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Abstract 

Experimental data have suggested that some contaminants in the environment may increase the 

risk of obesity. Infants can be exposed to chemicals either prenatally, by trans-placental passage of 

chemicals, or postnatally by their own diet and by other external pathways (air inhalation, dust, 

hand-to-mouth exposure) after birth. In order to provide a review of epidemiological evidence on the 

association between prenatal exposure to chemicals and prenatal and postnatal growth, we present 

the literature from systematic review articles and international meta-analyses, when available, or 

recent research articles when summarising articles were not available. The most studied 

contaminants in this field were persistent organic pollutants (e.g. organochlorinated pesticides, 

polychlorinated biphenyls, PCBs), non-persistent pollutants (e.g. phthalates, BPA), toxic heavy metals 

(i.e. cadmium, lead and mercury), arsenic, mycotoxins and acrylamide. Mounting evidence suggests 

that child’s growth may be associated with prenatal or postnatal exposures to environmental 

contaminants. Improving exposure assessment and studying the contaminants as mixtures should 

allow to gain knowledge about the environmental determinants of growth and obesity.  
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Introduction 

Infants can be exposed to chemicals either prenatally, by trans-placental passage of chemicals, or 

postnatally by breastfeeding, their own diet and by other external pathways (air inhalation, dust, 

hand-to-mouth exposure) after birth.  

The placenta is the link between mothers and foetuses, and has multiple function, including 

transport of nutrients or oxygen and elimination of metabolic waste products. It was thought to be a 

barrier for drugs and chemicals but, during the last decades, evidence has accumulated that 

chemicals (incl. drugs) can be transferred across the placenta, by passive diffusion mechanism or 

active transporters (1, 2). Most of the chemicals detected in food can pass the placental barrier, and 

can reach the developing internal organs of the foetus, especially the brain, and some of them can 

accumulate. 

Several pieces of evidence suggest that foetuses and infants may be more sensitive to 

pollutants than adults (3). First, children’s metabolic pathways are immature — especially during the 

foetal period and the first year after birth — suggesting that metabolism and detoxification are not 

as efficient in infants as they are in adults. Furthermore, development processes during these periods 

are also more easily disturbed. Due to their higher body surface area relative to their size, even low 

exposure levels during this window could have detrimental effects, sometimes asymptomatic at the 

time of exposure but appearing later on (4).  

 To add some complexity to this issue, the effects of environmental contaminants on 

children’s health can be highly dependent on exposure timing (5). Many sequential developmental 

processes exist in early life. The development of the foetus is unidirectional and specifically-timed. It 

is a complex and coordinate subsequent cellular events (6). Several studies have investigated 

whether the prenatal exposure to environmental contaminants can negatively affect foetal growth 

and a wide range of health defects. Birth weight has been extensively studied as a proxy of foetal 

growth and low birth weight (LBW) less than 2500g as a marker of intrauterine growth retardation 

(7-9). 
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In order to provide a summary of epidemiological evidence on the association between prenatal 

exposure to chemicals and prenatal and postnatal growth, we presented systematic review articles 

and international meta-analyses, when available, or recent research articles when summarising 

articles were not available. Any type of exposure assessment was selected. For postnatal growth we 

looked at studies using data of children under 11 years of age to avoid the potential effect of 

puberty. We are going to present first persistent organic pollutants, then, non-persistent pollutants 

(i.e. phthalates, BPA and environmental phenols), toxic heavy metals (i.e. cadmium, lead and 

mercury) or arsenic and, finally, other chemicals (i.e. mycotoxins and acrylamide). 

 Persistent organic pollutants 

Persistent organic pollutants (POPs) are carbon-based chemicals. Due to their high stability they 

have a long half-life and are found throughout the environment. They are toxic for humans and 

wildlife (10). Most POPs are results of human activities, related to the use of pesticides or generated 

as by-products of industrial or combustion processes. Once in the environment, POPs accumulate in 

fatty tissue of living organisms, reaching the greatest concentrations at the top of the food chain 

(large fish, mammals and predatory birds). For non-accidentally and non-occupationally exposed 

populations, the major pathway of human exposure is from the ingestion of contaminated food. The 

main source (around 95%) of POPs intake is through dietary intake of animal fats (11). 

We focused on exposure to POPs that have been studied in relation with child growth, 

namely: polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated 

dibenzofurans (PCDF), dichlorodiphenyl trichloroethane (DDT) and its metabolite dichlorodiphenyl 

dichloroethene (DDE), hexaclhorobenzene (HCB), brominated flame retardants (BFRs), perfluoroalkyl 

substances (PFAS).  

