Wieder et al., 2015). To evaluate the simulated SOC 

147 composition, we acquired observations of the ratio of microbial biomass to total SOC, 
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148 and the SOC fractions that represent the different SOC pools in the total SOC stock 

149 from sites that are independent from the European and Chinese sites.

150 The aim of this study is to assess the strength and weakness of microbial implicit 

151 and microbial explicit models in simulating the stocks and composition of SOC with 

152 the intent of guiding future experiments and model developments. Specifically, we: 1) 

153 compared CENTURY and MIMICS with observed forest SOC concentrations at the 

154 continental scale, and explored the sources of model biases; 2) quantified the 

155 sensitivity of CENTURY- and MIMICS-simulated sensitivities of SOC concentration 

156 to changing soil conditions and litterfall inputs; 3) evaluated the MIMICS-simulated 

157 SOC compositions including ratios of microbial biomass to total SOC and the 

158 proportions of different SOC pools using observed values globally; 4) explored the 

159 main drivers of the variation in SOC composition. Finally we discussed the 

160 implications of our results for SOC modeling at global scales.

161

162 2 | MATERIALS AND METHODS

163 2.1 | Observation data on SOC concentration and soil properties

164 To calibrate and evaluate both soil C models under a wide range of climate 

165 conditions and forest types, we compiled observed SOC concentrations and the 

166 corresponding plant biomass, litterfall, soil properties (e.g. bulk density, soil texture, 

167 pH) and climate conditions (mean annual temperature) from 72 European forest sites 

168 and 134 Chinese forest sites (Fig. S2). The European sites are part of the International 

169 Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on 

170 Forests (ICP Forests, http://icp-forests.net) operating under the UNECE Air 

171 Convention and featuring consistent methods and harmonized data across the whole 

172 network (Gleck et al., 2016; Ukonmaanaho et al.,2016). The Chinese forest sites 

173 belong to a reviewable and consistent nationwide inventory system established by the 

174 Chinese Ministry of Forestry (Tang et al., 2018). The forest stand ages at most sites 

175 are older than 40 years. In situ observations are mostly conducted during the period 

176 from 2000 to 2015, with durations ranging from one to more than 10 years. The 

177 observation sites cover four forest types (temperate needle-leaved evergreen forest 
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178 (TeNE), temperate broad-leaved evergreen forest (TeBE), temperate broad-leaved 

179 summer-green forest (TeBS), boreal needle-leaved evergreen forest (BoNE)) and 

180 more than 15 soil types (based on the FAO-90 soil classification in HWSD v1.2). 

181 Mean annual temperatures of the observation sites span a large range from -10 °C to 

182 higher than 20 °C (Fig. S3a). Values of mean annual total precipitation ranged from 

183 less than 300 mm yr-1 to more than 2000 mm yr-1 (Fig. S3b). Annual total litterfall 

184 production was between 100 g C m-2 yr-1 and 2000 g C m-2 yr-1 (Fig. S3c). Soil 

185 properties at the observation sites vary widely (Figs. S3d-i), with soil pH ranges from 

186 4.5 to 8.5, and clay fraction ranges from 1% to 45%. Moreover, observation data at 

187 European ICP Forest sites provide measurements of SOC concentrations and soil 

188 properties at four different layers (0-10, 10-20, 20-40, 40-80 cm) of the top 80 cm soil, 

189 whereas data at Chinese sites provide the mean condition of the top 1 m soil.

190 At the European ICP Forest sites, leaf litterfall (including twig litterfall for some 

191 sites) was measured in situ, but not wood and root litterfall. We estimate the wood 

192 litterfall based on the ratios of wood litterfall to leaf litterfall, and the root litterfall 

193 based on the root turnover rates and the ratios of root biomass to leaf biomass (Table 

194 S1 in supplementary material). At Chinese sites, there are no in situ observations of 

195 litterfall. We calculated the leaf, wood and root litterfall from observed standing 

196 biomass (including leaf, wood and root) and the annual leaf and root turnover rates 

197 and the ratios of wood litterfall to leaf litterfall (Table S1). The leaf and root turnover 

198 rate, the ratios of wood and root litterfall to leaf litterfall and the ratios of root 

199 biomass to leaf biomass used in this study were obtained from a statistical analysis of 

200 extensive global observations (Zhang et al., 2014; Holland et al., 2015; Jia et al., 2016, 

201 Fig. S4).

202 C:N ratios of leaf litterfall at both European and Chinese sites were measured in 

203 situ. C:N ratios of wood and root litterfall, as well as the litterfall lignin:C ratios for 

204 each forest type were obtained from the global Fine-Root Ecology Database (FRED, 

205 Iversen et al., 2017) , the TRY database (Kattge et al., 2011) and the Long-Term 

206 Inter-site Decomposition Experiment Team (LIDET, Harmon et al., 2009).

207 The soil base saturation (BS, %), Cation Exchange Capacity (CEC, cmol kg-1) 
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208 and soil gravel content (% of volume) at each observation site were obtained from the 

209 Global Soil Dataset for Earth System Models (GSDE, Shangguan et al., 2014). Soil 

210 type was determined based on the map from HWSD v1.2. Annual mean soil water 

211 content (%) was extracted from the estimation of land surface model 

212 ORCHIDEE-trunk (r5504, Krinner et al., 2005). LAI and NDVI data were extracted 

213 from the GLASS (resolution: 0.05°, Liang et al., 2013) and GIMMS NDVI products 

214 (resolution: 8-km, Tucker et al., 2005), respectively. Evapotranspiration (ET) and the 

215 potential evapotranspiration (PET) were obtained from Jung et al. (2010) and the 

216 CRUNCEP v7 database (Viovy, 2018), respectively. More details of the datasets used 

217 in this study can be found in Table S1.

218

219 2.2 | Decomposition models

220 2.2.1 | CENTURY

221 We selected the CENTURY model (the version presented by Parton et al., 1987) 

222 to represent first-order soil biogeochemical models, because it has been widely 

223 incorporated into ESMs (e.g. Sitch et al., 2003; Krinner et al., 2005; Koven et al., 

224 2013). In CENTURY, organic matter is separated into metabolic litter (high quality, 

225 LITm) and structural litter (low quality, LITs) and three SOC pools (active pool 

226 (SOCact), slow pool (SOCslow), passive pool (SOCpas)) with different turnover times 

227 (Fig. 1a). Fresh litter inputs are partitioned into metabolic and structural litter pools 

228 based on a linear function (fmet, dimensionless) of litter lignin to nitrogen (N) ratios 

229 (LN) (Parton et al., 1987):

230 (1)���� = max(0.0, 0.85― 0.013 × ��)

231 There is no explicit representation of microbial biomass in CENTURY. The 

232 decomposition of litter and SOC is described by first order kinetics. At each daily 

233 time step, the decomposition of litter or SOC (mg C cm-3 day-1) is calculated 

234 following:

235 (2)
d��
d� = �� - ���� × �� × �(���) × �(���) × �(����)

236 where Cs (mg C cm-3) is an individual litter or SOC pool, Ic (mg C cm-3 day-1) is the C 
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237 input to the pool considered, kmax is the potential maximum turnover rate of Cs (day-1) 

238 and is equal to the reciprocal of maximum turnover time. f(tem), f(swc) and f(clay) are 

239 the soil temperature factor, moisture factor and clay factor modulating decomposition 

240 rate, respectively.