Polychlorinated biphenyls (PCBs)  

Of the 209 different types of PCBs, 13 exhibit a dioxin-like toxicity (12). Their persistence in the 

environment corresponds to the degree of chlorination, with higher chlorinated PCBs having longer 

half-lives (13).  PCBs are listed as probable human carcinogens (14). 
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Large numbers of people have been accidentally exposed to PCBs through two cases of PCB 

food contamination of rice bran cooking oil during manufacture. Consumption of PCB-contaminated 

rice oil in Japan in 1968 and in Taiwan in 1979 caused pigmentation of nails and mucous membranes 

and swelling of the eyelids, along with fatigue, nausea and vomiting (15). Prenatally exposed 

Taiwanese children showed developmental delays and behavioural problems seven years after the 

accident (16). Another incidence of accidental exposure was the PCB contamination by industrial 

waste of the Lake Michigan in 1976. Children of mothers who consumed large amounts of 

contaminated fish from Lake Michigan showed poorer short-term memory function at age 4-y (17).  

In non-accidentally exposed population, a large meta-analysis showed that prenatal exposure 

to PCB‑153 has been inversely associated with birth weight. More specifically, they reported a 150-g 

(95% CI: –240, –50 g) reduction per 1 μg/L increase in cord serum PCB‑153 (18). Nevertheless, 

prenatal exposure to PCBs does not have an established negative association with low-birth weight, 

defined as a newborn with birth weight less than 2,500 (19). Concerning postnatal growth, a study 

pooling the data of seven birth cohorts did not show any association between prenatal exposure to 

PCB 153 and postnatal growth from birth to 24 months, while postnatal PCB-153 was associated with 

decreased weight growth at European exposure levels (20).  

Dioxins and Furans 

Dioxins (Polychlorinated dibenzo-p-dioxins, PCDDs) and furans (Polychlorinated dibenzofurans, 

PCDFs) are classes of POPs and refer to a group of toxic chemical compounds that share certain 

physico-chemical characteristics.  

Dioxins and furans have been associated with a number of adverse effects in humans (such 

as immune and enzyme disorders or chloracne), and are classified as possible human carcinogens 

(21). Diet, particularly animal products, is the major source of exposure for humans to dioxins and 

furans for humans. Furans persist in the environment for long periods (several days in the air), and 

are classified as possible human carcinogens (22). Dioxins and furans have also been detected in 

breast-fed infants (23).  
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 A small meta-analysis including only two cohorts studies showed an increased risk of low 

birth weight after prenatal exposure to dioxins (24).  A recent pooled analysis of three birth cohorts 

examined the effect of prenatal exposure to dioxins and dioxins like compounds and BMI at seven 

years in Norway, Belgium and Slovakia (25). Dioxins (PCDD, TCDD), furans (PCDF) and dioxin-like 

compounds (some PCBs) appeared to be associated with higher weight growth between 0 and 24 

months (adjusted estimate for change in z-score: β = 0.07, 95% (confidence interval) CI: −0.01, 0.14). 

At 7 years, dioxins exposure was associated with a significant increase in BMI in girls but not in boys. 

Furthermore, girls had a 54% increased risk of being overweight at 7 years.    

Dichlorodiphenyl Trichloroethane (DDT) and Dichlorodiphenyl Dichloroethene (DDE) 

DDT is used to control these infectious diseases, and it is sprayed on a variety of agricultural 

crops, especially cotton. DDT is also applied to protect against the transmission of disease from 

mosquitoes, such as malaria, in several developing countries (26). Its chemical stability, its 

persistence (as much as 50% can remain in the soil 10-15 years after application), and its past 

widespread use result to present detection of DDT residues in the environment, even in remote 

regions of the planet, such as the  Arctic (27). Although residues in domestic animals have declined 

steadily over the last two decades, food-borne DDT remains the greatest source of exposure for the 

general population. Dichlorodiphenyldichloroethene (DDE) is the primary metabolite of DDT. 

The acute effects of DDT on humans are limited, but long-term exposures have been 

associated with chronic health effects (28). Findings regarding an association between exposure to 

DDT and DDE and birth weight have been inconsistent. Several studies reported a negative 

association between DDT levels and birth weight (29-32). On the other hand, several studies did not 

find any association between level of prenatal or postnatal exposure to DDT or DDE and birth weight 

(33-39). In the meta-analysis of 12 European birth cohorts (18), the relation between cord serum DDE 

and birth weight was not statistically significant. Concerning postnatal growth, Iszatt et al. showed a 

positive association between prenatal exposure to DDE and growth from birth to 24 month from the 

pooled analysis of seven European birth cohorts (20).  
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Hexachlorobenzene (HCB)  

HCB was first introduced as a fungicide in 1945 to treat seeds and crops and was widely used to 

control wheat bunt. It is also a by-product of the manufacture of certain industrial chemicals and 

exists as an impurity in several pesticide formulations (40). The primary route of exposure to HCB for 

the general population is from foods such as fatty fish. 

Several studies reported a negative association between HCB levels and birth weight (41-43). 

On the other hand, several studies did not find any association between levels of prenatal exposure 

to HCB and birth weight (38, 44, 45). After reviewing the literature, Tang-Peronard et al. reported an 

inconsistent association between HCB exposure during pregnancy and obesity risk (46). One study 

found that prenatal exposure to HCB increased the risk of overweight among children aged 6 years 

(47) and the association was stronger for children whose mothers smoked during pregnancy. 

Another study, showed a positive association with rapid growth in the first 6 months of life and 

obesity in infancy (14 months of age) (48). The prospective study of Verhulst et al., on the contrary, 

found no effect of prenatal exposure on growth among children aged 1 to 3 years (49). However, the 

small sample (n = 138) and the lack of adjustment for several potential confounders in this study may 

have affected the result.  

Polybrominated diphenyl ethers (PBDEs)  

PBDEs are a group of bromide-containing compounds. Although there are approximatively 209 

PBDE congeners, only three major commercial mixtures (which contain a limited number of 

congeners, present in penta-, octa-, or deca-brominated forms) have been used as flame-retardants 

since 1965. PBDEs have very low water solubility, and when these substances are released to water, 

they typically bind to sediment. Humans can be exposed to PBDEs in a wide variety of ways, including 

consumption of contaminated foods, inhalation or skin contact (50).  

A review (51) stated that there is not enough evidence to support or refute the negative 

relationship between PBDEs and birth weight. To date, five epidemiological studies have examined 

whether PBDE exposure during pregnancy affects birth weight, with 3 studies (52-54) reporting an 
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increased risk for low birth weight (LBW) and 2 studies (55, 56) reporting no association. The link 

between PBDEs and postnatal growth and obesity was classified by Vrijheid et al. as “no evidence” as 

only one study showed a positive association in girls, and negative in boys between maternal 

prenatal exposure to PBDEs and BMI at 7 years (57). 

Poly- and perfluoroalkyl substances (PFAS)  

PFAS, also known as perfluorinated compounds (PFCs), are a category of man-made 

organofluorinated compounds. Fluorocarbons are both lipophobic and hydrophobic (58). The most 

abundant PFAS are perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), they are 

resistant to degradation processes, which allow them to persist in the environment (59) and have 

long half-lives in human body (3.8 and 5.4 years, respectively) (60). Humans are exposed to PFAS 

through intake of contaminated foods or through water, air and dermal exposure due to widespread 

use since the 1950s as surfactants and emulsifiers in consumer and industrial products. Their unique 

water- and oil-repelling characteristics make them suitable for diverse applications in manufacturing 

of food packaging and containers (eg, microwave popcorn bags) or non-stick cookware. Evidence 

suggests that the primary route of exposure in non-occupationally exposed populations is through 

the food sources (59, 61, 62). PFASs have been detected in human blood, breast milk, and cord 

blood.   

Regarding the association between prenatal PFAS exposure and foetal growth, two recent 

systematic review (63, 64) found a decrease of birth weight, birth length or ponderal index for the 

increase in maternal serum or plasma PFOA or PFOS. One study reported a negative association 

between maternal PFOA or PFOS levels and postnatal growth in early infancy (5 month and 12 

month, weight and BMI), (65), later results from the same study showed no association at 7 years for 

BMI and waist circumference (66). While, another study found a positive association between levels 

of prenatal exposure to PFOS and 20 month old infant weight (67). 
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Non persistent pollutants 

Parabens, bisphenols, oxybenzone/benzophenone-3, triclosan and triclocarban are man-made 

chemicals used in various consumer products. Apart from triclocarban, all these compounds have a 

phenol group in their chemical structure and can be referred to as “environmental phenols”. 

Environmental phenols and phtalates are a class of chemicals that do not persist in the environment 

or into the body once absorbed but are also endocrine disrupting chemicals, EDCs (68). The potential 

influence of each category of non-persistent pollutants is described below. We have focused on the 

most abundant and frequently studied non-persistent pollutants: phthalates, bisphenol A and other 

environmental phenols. 