241 2.2.2 | MIMICS (default and modified versions)

242 The default version of MIMICS (MIMICS-def)

243 The MIcrobial-MIneral Carbon Stabilization model (MIMICS, Wieder et al., 

244 2014b, 2015) explicitly considers the relationships among litter quality, functional 

245 tradeoffs in microbial physiology, and the physical and physicochemical protection of 

246 microbial byproducts in forming stable soil organic matter. Like CENTURY, 

247 MIMICS also has two types of litter pool: metabolic (LITm) and structural (LITs) litter 

248 (Fig. 1b), and the method used to partition fresh litter input into metabolic and 

249 structural pools (fmet, Fig. 1b) is the same as that used in CENTURY (Eq. 1). SOC in 

250 MIMICS is divided into three pools: the physically and physicochemically protected 

251 (SOCp), the chemically recalcitrant (SOCc) and available (SOCa). Two microbial 

252 functional types are represented in MIMICS that roughly correspond to 

253 microorganisms with copiotrophic (r-strategy, MICr) and oligotrophic (k-strategy, 

254 MICk) growth strategies (Fig. 1b). The MICr is assumed to have higher growth and 

255 turnover rates and prefers to consume more labile litter (LITm), whereas the MICk has 

256 relatively lower growth and turnover rates and is more competitive when consuming 

257 low-quality litter (LITs) and chemically recalcitrant SOC (SOCc).

258 C fluxes in MIMICS are simulated at an hourly (h) time step. Decomposition of 

259 litter and SOC pools (mg C cm-3 h-1) is based on temperature-sensitive 

260 Michaelis–Menten kinetics (Schimel & Weintraub, 2003; Allison et al., 2010) through 

261 the equation:

262 (3)
d��
d� = �� - MIC ×

���� × ���� + ��
263 where Cs (mg C cm-3) is a substrate pool (LIT or SOC) and MIC (mg C cm-3) 

264 corresponds to the biomass of each microbial pool (MICr or MICk). Ic is the C input 

265 to the pool considered (mg C cm-3 h-1). Vmax and Km are the microbial maximum 
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266 reaction velocity (mg C (mg MIC)-1 h-1) and half-saturation constant (mg C cm-3), 

267 respectively. They are calculated as:

268 (4)���� = ������� × �+ ���� × �� × ����
269 (5)�� = ������� × �+ ���� × �� × ����
270 where T is soil temperature (◦C), Vmod and Kmod represent the modifications of Vmax 

271 and Km based on assumptions regarding to microbial functional types, litter chemical 

272 quality and soil texture effects, av and ak are the tuning coefficient of Vmax and Km, 

273 respectively. Vslope and Kslope are two regression coefficients. Vint and Kint are the 

274 regression intercepts.

275 Decomposition rate of substrates and the microbial growth efficiency (MGE, Fig. 

276 1b) determine the growth rate of microbes. The turnover of MICr and MICk (MICτ, 

277 mg C cm-3 h-1) at each time step is calculated based on their specific turnover rate 

278 (kmic, h-1), annual total litterfall input (LITtot, g C m-2 yr-1) and fmet by following:

279 (6)MICτ = �� × ���� × �� × ���� × max(min ( ������, 1.2), 0.8) × MIC

280 where aτ (=1.0, dimensionless) is a tuning coefficient of kmic. c is the regression 

281 coefficients, and its value is 0.3 for MICr and 0.1 for MICk. Turnover of microbial 

282 biomass provides C inputs to SOC pools (Fig. 1b). The fractions of microbial residues 

283 to different SOC pools are determined by soil clay content (fclay) and the quality of 

284 litter inputs (lignin:N), and can be specifically calculated by following:

285 (7)��� = min(1.0,  �1 × �1.3 × �����)
286 (8)��� = min(1.0,  �2 × �0.8 × �����)
287 (9)��� = min(1.0― ���,  �4 × ��3 × ����)
288 (10)��� = min(1.0― ���,  �5 × ��3 × ����)
289 (11)��� = 1.0― ��� - ���
290 (12)��� = 1.0― ��� - ���
291 where frp, fkp, frc, fkc, fra and fka represent the fractions of MICr and MICk residues to 

292 SOCP, SOCc and SOCa, respectively. LN is the lignin:N ratio. a1-5 are coefficients and 
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293 their values in default MIMICS can be found in Table S1 in supplementary materials. 

294 In addition to microbial residues, a fraction of inputs (fi,met and fi,stru) which bypasses 

295 litter and microbial biomass pools is transferred directly to corresponding SOC pools 

296 (Fig. 1b).

297 The transfer of SOCp to SOCa (D, mg C cm-3 h-1), which is intended to represent 

298 the deprotection of SOC, i.e. desorption of physico-chemically protected SOC from 

299 mineral surfaces and/or the breakdown of aggregates de-protecting physically 

300 protected SOC, is calculated as a function of soil clay content (fclay) by following:

301 (13)�= 1.5 × 10 -5 × �� × � -1.5 × �����
302 where kd (=1.0, dimensionless) is a tuning coefficient of the deprotection rate. Some 

303 parameter values of the default MIMICS are provided in Table S1 in supplementary 

304 materials. Please see Wieder et al. (2014b, 2015) for more details of the structure, 

305 algorithms, parameters and underlying assumptions of MIMICS.

306

307 MIMICS with revised SOC deprotection rate (MIMICS-D)

308 In addition to the default version of MIMICS (MIMICS-def), we also developed 

309 and tested a new version of MIMICS (MIMICS-D) that considers the saturation of 

310 SOC protected by the mineral matrix (SOCp). In the MIMICS-def, the deprotection 

311 rate of SOCp in a specific soil was a fixed value determined by the abundance of the 

312 soil clay fraction (Eq. 13). However, field and laboratory research suggests that there 

313 might be an upper limit, or ‘saturation level’, in the amount of physicochemically and 

314 physically protected SOC that can be held in soil (Six et al., 2002; Stewart et al., 2007; 

315 Robertson et al., 2019). Deprotection rate of the SOC protected by the mineral matrix 

316 is closely related to this saturation degree (defined as the ratio of existing SOCp to the 

317 soil maximum adsorption capacity; Kothawala et al., 2008; Wang et al., 2013). In this 

318 study, we did not calculate the maximum adsorption capacity directly, as it is 

319 determined by soil physical and chemical characteristics, and there is still no widely 

320 recognized method to calculate it (Lützow et al., 2006; Campbell & Paustian, 2015; 

321 Huang et al., 2018), The upper-limit of SOCp was represented by assuming that the 
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322 deprotection rate increases exponentially with the pool size of SOCp:

323 (14)�= 1.5 × 10 -5 × �� × � -1.5 × ����� × ���� × SOCp

324 where kdp is a coefficient for tuning the relationship between the deprotection rate (D) 

325 and the pool size of SOCp.