Phthalates 

Phthalates, or diesters of 1,2-benzenedicarboxylic acid (phthalic acid), are used in manufacturing 

of cellulose ester films, consumer articles such as toothbrushes, tool handles and toys, medical 

devices and drugs, ingredients in cosmetic (69, 70). Due to their widespread use, phthalates enter 

the environment by a variety of routes, and exposure to these compounds in industrialized countries 

is ubiquitous (71, 72).  

Two reviews of the literature (57, 73) do not support an association of phthalates and body 

size at birth, mainly because of limitations and methodological differences between studies. Vrijheid 

et al. had classified the evidence for an effect of phthalates on foetal growth as “insufficient” (57). 

Some epidemiological studies showed that prenatal or childhood phthalate exposures were 

associated with child adiposity but, overall, the associations remain inconsistent (74). One 

prospective study reported negative associations between prenatal urinary concentrations of 

metabolites of high molecular weight phthalates and body mass index (BMI) gain during childhood in 

boys (75). In another study, prenatal maternal urinary concentrations of non-DEHP metabolites were 

negatively associated with BMI in boys at 5 years (76). In a pooled analysis of three prospective 

cohort studies representing 707 US children, Buckley et al. reported a sex-specific association 

between monoethyl phthalate (MEP) during pregnancy and BMI at 4–7 years, which was negative in 
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girls and positive (although not statistically significant) in boys (77). In a population of boys, maternal 

urinary concentrations of MEP was positively associated with weight growth velocity from two years 

onwards, with weight at 3 and 5 years and with BMI at five years (78). A study relying on a multi-

pollutants analysis did not find any association between prenatal phthalates exposure and BMI at 7 

years (79). 

Bisphenol A (BPA)  

Bisphenol A (BPA) is a synthetic monomer that was first developed in the 1890s and is used in 

many consumer products, including plastics (as a polymer, i.e. polycarbonate plastic), polyvinyl 

chloride (PVC), food packaging, dental sealants, and thermal receipts (80, 81). Humans are exposed 

to BPA through their diet, inhalation of household dust, and dermal exposure (82, 83).  

A review (84) showed that the evidence of BPA affecting birth weight is equivocal. The 

authors stated that the literature does not support a clear link between prenatal BPA exposure and 

altered birth weight in the offspring and conclude that more studies, examining exposures at several 

time points during gestation, are needed. Snijder et al. showed in their study, where maternal 

urinary BPA levels were assessed, that the negative association between BPA and foetal growth was 

sensitive to the numbers of BPA measurements (85). Another review had classified the evidence for 

an effect of BPA on foetal growth as “insufficient” (57). The epidemiological studies on the 

relationship between BPA and overweight or obesity in children are also inconclusive. Results from 

cross-sectional studies mainly show that higher urinary BPA concentrations are positively associated 

with obesity (86-89), but the direction of the relationship cannot be established using such a design. 

Few prospective cohort studies examined early-life BPA exposure in association with later childhood 

BMI (68, 90-93). One study found that higher prenatal BPA exposure was associated with higher BMI 

or weight-for-height among children (68, 93), another study did not found any association between 

prenatal BPA with postnatal growth (Philippat et al., 2014), while one other reported higher 

exposure in early childhood was related with lower BMI later in childhood (90). The most recent 

study found that higher BPA concentrations in children's urine at 4 years of age were associated with 
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higher BMI z-score, whereas prenatal urinary BPA concentrations were negatively associated with 

BMI and adiposity measures in girls and positively in boys (92).  

Other Environmental Phenols 

Commonly studied environmental phenols, other than BPA, include parabens, 

oxybenzone/benzophenone-3 (OXBE), triclosan (TRCS) and triclocarban (TRCB). Parabens are alkyl or 

aryl esters of para-hydroxy benzoic acid (PHBA) and have mainly been used as antimicrobial 

preservatives in food, personal care products and pharmaceuticals (94). OXBE is mainly used as UV 

filters in sunscreens and as UV stabilizer in some food packaging (95). TRCS and TRCB are used as 

antimicrobial and antifungal agent in products like toothpaste, soaps, detergents and other hygiene 

and PCPs (96). Although these environmental phenols are non-persistent chemicals and have short 

elimination half-lives in humans (parabens: 1-7 hours, OXBE: < 24 hours (97) and TRCS: 2 days (98)), 

their widespread use and potential endocrine disrupting properties have made them chemicals of 

concern (99, 100).   

Environmental phenols can be found in air and water after release from the manufacture, 

use, and disposal of products containing these compounds. In soil, they are likely to move to 

groundwater. Low levels of phenol have been found in foods such as smoked summer sausage, 

smoked pork belly, mountain cheese, fried bacon, fried chicken, and black fermented tea (101).  

Evidence concerning the effect of phenol exposure on a lower size at birth is limited (8). In 

the French EDEN mother-child cohort, exposure to these chemicals and pre and post-natal growth 

has been studied. Triclosan concentration in maternal mid-pregnancy urine sample was negatively 

associated with growth parameters measured at the third ultrasound examination but not earlier in 

pregnancy (68). At birth, this phenol exposure tended to be negatively associated with head 

circumference but not with weight or height. Parabens concentration in maternal mid-pregnancy 

urine was positively associated with weight at birth. This positive association remained until 3 years 

for methylparaben. 
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Toxic heavy metals 

Toxic heavy metals, such as cadmium, lead, arsenic and mercury, are a group of toxic compounds 

among which endocrine disrupting activities have been described for some, but not all, of them. They 

are ubiquitous environmental pollutants. The most common sources of exposure for the general 

population are through air inhalation and dietary intake. Exposure to heavy metals can occur through 

inhalation of contaminated air. Air contamination occurs through gasoline and coal combustion, 

industrial emissions, and the spraying of metal-based pesticides.   

Cadmium (Cd) 

Cadmium is a heavy metal which occurs both naturally and as a pollutant associated with many 

modern industrial processes throughout the world. In the general population, the main exposure 

sources of cadmium are smoking, due to high cadmium content in tobacco leaves, and cadmium-

contaminated foods resulting from production in contaminated soil (102). Cadmium is known to have 

endocrine disrupting activities (8) and is also a human carcinogen, classified as group I by the IARC 

(103).  

Lead (Pb) 

Lead occurs naturally in the environment. However, most of the high levels found throughout the 

environment come from human activities (104). Pb is a highly toxic compound to the human body. 

Since the earliest recorded times, lead has been widely used in human life. The metal has been 

smelted, applied as a cosmetic, painted on buildings, and glazed on ceramic pots. On the other hand, 

lead may be the oldest recognized chemical toxin (105). 

Arsenic (As)  

Arsenic is a naturally occurring element that is widely distributed in the Earth’s crust and exists in 

several forms. Arsenic combined with oxygen, chlorine or sulfur is called inorganic As. When 

combined with carbon and hydrogen is referred to organic arsenic (106). Arsenic is a potent toxicant 

and carcinogen (107). Drinking water is one of the major sources of As exposure in some parts of the 

world and it is present in a wide variety of foods including fish and rice (108).  
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Mercury (Hg) 

Mercury occurs naturally in the environment and exists in several forms. These forms can be 

organized under three headings: metallic mercury (also known as elemental mercury), inorganic 

mercury, and organic mercury (109). Hg is formed mainly by bacterial methylation of inorganic 

mercury (IHg) into the organic form methylmercury (MeHg). This transformation occurs in aquatic 

sediments with bioaccumulation in the food web. Fish and other seafood contain the highest 

concentrations of Hg, with only small amounts in other food groups (110).  

A number of studies have reported a negative association between in utero lead exposure 

and birth weight, but the literature is more limited for the other metals (8). Nevertheless, a recent 

review (57) including prospective studies and meta-analysis published after the 1st of September 

2015, reported for prenatal growth a negative association between heavy metals (lead, mercury, 

cadmium) and arsenic and had classified the evidence as “moderate”. Concerning postnatal growth, 

ten studies on prenatal or postnatal exposure to heavy metals (cadmium, arsenic, mercury or lead) 

showed negative associations with postnatal growth in children but, due to a limited number of 

studies per specific heavy metals, authors classified evidence as “insufficient” (57). A recent cross-

sectional study in homeless children aged under 6 years did not show strong evidence for negative 

association between metals (lead, mercury, cadmium) or arsenic and weight or height, although 

some negative trends between As or Cd and height were observed (111) . 

Others chemicals 

Mycotoxins 

A mycotoxin is a toxic metabolite produced by fungi colonizing crops (112). One of the most 

studied mycotoxin is aflatoxin, known to be a human carcinogens (113). Milk and dairy products are 

the most important food sources of aflatoxin. Zearalenone is another type of mycotoxin, present in 

grains and other plant foods through fungal contamination by Fusarium species (112), and in animal 

products (e.g., meat, eggs, and dairy products) through deliberate introduction of zeranol into 

livestock to promote growth and improve beef/meat production. Zeranol is a synthetic derivate of 
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zearalenone. Finally, trichothecene mycotoxin deoxynivalenol (DON) is a mycotoxin produced in 

wheat, barley and corn following infestation by Fusarium species in the weld and during storage 

(112). 