326

327 MIMICS considering the impact of base saturation (BS) on deprotection rate 

328 (MIMICS-DB)

329 We tested several new modifications of MIMICS to see if the inclusion of soil 

330 chemical properties (BS and pH) could further decrease the uncertainties in simulated 

331 SOC concentrations. We modified the microbial maximum reaction velocity (Vmax, Eq. 

332 4), the C input rates to SOCp (fp and fi,met in Fig. 1b) and the deprotection rate of SOCp 

333 with some simple linear or exponential functions of soil BS and pH, separately. In this 

334 study, we only present the results from the modification called MIMICS-DB, where 

335 the modified deprotection rate of SOCp is calculated as:

336 (15)�= 1.5 × 10 -5 × �� × � -1.5 × ����� × ���� × SOCp × ���� × BS

337 where kbs is a coefficient modifying the impacts of BS on the deprotection rate.

338

339 MIMICS considering density-dependent microbial turnover rate (MIMICS-DBT)

340 Following the method of Georgiou et al. (2017), we also incorporated a 

341 density-dependent microbial turnover rate into MIMICS. In this version 

342 (MIMICS-DBT), microbial turnover rate increases with growing microbial biomass 

343 density (MIC, mg C cm-3) by modifying Eq. 6:

344 MICτ = �� × ���� × �� × ���� × max(min ( ������, 1.2), 0.8) × (MIC)�
345 (16)

346 where β is the density-dependence exponent.

347

348 2.3 | Model parameterization and validation against SOC concentrations

349 We assumed that all the forest sites included in this study are at steady state (i.e. 

350 no interannual variation of SOC, litterfall and stand biomass). CENTURY and the 
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351 four versions of MIMICS introduced above (Table 1) were then calibrated and 

352 evaluated against the ‘equilibrium’ SOC concentrations using observation data of soil 

353 texture, annual total litterfall and mean annual temperature. We also ignored the 

354 interannual and seasonal dynamics of climate and vegetation. Historical climate, 

355 litterfall input and soil properties were all assumed to be similar to the average 

356 condition during the observation period. Vertical discretization in SOC and soil 

357 properties is not considered in CENTURY and MIMICS. We focus only on the spatial 

358 variation of average SOC concentrations in the upper soil horizons (0-80 cm for 

359 European sites and 0-1 m for Chinese sites). The semi-analytic approach was used to 

360 calculate the steady state microbial and soil C pool sizes (Xia et al., 2012) based on 

361 annual total litterfall production (evenly distributed to each time step of simulation), 

362 annual mean soil temperature and moisture conditions and observed soil properties at 

363 each forest site.

364 Parameters of CENTURY and MIMICS were optimized against the observed 

365 SOC concentrations (Table 1). Although many parameters (e.g. carbon use efficiency 

366 and parameters related to the constraints of temperature and soil clay on C 

367 decomposition rate) of CENTURY and MIMICS can impact the simulated SOC 

368 concentrations, we only optimized the parameters which directly control the organic 

369 matter decomposition rates. Because these parameters generally contain large 

370 uncertainties and the simulated SOC stocks are generally more sensitive to these 

371 parameters than to other model parameters (Wieder et al., 2014b, 2015; Shi et al., 

372 2018). Specifically, we added two scaling parameters klitt and ksoc (dimensionless) in 

373 CENTURY to tune the turnover rates of litter and SOC pools, respectively.

374 (17)����_����_��� = ����� × ����_����
375 (18)����_���_��� = ���� × ����_���
376 where kmax_litt and kmax_litt_opt are the default and optimized litter turnover rates, 

377 respectively. kmax_soc and kmax_soc_opt are the default and optimized SOC turnover rates, 

378 respectively. The default litter and SOC turnover rates (see Table S2) were obtained 

379 from Parton et al. (1987). Optimization of only klitt and ksoc may be not enough to 

380 minimize the uncertainties in the turnover rates of litter and SOC pools and the 
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381 simulated SOC concentrations. We therefore also tested the effectiveness of 

382 CENTURY on capturing observed SOC concentrations when five free parameters 

383 were introduced to tune the turnover rates of metabolic litter, structural litter, active 

384 SOC, slow SOC and passive SOC, respectively (Fig. S5).

385 For the MIMICS models, we optimized the scaling parameters (av, ak and kd) of 

386 the microbial maximum reaction velocity (Vmax, Eq.4), half-saturation constant (Km, 

387 Eq. 5) and of the deprotection rate of SOCp (Eqs. 13-15), as they are all closely 

388 related to the decomposition and the physical stabilization of organic matter (Wieder 

389 et al., 2014b, 2015). Parameters in the newly introduced equations (Eqs. 14-16) for 

390 modifying deprotection rates and microbial turnover rate were also optimized (Table 

391 1).

392 Parameter optimization was performed using the shuffled complex evolution 

393 (SCE) algorithm developed by Duan et al. (1993, 1994), which has proven to be 

394 effective for global optimization by many previous studies (e.g. Muttil & 

395 Jayawardena, 2008; Franchini et al., 2009). Prior value and the range of each 

396 parameter used for the SCE algorithm are listed in Table S3. Root mean square error 

397 (RMSE, Eq. 19) between simulated (SOCsim_i) and observed (SOCobs_i) SOC 

398 concentrations (g C kg-1 soil) was used as the objective function, and parameters that 

399 minimized the RMSE were regarded as optimal.

400 (19)����= (
∑��= 1

(������_� - ������_�)2� )

401 where n is the number of observation sites. In addition to RMSE, the Akaike 

402 information criterion (AIC, Eq. 20), which considers both the goodness of fit and 

403 the number of free model parameters (nparam) were also used to evaluate the 

404 optimized models (Table 1).

405 (20)���= � × ��(
∑��= 1

(������_� - ������_�)2� ) +2������
406 Our preliminary-analyses indicated that parameter optimizations of MIMICS 

407 based solely on observed SOC concentration might result in unrealistic estimates of 

408 SOC composition (e.g. the SOCp pool approaching to zero at all sites) and of turnover 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

409 rates (e.g. the SOCp turnover rates being significantly larger than SOCa), although the 

410 simulated concentrations of total SOC agreed well with the observations. To mitigate 

411 this problem, some additional constraints on simulated SOC composition and turnover 

412 rates were incorporated into our optimization scheme (see below). Parameter sets that 

413 did not meet the imposed constraints on SOC composition and turnover rates were 

414 excluded. Note that the simulated turnover rates of different SOC pools from 

415 CENTURY are always consistent with the definition of SOC pools (i.e. the active 

416 pool has the largest turnover rate, followed by the slow pool, and the passive pool has 

417 the lowest turnover rate), and the simulated SOC composition (mainly determined by 

418 the turnover rate of each pool, see section 3.2) did not show any ‘abnormalities’ (i.e. 

419 no simulated SOC pool declined to very small values approaching zero), so we did 

420 not incorporate additional constraints when optimizing the parameters of CENTURY.

421 Previous studies suggest that the organic C associated with soil minerals or stored 

422 within soil aggregates, corresponding to the SOCp pool of MIMICS, is the most stable 

423 fraction of SOC with turnover times approaching hundreds to thousands of years. 

424 Further, the recalcitrant SOC fractions composed by structurally complex compounds 

425 corresponding to the SOCc pool of MIMICS generally have longer turnover time than 

426 the labile SOC fraction (Benbi et al., 2014; Robertson et al., 2019; Sokol et al., 2019). 