A review reported six studies with significant associations or correlations between low birth 

weight and aflatoxin while one study did not find any correlation (114). In a longitudinal study of 138 

Gambian infants, exposure to aflatoxin during pregnancy was inversely associated with height-for-

age and weight-for-age Z-score in the first year of life (115). Another longitudinal study of 200 infants 

from Benin showed a negative association between aflatoxin-albumin adducts in infants blood at 

recruitment, and height-for-age Z-score and weight-for-height Z-score 4 to 8 months later (116).  

To our knowledge no epidemiological study has investigated the association between 

zearalenone and prenatal growth. In a case-control study of girls, where cases had precocious 

puberty, no significant correlation between urinary zearalenone levels and BMI was found in any 

group (117). Another cross sectional study showed that girls with detectable urinary zearalenone 

levels tended to be shorter (118). 

Experimental animal studies on DON’s chronic toxic effects indicated that growth was the 

parameter most likely to be affected by DON (119). To our knowledge no previous epidemiological 

study has linked the effect of DON exposure to prenatal or postnatal growth (120, 121). 

Acrylamide 

Acrylamide is a colourless, odourless, low molecular weight, highly water-soluble organic 

compound. It is a known neurotoxic for humans and animals and was classified as probably 

carcinogenic in humans (group 2A) by the International Agency for Research on Cancer (122). It is a 

chemical arising in a wide variety of carbohydrate-containing foods during frying or baking at high 

temperatures.  

Three longitudinal studies have shown a relationship between higher maternal acrylamide exposure 

and lower birth weight or higher risk of having a SGA baby (123, 124). To our knowledge one study 

showed a positive association between acrylamide exposure and postnatal growth (125). 
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The literature evidence on prenatal exposure to environmental contaminants and pre or post-natal 

growth presented was summarized in Table 1. 

Table 1: Summary of the literature on prenatal exposure to environmental contaminant’s and child 

growth 

 

Potential mechanisms 

Epigenetic modifications 

In studies related to the DOHaD hypothesis, the epigenetic modifications due to adverse 

environmental exposure are often cited as a possible mechanism (126). These modifications could 

induce heritable and persistent changes in gene expression without altering the DNA sequence. The 

three major molecular substrates that are involved in this process are the DNA, proteins that form 

the core around which the DNA wraps (histones) and a specific form of RNA molecules (noncoding 

RNA). Epigenetic changes include DNA methylation, chromatin folding or binding and packaging of 

DNA around nucleosomes and, finally, covalent modifications of the histone proteins (126). A recent 

review found that in the context of child health, the impact of environmental modification on the 

epigenome are of small magnitude. However, these small environmental effects (maternal smoking, 

exposure to heavy metals or phthalates and phenols) on the epigenome have been replicated across 

populations and across time. Therefore, the authors conclude about the need of having critical 

discourse on findings such small effects. Meanwhile, they advocate the research to emphasis the 

studies on the dynamic nature of the epigenome with the help of longitudinal studies (127). 

Endocrine disrupting chemicals (EDCs) 

According to World Health Organization (WHO) (128), “An endocrine disruptor is an exogenous 

substance or mixture that alters function(s) of the endocrine system and consequently causes 

adverse health effects in an intact organism, or its progeny, or (sub) populations”.  They can mimic or 

interfere with the effects of endogenous hormones (129). EDCs can potentially affect all the human 

hormonal systems ranging from metabolism to growth, neurodevelopment or reproduction (128, 
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130, 131). Many studies are suggesting that these chemicals could have an obesogenic effect, known 

as the “environmental obesogenic hypothesis” (20, 92, 93). In the increase of obesity prevalence, 

EDCs might play a role beyond traditional risk factors (46, 132). Because by definition they interfere 

with hormonal actions, sex-specific effects are expected for many EDCs (133). Moreover, the fetal 

and early postnatal periods would be of high susceptibility to these environmental exposures (134, 

135).  