427 Therefore, we set a constraint that the simulated mean SOCp turnover time for all of 

428 the 206 observation sites must be longer than that of SOCc, and that the mean SOCc 

429 turnover time must be longer than SOCa.

430 Observations found that a large fraction (e.g. 10-50%) of SOC is in stable pool 

431 (Lützow et al., 2007; Barré et al., 2010; Benbi et al., 2014; Viscarra Rossel et al, 

432 2019). To avoid the optimized parameters giving a very low (approaching to zero) 

433 estimate of the fraction of SOCp, we also added as a constraint of model results with 

434 optimized parameters that the simulated average proportion of SOCp at the 206 

435 observation sites (not for every individual site) must be larger than 5%, that average 

436 proportion of SOCc cannot exceed 70%, and that the total amount of SOCp and SOCc 

437 should be higher than SOCa.

438 Note that the parameters (a1-5 in Eqs. 7-10) controlling the partition of microbial 
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439 residues to different SOC pools were modified before the parameters listed in Table 1 

440 are optimized, because MIMICS did not give reasonable estimates of the SOC 

441 concentrations, compositions and the turnover rates simultaneously when only the 

442 parameters listed in Table 1 were calibrated. The modified values of a1-5 are provided 

443 in Table S2.

444 To explore the sources of simulation errors (i.e. the difference between simulated 

445 and observed SOC concentrations), we first calculated the partial correlation 

446 coefficient between the errors of the simulated SOC concentration and different soil 

447 (e.g. texture, pH, BS and CEC), plant (NDVI and LAI) and climate (temperature, 

448 precipitation, ET) variables (see section 2.1 and Table S1 for the source of each 

449 variable). Then we fitted a linear mixed-effects (LME) model to quantify the 

450 combined contribution of the fixed-effects (soil, plant and climate variables listed 

451 above) and site-specific random-effects (e.g. soil type, forest type, stand age and 

452 micro-topography) on explaining the simulation errors. All the important variables 

453 that might potentially affect SOC dynamics, for example soil texture, temperature, pH, 

454 moisture, BS, CEC, bulk density, litterfall inputs, precipitation and ET, were included 

455 as fixed-effects in the LME. Observation site was used as a random-effect. We also 

456 fitted a multiple linear regression (MLR) with all of the fixed-effects of the LME as 

457 the predictor variables to quantify the relative contributions of fixed- and 

458 random-effects to the simulation errors. Then the relative contributions of fixed- and 

459 random-effects were quantified based on the coefficient of determination of the LME 

460 (R2
LME) and MLR (R2

MLR). The contributions of model choice (fmodel), fixed-effects 

461 (ffixed) and random-effects (frandom) to explaining the variation of SOC concentrations 

462 can be quantified by:

463 (21)������ = �2�����
464 ������ = �2��� × (1― �2�����)
465 (22)

466 (23)������ = (�2��� - �2���) × (1― �2�����)
467 where R2

model is the determining coefficient of the regression equation between 
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468 simulated and observed SOC concentrations.

469 2.4 | Model evaluation against sensitivities of SOC concentrations to key model 

470 drivers

471 To assess whether each model simulated the variations of SOC concentrations for 

472 the right reasons, we first identified the key drivers of the spatial variations of SOC 

473 concentration, and then compared modeled sensitivities of SOC concentration to these 

474 drivers to the values derived from the observations. The potential key drivers we 

475 evaluated include soil temperature, moisture, clay content, litterfall input, the mean 

476 C:N ratio and the lignin:C ratio of litterfall. The sensitivities of organic matter 

477 decomposition rate to manipulated soil temperature, moisture and litter inputs have 

478 been widely investigated via laboratory and field experiments (Parton et al., 2007; 

479 Bonan et al., 2013; Sierra et al., 2015). However, no experiments have measured the 

480 sensitivity of equilibrium SOC stock to changing soil properties and litter inputs, as it 

481 would take decades to hundreds of years for the SOC pool to reach equilibrium after 

482 manipulating litter. Here we estimated the sensitivities by making use of observed 

483 spatial variation of SOC with different drivers, including soil temperature, water 

484 content, clay fraction, annual total litter input and the C:N ratio and lignin:C ratio of 

485 litter input. We assumed the soil-litter system is in steady-state, and the sensitivities of 

486 equilibrium SOC to different drivers were quantified by multiple linear regression. 

487 The regression coefficient of each driver was regarded as the observed sensitivity.

488 The sensitivities of simulated SOC concentration to soil and litter properties from 

489 optimized CENTURY and MIMICS were obtained using Monte Carlo simulations. 

490 We sampled 1000 sets of unique soil and litter input condition within the observed 

491 space of each variable using Latin Hypercube technique (Tang & Zhuang, 2009). All 

492 soil and litter variables were assumed to be uniformly distributed and the range of 

493 each variable was set based on the maximum and minimum observed values at the 

494 European and Chinese sites. For each combination of soil and litter input condition, 

495 the sensitivity (Si) of SOC concentration to each variable (di) was calculated as

496 �� =
�(�1,�2, ⋯,�� + �, ⋯��) - �(�1,�2, ⋯,��, ⋯��)�
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497 (24)

498 where δ is the step size of a change in variable di assumed to be one percent of the 

499 difference between maximum and minimum di (i.e. δ = (di_max-di_min)/100).

500

501 2.5 | Model evaluation against SOC composition

502 We evaluated the simulated proportions of the different SOC pools using 

503 observations from sites that are independent of the European and Chinese forest sites, 

504 for which the model parameters were calibrated. The simulated ratios of microbial 

505 biomass to total SOC were validated against 655 observations from forest sites around 

506 the world (Xu et al., 2013). The simulated SOC composition from CENTURY and 

507 MIMICS was compared to measurements of SOC composition from 505 sites under 

508 native forests and grasslands in Australia (Viscarra Rossel & Hicks, 2015; Viscarra 

509 Rossel et al. 2019). These data were partitioned into three fractions, the particulate 

510 organic C (POC), humic organic C (HOC) and resistant organic C (ROC, which is the 

511 mineral-associated organic carbon) based on the particle size and chemical 

512 compositions of organic matter. We acknowledge the fact that the observed pools are 

513 not modeled conceptual pools and we propose a correspondence between both in 

514 Table S4. We compared the simulated SOC pools to the observed SOC fractions to 

515 assess their correspondence in terms of their expected/assumed turnover rates.

516 2.6 | Model evaluation against the key drivers of variations in SOC composition

517 To determine whether the key drivers of variations in SOC composition in 

518 MIMICS and CENTURY models are consistent with the observations, we calculated 

519 the partial correlation coefficient between fraction of each SOC pool and different 

520 model drivers using the simulated proportions of different SOC pools by optimized 

521 MIMICS and CENTURY models at all of the 206 forest sites in Europe and China 

522 (Fig. S2), and using the observed proportions of different SOC pools at the 505 

523 Australia sites (Viscarra Rossel et al. 2019). The key drivers we considered in this 

524 analysis include soil temperature, moisture, clay fraction, BS, annual litterfall input, 

525 litter C:N and lignin:C ratios and the total SOC pool size). For each model driver, all 

526 of the other drivers described above were used as the controlling factor for calculating 
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527 the partial correlation coefficient.

528

529 3 | RESULTS

530 3.1 | Evaluation of simulated SOC concentrations

531 Our evaluation indicates that MIMICS can better capture the observed spatial 

532 variation of SOC concentrations than CENTURY across European and Chinese forest 

533 sites. The default version MIMICS-def explains 48% observed SOC spatial variation, 

534 as compared to only 10% by CENTURY model (Fig. 2). MIMICS-D, MIMICS-DB 

535 and MIMICS-DBT explain 52%, 57% and 59% SOC spatial variation, respectively 

536 (Fig. 2). The RMSE and Akaike information criterion (AIC) indicate that all MIMICS 

537 versions estimate the spatial variation of SOC concentration more accurately than 

538 CENTURY, with MIMICS-DBT having the best performance overall (Fig. 2f). We 

539 also note that the CENTURY model with 5 free parameters for tuning turnover rates 

540 of litter and SOC pools (Fig. S5a) does not estimate SOC concentrations more 

541 accurately than the CENTURY with 2 free parameters (Table 1). CENTURY with 5 

542 free parameters has a slightly smaller RMSE (16.89) but a higher AIC (1174.7) than 

543 the RMSE (16.97) and AIC (1170.5) respectively from CENTURY with 2 parameters 

544 (Fig. S5a).

545 There are systematic biases in the simulated SOC concentrations along the 

546 gradients of SOC pool size, soil properties, and climate and plant variables (Figs. 3 

547 and S6). Both CENTURY and MIMICS overestimate the low SOC concentrations but 

548 underestimate the high concentrations (Figs. 2 and S6). The simulation biases of 

549 CENTURY are significantly correlated with soil (e.g. moisture, BS, pH, and bulk 

550 density), plant (e.g. litterfall, LAI) and climate (e.g. mean annual temperature and 

551 annual total precipitation) variables (Fig. 3), suggesting that CENTURY has structural 

552 biases in the processes depending upon those factors. Similar to CENTURY, the 

553 simulation bias of MIMICS is also significantly correlated with some soil and 

554 litterfall-related variables. By including the effect of BS on deprotection rate into 

555 MIMICS (MIMICS-DB), the significant relationships between simulation biases and 

556 soil, plant and climate variables are largely eliminated, but a significant negative 
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557 relationship between simulation biases and soil CEC appears. The significant 

558 relationship between simulation biases and annual litterfall input can be eliminated 

559 only when the density dependence of microbial turnover rate in MIMICS-DBT is 

560 represented. Moreover, the simulation biases of all models are positively related to 

561 soil bulk density (Fig. 3).

562 Soil properties, litter input rate and the plant and climate conditions together can 

563 only explain a small portion of the simulation biases in SOC concentrations, 

564 especially for MIMICS (Figs. S7, S8). The linear mixed-effects (LME) models which 

565 consider both fixed factors (i.e. the soil, litter and climate variables) and site-specific 

566 random factor (e.g. soil type, forest type, stand age and micro-topography) explain 

567 most of the variations in the simulation biases (Fig. S7). Further statistics indicated 

568 that the SOC variation explained by CENTURY, fixed factors and random factors are 

569 10%, 27% and 54%, respectively (Fig. S8). But for MIMICS, the model itself 

570 explained the largest part (48-59%) of SOC variation, followed by the random factor 

571 (24-32%), with fixed factors explaining 5-9% of SOC variation (Fig. S8). Our further 

572 analysis on the potential contributors to random factors indicated that CENTURY 

573 estimations of SOC are consistently biased regardless of soil type, plant type and 

574 stand age (Fig. S9). But the estimations of SOC made by MIMICS are, with few 

575 exceptions, unbiased across sites with different soil types, plant types and stand ages. 

576 Overall, the constraints of soil, litter and climate factors on SOC stocks are 

577 significantly better represented in MIMICS than in CENTURY.

578 3.2 | Evaluation of simulated sensitivities of SOC concentration to key model 

579 drivers

580 Based on observations, SOC concentrations are sensitive to local soil temperature 

581 and soil clay content (Figs. 4a, c), but are not sensitive to local soil moisture or litter 

582 quantity and quality (Figs. 4b, d, e, f). On average, SOC concentration declines by 

583 0.53 g C kg-1 soil with a 1 °C increase in soil temperature, and increases by 0.37 g C 

584 kg-1 soil with a 1 percent increase in soil clay fraction.

585 MIMICS models provide more accurate estimates of the observation-based partial 

586 sensitivity of SOC concentration to changes in soil temperature, compared to 
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587 CENTURY (Fig. 4a). With a 1 °C increase in soil temperature, the simulated SOC 

588 concentration declines by 0.4-0.55 g C kg-1 soil (median value) depending on the 

589 version of MIMICS. The sensitivity is comparable to the value calculated based on 

590 observation data, but significantly lower than the value simulated by CENTURY 

591 (-0.92±4.1 g C kg-1 soil °C-1). Both CENTURY and MIMICS underestimate the 

592 observed sensitivity of SOC to soil clay fraction. Despite this, the sensitivities 

593 estimated by MIMICS (0.17 – 0.26 g C kg-1 soil (clay%)-1) are closer to the observed 

594 value than CENTURY (0.02 g C kg-1 soil (clay%)-1, Fig. 4c). In CENTURY or 

595 MIMICS, the sensitivities of SOC concentration to these variables generally show 

596 large variations. Overall, SOC simulated by CENTURY is more sensitive to the 

597 changes in soil condition and litter input than MIMICS.

598 3.3 | Evaluation of simulated SOC composition

599 The simulated ratios of microbial biomass (MIC) to total SOC stock (MIC/SOC) 

600 from the MIMICS models is broadly consistent with the observations collected from 

601 global forest sites (Xu et al., 2013), both in terms of mean (or median) value and the 

602 range of variation (Fig. 5). Overall, both observed and simulated MIC/SOC ranged 

603 from 0.005 to approximately 0.05, with a mean value of approximately 0.017 

604 (0.015-0.019) and a median value of 0.013 (0.012-0.014).

605 MIMICS simulated fractions of SOC pools that are consistent with measurements 

606 of the Australian soil samples based on the particle size and chemical compositions of 

607 organic matter (Table S4), but CENTURY did not (Fig. 6). Observations at 505 

608 Australian sites indicate that HOC (46-60%) accounts for the largest proportion of 

609 SOC, followed by the most stable pool ROC (25-33%). The labile pool POC makes 

610 up a small fraction (12-23%) of total SOC (Fig. 6a). MIMICS predicts a similar 

611 composition of SOC pools. The moderately stable pool (SOCc) accounts for the 

612 largest proportion of total SOC, followed by the most stable pool protected by the 

613 mineral matrix (SOCp), and the available pool (SOCa, Fig. 6c). SOC composition 

614 simulated by CENTURY can be very different depending on the optimized turnover 

615 rates of the active, slow and passive SOC pools (Figs. 6b and S5b). Increasing 

616 turnover rate of a specific SOC pool generally results in a smaller proportion of this 
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617 pool compared to the total SOC (if the turnover rates of other SOC pools are assumed 

618 to be fixed).