Oxidative stress 

Another possible biological pathway between exposure to environmental contaminants and growth 

is through oxidative stress. Oxidative stress is an imbalance between the production and elimination 

of reactive species that leads to damages in macromolecules. The principal reactive species are 

reactive oxygen species (ROS) and nitrogen oxygen species (RNS). Most environnemental 

contaminants induce abnormal ROS generation (136). Oxidative stress seems to be implicated in 

suboptimal fetal conditions, due to poor intrauterine environment and alterations of physiologic 

systems of cardiovascular control (e.g. renin-angiotensin-aldosterone system, hypothalamic-

pituitary-adrenal axis) (136).” 

Conclusion 

Environment factors can affect the development of the foetus. For instance, a widely studied 

exposure as exposures to tobacco smoke during pregnancy was well documented in association with 

child’s growth (137). Mounting evidence suggests that child’s growth may also be influenced by 

prenatal or postnatal exposures to some environmental contaminants (e.g. PCBs, DDE) but, for other 

chemicals than tobacco, the literature is sparse and characterised by large inconsistencies.  

To gain knowledge about these associations, research in epidemiology should focus mainly 

on improving exposure assessment. The use of biomarkers is widespread in environmental studies, 

but the use of these data has important limitation. For example, when assaying non-persistent 

chemicals (phthalates, BPA), the characterisation of the exposure is difficult due to short half-life for 

some chemicals and high within-subject variability.  On the contrary, POPs or for some metals that 
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have long half-lives (up to years) and the use of biomarker measurement can give a good estimate of 

long-term past exposure. Moreover, studying the contaminants as mixtures and not individually 

could be interesting to deal with the exposures to many individual contaminants at low doses, some 

sharing similar mechanisms and routes of exposure (e.g. diet, or tobacco smoke). In fact, exposures 

may be highly correlated, within and between the different chemical classes (e.g. PCBs, PBDEs, 

PFASs, and phthalates) (Robinson et al., 2015) (138) and it can be challenging to identify the 

chemicals responsible for growth impairment. 

Finally, we also need to pay attention about considering growth as a whole, reporting the 

associations at least with height, weight and weight-for-height as well.  

To conclude, only limited associations were reviewed here between exposure to 

environmental contaminants and child’s prenatal or postnatal growth. New-borns, infants and 

children need to be considered as sensitive populations and policies aiming to reduce the exposure 

of this population are needed. 
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Table 2: Summary of the literature on prenatal exposure to environmental contaminant’s and child 
growth 

Prenatal exposure   Prenatal growth Postnatal growth 

Persistent Organic Pollutants (POPs) 

 PCBs  No association: 

 1 review  
(El Majidi et al., 2012) 
Negative association: 

 1 MA of 14 cohorts 
studies 

N: 7,762 ; (Govarts et al., 
2012) 

No association: 

 1 pooled analysis of 7 
cohorts studies  

N: 2,487 ; (Iszatt et al., 2015)** 

 Dioxins and 
furans 

 Negative association: 

 1 MA of 2 cohorts 
studies  

N: 9,455 ; (Pan et al., 2015) 

Positive association: 

 1 pooled analysis of 3 
cohorts studies  

N: 367 ; (Iszatt et al., 2016)* 
and ** 

 DDT/DDE  No association: 

 3 cohort studies 
N: 420 ; (Farhang et al., 
2005) 
N: 168 ; (Karmaus and Zhu, 
2004) 
N: 912 ; (Rogan et al., 
1986b) 

 1 case-control 
study 

N: 157 ; (Dewailly et al., 
1993) 

 3 cross sectional 
studies 

N: 180 ; (Bjerregaard and 
Hansen, 2000) 
N: 197 ; (Gladen et al., 
2003) 
N: 72 ; (Ribas-Fito et al., 
2002) 

 1 MA of 12 birth 
cohorts  

N: 7,530 ; (Govarts et al., 
2012) 
Negative association: 

 3 cohort studies 
N: 2,380 ; (Longnecker et 
al., 2001) 
N:858 ;  (Rogan et al., 
1986a) 
N: 143 ; (Weisskopf et al., 
2005) 

Positive association: 

 1 pooled analysis of 7 
cohorts studies  

N: 2,487 ; (Iszatt et al., 2015)* 
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 1 case-control 
study 

N:54 ; (Siddiqui et al., 
2003) 

 HCB  No association: 

 3 cohort studies 
N: 385 ; (Fenster et al., 
2006) 
N: 72 ; (Ribas-Fito et al., 
2002) 
N: 722 ; (Sagiv et al., 2007) 
Negative association: 

 3 cohort studies 
N: 81 ; (Guo et al., 2014) 
N: 494 ; (Lopez-Espinosa et 
al., 2011) 
N: 1,117 ; (Vafeiadi et al., 
2014) 