619 3.4 | Key drivers of the variation in SOC composition

620 The key factors controlling the simulated SOC composition in CENTURY and 

621 MIMICS are different from the observations (Fig. 7). Based on observation data, soil 

622 moisture, clay fraction, BS and litter input show significant empirical correlations 

623 with SOC composition, whereas soil temperature shows no significant correlation. In 

624 both CENTURY and MIMICS, soil temperature strongly affects SOC composition. 

625 Higher temperature however decreases the ‘stable’ SOC fraction (SOCpas) in 

626 CENTURY, but increases the stable fraction (SOCp) in MIMICS. MIMICS can 

627 represent the impacts of litter input on SOC composition, but CENTURY does not. 

628 Similar to the observations, higher litter input rate increases the proportion of the 

629 stable SOC pools (ROC and SOCp) but decreases the proportion of moderately stable 

630 pools (HOC and SOCc). The simulated decreasing trend of labile SOC (SOCa) with 

631 increasing litter input is contrary to the observation (POC). In MIMICS-DB and 

632 MIMICS-DBT, soil chemical properties represented by BS also show strong impact 

633 on SOC composition. Moreover, SOC composition also changes with the pool size of 

634 total SOC. It is necessary to note that the partial correlation coefficients might not be 

635 able to fully represent the relationships between SOC composition and soil and litter 

636 variables (Fig. 7), as SOC composition might not be linearly related to these variables 

637 (Fig. S10).

638 4 | DISCUSSION

639 Using in situ observations of SOC, litterfall and soil properties from 206 forest 

640 sites in Europe and China, we compared the performance of a first-order soil 

641 biogeochemical model (CENTURY) and four different versions of the microbial 

642 trait-based model (MIMICS) for simulating the large-scale spatial variation of SOC 

643 concentrations, the sensitivity of SOC concentration to key model drivers and the 

644 SOC composition. Our evaluation provides strong evidence that soil biogeochemical 

645 models with explicit microbial processes can be applied to simulate the large-scale 

646 SOC dynamics across different soil, vegetation and climate conditions. Below we 
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647 discuss in detail the implications of these results, uncertainties associated with the 

648 analysis, and an outlook for future data and model needs.

649 4.1 | Implications of simulation results

650 4.1.1 | Decomposition model should be calibrated and evaluated comprehensively

651 This study reveals the necessity to calibrate and evaluate MIMICS 

652 comprehensively. Preliminary parameter estimates for this study showed that although 

653 parameters optimized based solely on observed SOC concentrations can accurately 

654 estimate total SOC stocks; they may not be able to estimate SOC composition and 

655 turnover time. In order to avoid unreasonable estimates of SOC composition (e.g. 

656 SOCp of MIMICS calibrated only against the SOC concentrations at European and 

657 China forest sits always approaches to zero) and C turnover times, we imposed 

658 additional constraints to restrict the ranges of proportions and turnover times of 

659 MIMICS SOC pools (see section 2.3). Our results highlight the need for comparing 

660 model results with total SOC and microbial biomass, SOC composition and turnover 

661 time, as well as the response of SOC to changed climate, litter input and soil 

662 properties with a wide range of observations. Moreover, the optimized parameter 

663 values of both CENTURY and MIMICS in this study (Table S3) are different from 

664 the default values calibrated against manipulated decomposition experiments (Parton 

665 et al., 1987; Wieder et al., 2015), suggesting that model parameters obtained based on 

666 local decomposition experiments might not work well at large spatial scales.

667 4.1.2 | Importance of explicitly representing microbial dynamics in 

668 decomposition model

669 Explicit representation of microbial biomass and substrate-limited growth rates is 

670 important for soil biogeochemical models to accurately capture the observed SOC 

671 concentration variations and the responses of SOC to climate changes (Wieder et al., 

672 2014b; Campbell & Paustian, 2015). In our research, simulations of SOC 

673 concentration at forest sites using MIMICS were more accurate and parsimonious 

674 compared to using CENTURY (Fig. 2), and MIMICS better capture the observed 

675 sensitivities of SOC concentrations to temperature and soil clay than CENTURY. 

676 Conventional first-order models do not explicitly simulate microbial activity, but 
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677 instead strongly emphasizes the relationship between litter chemical recalcitrance and 

678 soil C stock (Jenkinson & Rayner, 1977; Parton et al., 1987; Wieder et al., 2014b). 

679 Recent analytical and experimental advances have demonstrated that molecular 

680 structure alone does not control SOC stability. Rather, microbial products of 

681 decomposition are the main precursors of stable SOC (Cotrufo et al., 2013; 

682 Kallenbach et al., 2016), suggesting that, in fact, environmental and biological 

683 controls predominate (Lützow et al., 2006; Schmidt et al., 2011; Lehmann & Kleber, 

684 2015).

685 4.1.3 | Impacts of soil physiochemical properties on SOC decomposition and 

686 stabilization

687 Besides microbial dynamics, it is also necessary to accurately represent the effects 

688 of soil physiochemical properties on SOC dynamics in soil biogeochemical models, 

689 especially for the formation and release of SOC protected by the mineral matrix. It 

690 has been widely recognized that soil clay fractions can influence SOC stock and 

691 stabilization by promoting the sorption of organic C to mineral surfaces and 

692 entrapment into micropores (Schimel et al., 1994; Wagner et al., 2007). CENTURY 

693 uses the soil clay fraction to modify the decomposition rate of the active SOC pool 

694 and the C transfer from active to slow pool (Parton et al., 1987). As the active pool 

695 generally accounts for only a small fraction (c.a. 3.5%) of total SOC (Fig. 6b), this 

696 might explain why the sensitivity of SOC concentration to soil clay content in 

697 CENTURY is drastically underestimated compared to the observation-based 

698 sensitivity (Fig. 4c). In MIMICS, soil clay influences both the decomposition rate of 

699 available SOC pool and the deprotection rate of protected by the mineral matrix. 

700 MIMICS thus better represents current understanding of SOC stabilization processes 

701 and appears to more accurately estimate the sensitivity of SOC to soil clay fraction 

702 than CENTURY (Fig. 4c).

703 Numerous experimental studies also reported the significant impacts of soil 

704 chemical properties such as pH, exchangeable cations (e.g. Ca2+) and extractable 

705 metals (e.g. iron- and aluminum-oxyhdroxides) on SOC dynamics (Six et al., 2004; 

706 Doetterl et al., 2015; Rasmussen et al., 2018; ViscarraRossel et al., 2019), and the 
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707 relative importance of these factors likely varies across scales and ecosystems 

708 (Jobbágy & Jackson, 2000; Schmidt et al., 2011; ViscarraRossel et al., 2019). Indeed, 

709 representing the diversity of mechanisms by which the soil physicochemical 

710 environment influences the persistence of soil organic matter in numerically tractable 

711 ways remains an outstanding challenge in models (Bailey et al. 2018). Our work 

712 suggests one opportunity to use base saturation (BS) as a proxy variable that can 

713 modify C deprotection rates from the SOCp pool in MIMICS (MIMICS-DB). This 

714 modification significantly decreased the biases in simulated SOC concentrations (Fig. 

715 2) and eliminated the systematic estimation biases along gradients of soil pH, clay 

716 content and annual precipitation at the observation sites (Fig. 3). Moreover, our 

717 analysis on the relative contributions of model choice, fixed effects and site-specific 

718 random effects to explaining the SOC variation (Fig. S8) reveals that the constraints 

719 of soil physical (e.g. temperature and clay content) and chemical (e.g. BS) properties 

720 on SOC dynamics has been better represented in MIMICS than in CENTURY, as the 

721 fixed effects including all potentially important soil variables can only explain a small 

722 part of the simulation errors of MIMICS, but a considerable part (~ 30%) of the 

723 simulation errors of CENTURY (Fig. S7, S8).

724 4.1.4| Impacts of litter inputs on SOC decomposition and stabilization

725 First order models like CENTURY assume a linear relationship with productivity 

726 and soil C stocks (Todd-Brown et al. 2013), and the same is true for default 

727 parameterizations of MIMICS. Our analysis shows that the simulated SOC 

728 concentrations from CENTURY and MIMICS models are systematically biased from 

729 observations along the gradients of local litterfall production, except for the 

730 MIMICS-DBT which considers the density-dependent turnover of microbes (Fig. 3). 

731 This suggests that at the community level, regulatory mechanisms like competition, 

732 space constraints and other controls that depend on the density of individuals (such as 

733 disease and production of toxins) may limit microbial population sizes (Hibbing et al., 

734 2010; Kaiser et al., 2014; Kaiser et al., 2015) Indeed, a recent study from Georgiou et 

735 al. (2017) indicated that the density-dependent microbial processes can play an 

736 essential, but often overlooked role in regulating SOC dynamics. We recognize that 
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737 the parameterization of density dependent turnover implemented in MIMCS-DBT 

738 simplifies the complex community interactions that occur in soils, but they represent a 

739 tractable means for capturing the emergent dynamics in models that are intended for 

740 global-scale application and projections.

741 Litter input is not as important as soil physicochemical properties for predicting 

742 total SOC stock (Fig. 4d), but it nevertheless strongly affects SOC composition (Fig. 

743 7), which determines the vulnerability of SOC (i.e. risk of C loss) to perturbations 

744 such as climate change and human disturbances. Litter quality can impact microbial C 

745 use efficiency and short-term SOC dynamics (Manzoni et al., 2017; Zhang et al., 

746 2018), but evidence is inclusive on the significant role of litter quality in long-term 

747 SOC dynamics (Helfrich et al., 2008; Gentile et al., 2011). The effect of litter quality 

748 on SOC stabilization is mostly modulated by the extent of soil C saturation, and it 

749 may alter SOC stocks only when there is a saturation deficit (Castellano et al., 2015). 

750 Consistent with our results (Fig 7), previous studies also reported that litter quantity 

751 rather than quality is one of the main determinants of SOC stability (Carrington et al., 

752 2012; Dungait et al., 2012). Experiments by Wang et al. (2016) suggested that the 

753 ratio between different SOC fractions is related to microbial biomass and community 

754 composition (which depends on the amounts of litter inputs), but not to litter chemical 

755 composition.

756

757 4.2 | Uncertainties in this study

758 Some uncertainties in our simulation results may be caused by biases of forcing 

759 and validation data. In this study, we assumed the forest and soil C at all observation 

760 sites are at equilibrium. However, even though most observation sites have a stand 

761 age older than 40 years and have not been strongly disturbed by fire or human 

762 activities (e.g. reforestation and deforestation can induce a 30% change in soil C stock, 

763 Don et al., 2011), the forest systems at some sites may not be at equilibrium, 

764 especially under the background of global climate change. Some uncertainties also 

765 arise due to lack of observations. Specifically, the wood and root litterfall at European 

766 sites have not been measured and Chinese observation data only provides 
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767 measurements of plant biomass but not litterfall, so we have adopted the leaf turnover 

768 rates and ratios of wood litter and root litter to leaf litter from databases of plant traits 

769 and litterfall production to calculate the total litterfall production at each observation 

770 site (see section 2.1). Moreover, most of the litter C:N ratios and the lignin:C ratios 

771 were obtained from previously compiled litterfall databases and publications and not 

772 from site level observations, Thus, biases and uncertainties that exist in the litter input 

773 data are poorly quantified.

774 Additional uncertainties are related to model structural assumptions and 

775 parameterizations. Specifically, soil moisture has been widely regarded as one of the 

776 primary physical factors that control microbial activity (Arnold et al., 2015; Manzoni 

777 et al., 2016; Ghezzehei et al., 2019); however the soil moisture control over microbial 

778 dynamics is not used in the current parameterization of MIMICS. Soil structure 

779 (characterized by porosity or bulk density) determines soil O2 availability and the 

780 accessibility of C particles to microbes (Lützow et al., 2006; Davidson et al., 2012). 

781 Soil nutrient availability (e.g. mineral nitrogen and phosphorus) strongly affects 

782 microbial C use efficiency and growth rate (Manzoni et al., 2017). Again, soil 

783 moisture, structure and nutrient availability have not been considered in this 

784 implement MIMICS. Finally, neither of the models considered here implement 

785 vertically resolved soil biogeochemistry, which are clearly important to capture soils 

786 with strong vertical profiles or vertical perturbations such as in permafrost C (Kovenet 

787 al. 2015; McGuire et al. 2018). The insufficient representation of interactions between 

788 soil physicochemical properties, nutrient availability, microbial dynamics and SOC 

789 stabilization therefore may induce additional uncertainties in our results. We 

790 appreciate that these additional complexities in model form also generates greater data 

791 demands to appropriately parameterize and evaluate models, but may be necessary to 

792 build confidence in soil carbon projections (Bradford et al. 2016).

793 4.3 | Outlooks and challenges

794 A study by Wieder et al. (2014) demonstrated that MIMICS could capture the 

795 observed temporal decreasing trends of litter and SOC stocks in field decomposition 

796 experiments. Our evaluation further demonstrates that MIMICS can simulate SOC 
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797 stock and composition across ecosystems with different climate, and soil and forest 

798 types. MIMICS also represents the SOC decomposition and stabilization processes 

799 more realistically (e.g. explicitly represents microbial dynamics) than conventional 

800 first-order models. Therefore MIMICS can be used to replace the conventional 

801 decomposition models used in existing ESMs. 

802 The parameters, structure and algorithms of MIMICS can still be improved. We 

803 encourage future studies to assess the global applicability of MIMICS or similar 

804 models based on more integrated in situ observations on plant biomass, litterfall (both 

805 aboveground and belowground), SOC stock and composition, soil physicochemical 

806 properties and local climate from more ecosystems, in particular observations from 

807 grasslands and tropical forests. We also encourage more studies to quantify the 

808 interactions between soil physicochemical properties, microbial dynamics and the 

809 stabilization of SOC. In this study, the MIMICS model considering the 

810 physicochemical constraints of soil properties on SOC deprotection rate and microbe 

811 turnover more accurately estimated SOC concentration than the default model (Fig. 2). 