No association: 

 1 review 
(Tang-Peronard et al., 2011) 
Positive association: 

 1 cohort study 
N: 1,285 ;  (Valvi et al., 2014)* 
 

 PBDEs  No association: 

 1 review 
(Zheng et al., 2016) 

Positive association: 

 1 review  
(Vrijheid et al., 2016) with girls  
Negative association: 

 1 review  
(Vrijheid et al., 2016) with boys 

 PFAS  Negative association: 

 2 reviews 
(Bach et al., 2015) 
(Johnson et al., 2014) 

Positive association: 

 1 cohort study 
N: 447 ; (Maisonet et al., 
2012)* 
Negative association: 

 1 cohort study 
N: 1,400 ; (Andersen et al., 
2010)* from 5mo to 12mo 
No association: 

 1 cohort study 
N: 1,400 ; (Andersen et al., 
2013)* at 7 years 

Non POPs 

 Phthalates  No association: 

 2 reviews 
(Marie et al., 2015) 
(Vrijheid et al., 2016) 

No association: 

 1 review 
(Braun, 2017) 

 1 cohort study 
N: 470 ; (Agay-Shay et al., 
2015)* 
Positive association  

 1 cohort study 
N: 520 ; (Botton et al., 2016)* 
 

 BPA  No association: No association: 
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 2 reviews  
(Rochester, 2013)  
(Vrijheid et al., 2016) 
Negative association: 

 1 cohort study 
N: 4,680 ; (Snijder et al., 
2013) 

 1 cohort study 
N: 520 ; (Philippat et al., 
2014)* 
Positive association: 

 4 cross-sectional 
studies 

N: 2,200 ; (Bhandari et al., 
2013)** 
N: 10, 990 ; (Eng et al., 
2013)** 
N: 9,270 ; (Trasande et al., 
2012)** 
N: 259 ; (Wang et al., 2012)** 

 3 cohort studies 
N: 297 ; (Braun et al., 2014)* 
N: 402 ; (Valvi et al., 2013)* 
N: 500 ; (Vafeiadi et al., 2016)* 
in boys 
Negative association: 

 1 cohort study 
N: 500 ; (Vafeiadi et al., 2016)* 
in girls 

 Other environmental phenols No association: 

 1 review  
(Slama and Cordier, 2013) 

Negative association: 

 1 cohort study 
N: 520 ; (Philippat et al., 
2014)*, Triclosan 

Toxic heavy metals 

 Cadmium  No association: 

 1 review  
(Slama and Cordier, 2013) 

No association: 

 1 review  
(Vrijheid et al., 2016) 

 1 cross sectional study 
N: 324 ;  (Fabelova et al., 
2017)** 

 Lead  No association: 

 1 review  
(Slama and Cordier, 2013) 

No association: 

 1 review  
(Vrijheid et al., 2016) 

 1 cross sectional study 
N: 324 ;  (Fabelova et al., 
2017)** 

 Arsenic  No association: 

 1 review  
(Slama and Cordier, 2013) 

No association: 

 1 review  
(Vrijheid et al., 2016) 

 1 cross sectional study 
N: 324 ;  (Fabelova et al., 
2017)** 

 Mercury  No association: 

 1 review  
(Slama and Cordier, 2013) 

No association: 

 1 review  
(Vrijheid et al., 2016) 
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 1 cross sectional study 
N: 324 ;  (Fabelova et al., 
2017)** 

Other chemicals 

 Mycotoxins    

  Aflatoxin No association: 

 1 review  
(Shuaib et al., 2010) 

Negative association: 

 2 cohort studies 
N: 138 (Turner et al., 2007)*  
N: 200 (Gong et al., 2004)** 

  Zearalenone No epidemiological studies No association: 

 1 case control study 
N: 78 ; (Asci et al., 2014)** 

 1 cross sectional study 
N: 163 ; (Bandera et al., 
2011)** 

 Acrylamide   Negative association: 

 2 cohort studies  
N: 1,471 ; (Kadawathagedara 
et al., 2016)  
N: 50,651 ; (Duarte-Salles et 
al., 2013) 

 1 consortium of 
cohort studies  

N: 1,001 ; (Pedersen et al., 
2012) 

Positive association:  

 1 cohort study  
N: 51,952 ; (Kadawathagedara 
et al., 2018)* 

MA: meta-analysis 
Studies are only recent research articles not included in summarising articles 
For postnatal growth association 
*prenatal exposure 
**postnatal exposure 
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