812 But the empirical functions (Eqs. 13, 14) used to represent physicochemical 

813 constraints were built empirically based on analysis of the biases of simulated SOC 

814 concentration from the default version of MIMICS (Fig. 3). More experiments 

815 investigating influences of soil physicochemical properties on microbial activity and 

816 the C adsorption/desorption rate of mineral soil are needed to improve these empirical 

817 functions. Furthermore, many soil properties are significantly correlated (e.g. Fig. S12) 

818 and the changes in litter inputs and SOC contents can in return dramatically alter soil 

819 physical, chemical, and biological properties (Schmidt et al., 2011; Murphy et al., 

820 2015). Thus, research focusing on the interactions between litter, SOC and different 

821 soil properties is also essential.
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1132 Table

1133

1134 Table 1 Tested models in this study and parameters subject to optimization of each 

1135 model. klitt and ksoc tune the turnover rate of litter and SOC pools in CENTURY, 

1136 respectively. av and ak are parameters tune microbial maximum reaction velocity (Eq. 

1137 4) and half-saturation constant (Eq. 5). kd , kdp and kbs tune the deprotection rate of 

1138 SOCp (Eqs. 13-15). β tunes the density-dependent microbial turnover rate (Eq. 16).

Model Optimized parameters

CENTURY klitt , ksoc

MIMICS-def av , ak , kd

MIMICS-D av , ak , kd , kdp 

MIMICS-DB av , ak , kd , kdp , kbs 

MIMICS-DBT av , ak , kd , kdp , kbs, β 

1139

1140

1141 Figure

1142 Figure 1 Soil C pools and fluxes represented in CENTURY (a) and MIMICS (b). In 

1143 both models, litter inputs (Litinp) are partitioned into metabolic and structural litter 

1144 pools (LITm and LITs) based on litter quality (fmet). The soil organic carbon (SOC) in 

1145 CENTURY are divided into active (SOCact), slow (SOCslow) and passive (SOCpas) 

1146 pools. CUE is the carbon use efficiency of decomposed litter or SOC. In MIMICS, 

1147 decomposition of litter and available SOM pools (SOCa) are governed by temperature 

1148 sensitive Michaelis–Menten kinetics (Vmax and Km). Microbial growth efficiency 

1149 (MGE) determines the partitioning of C fluxes entering microbial biomass pools vs. 
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1150 heterotrophic respiration. Turnover of the microbial biomass (τ) depends on microbial 

1151 functional type (MICr and MICk), and is partitioned into available, physically and 

1152 physicochemically protected, and chemically recalcitrant SOC pools (SOCa, SOCp, 

1153 and SOCc, respectively). fi,met and fi,stru denote the fraction of decomposed metabolic 

1154 litter to SOCp and the fraction of decomposed structural litter to SOCc, respectively. fp 

1155 and fc denote the fraction of τ partitioned to SOCp and the fraction of τ partitioned to 

1156 SOCc, respectively.

1157

1158 Figure 2 Comparison of CENTURY (a) and MIMICS (b-e) for simulating large-scale 

1159 variation of SOC concentrations across the 206 forest sites in Europe and China. 

1160 RMSE is the root mean square error, and AIC is the Akaike information criterion. 

1161 MIMICS versions include the default model (MIMICS-def), revised SOC 

1162 deprotection rate (MIMICS-D), using base saturation to modify deprotection rates 

1163 (MIMICS-DB); and density-dependent microbial turnover rate (MIMICS-DBT; see 

1164 section 2.2.2).

1165

1166 Figure 3 Partial correlation coefficients between the biases of simulated SOC 

1167 concentrations and the climate condition, amount and quality of litter input, and soil 

1168 physical and chemical properties. MAT: mean annual temperature (°C), MAP: mean 

1169 annual total precipitation (mm), MAP-PET: the difference between annual total 

1170 precipitation and potential evapotranspiration (mm), ET: evapotranspiration (mm), 

1171 LAImax: mean of the annual maximum leaf area index at the observation site during 

1172 the period from 1982 to 2000, LAItrend: change trend of the LAImax during the period 

1173 from 1982 to 2000 (yr-1), NDVImax: mean of the annual maximum normalized 

1174 difference vegetation index at the observation site during the period from 1982 to 

1175 2000, LAItrend: change trend of the NDVImax during the period from 1982 to 2000 

1176 (yr-1), litterab: aboveground litter-C stock (g C m-2), SWC: soil water content, BD: 

1177 bulk density (g cm-3), BS: base saturation (0-1, dimensionless), CEC: Cation of 

1178 exchange capacity (cmol kg-1). Partial correlation coefficients between -0.14 and 0.14 

1179 were not significant (p > 0.05).
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1180

1181 Figure 4 Sensitivity of simulated SOC concentration to mean annual temperature 

1182 (SMAT, a), soil water content (SSWC, b), soil clay fraction (Sclay, c), annual litterfall 

1183 input (Slitterfall, d), the C:N ratio of litterfall (SC:N, e) and the lignin:C ratio of litterfall 

1184 (Slignin:C, f). The blue and red dashed lines denote insignificant and significant (p<0.05) 

1185 sensitivity calculated based on observation data, respectively. The solid line in each 

1186 box denotes the median value. Box boundaries show the 25th and 75th percentiles, 

1187 whiskers denote the 10th and 90th percentiles, and the black dots denote the 5th and 

1188 95th percentiles.

1189

1190 Figure 5 Comparison between the simulated ratio of microbial C (MIC) to total SOC 

1191 from different versions of MIMICS and the observed values at globally-distributed 

1192 forest sites. The dashed and solid lines in each box are the mean and median value, 

1193 respectively. Box boundaries show the 25th and 75th percentiles, whiskers denote the 

1194 10th and 90th percentiles, the dots below and above each box denote the 5th and 95th 

1195 percentiles, respectively. The 655 samples of observed MIC/SOC at 

1196 globally-distributed forest sites are collected by Xu et al., 2013.

1197

1198 Figure 6 Comparison between the simulated SOC compositions from optimized 

1199 MIMICS (a) and CENTURY (b) model and the observed SOC compositions at 505 

1200 sites in Australia (c). The observation data in Australia are obtained from 

1201 Viscarra-Rossel et al. (2019). Viscarra-Rossel et al. partitioned total SOC into three 

1202 fractions with different particle-sizes: the particulate organic carbon (POC), the humic 

1203 organic carbon (HOC) and the resistant organic carbon (ROC, which is the 

1204 mineral-associated organic carbon). The line in each box denotes median value. Box 

1205 boundaries show the 25th and 75th percentiles, whiskers denote the 10th and 90th 

1206 percentiles, and the dots below and above each box denote the 5th and 95th percentiles.

1207

1208 Figure 7 Partial correlation coefficients between fraction of each SOC pool and 

1209 model drivers, including mean annual temperature (MAT, °C), soil water content 
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1210 (SWC, dimensionless), soil clay content (clay, dimensionless), annual total litterfall 

1211 production (Litterfall, g C m-2 yr-1), litter C:N ratio (C:N), litter lignin:C ratio 

1212 (Lignin:C), base saturation (BS, 0-1, dimensionless) and total SOC concentration 

1213 (SOC), Figure (a) Obs show the results based on observation data from Australia. 

1214 Figure (b)-(f) showed the results based on optimized CENTURY and MIMICS 

1215 models. Partial correlation coefficients between -0.14 and 0.14 were not significant 

1216 (p > 0.05).
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