M. J. Davies, The oxidative environment and protein damage, Biochim. Biophys. Acta, vol.1703, pp.93-109, 2005.

D. A. Davis, F. M. Newcomb, J. Moskovitz, P. T. Wingfield, S. J. Stahl et al., HIV-2 protease is inactivated after oxidation at the dimer interface and activity can be partly restored with methionine sulphoxide reductase, Biochem. J, vol.346, pp.305-311, 2000.

T. C. Fricke, F. Echtermeyer, J. Zielke, J. De-la-roche, M. R. Filipovic et al., Oxidation of methionine residues activates the high-threshold heat-sensitive ion channel TRPV2, Proc. Natl. Acad. Sci, vol.116, pp.24359-24365, 2019.

M. Kato, Y. Yang, B. M. Sutter, Y. Wang, S. L. Mcknight et al., Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain, Cell, vol.177, pp.711-721, 2019.

B. C. Lee, Z. Péterfi, F. W. Hoffmann, R. E. Moore, A. Kaya et al., MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation, Mol. Cell, vol.51, pp.397-404, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02929707

E. E. Nicklow and C. S. Sevier, Activity of the yeast cytoplasmic Hsp70 nucleotide-exchange factor Fes1 is regulated by reversible methionine oxidation, J. Biol. Chem, vol.295, pp.552-569, 2020.

L. Delaye, A. Becerra, L. Orgel, and A. Lazcano, Molecular evolution of peptide methionine sulfoxide reductases (MsrA and MsrB): On the early development of a mechanism that protects against oxidative damage, J. Mol. Evol, vol.64, pp.15-32, 2007.

C. Achilli, A. Ciana, and G. Minetti, The discovery of methionine sulfoxide reductase enzymes: An historical account and future perspectives, BioFactors, vol.41, pp.135-152, 2015.

N. Brot, L. Weissbach, J. Werth, and H. Weissbach, Enzymatic reduction of protein-bound methionine sulfoxide, Proc. Natl. Acad. Sci, vol.78, pp.2155-2158, 1981.

R. Grimaud, B. Ezraty, J. K. Mitchell, D. Lafitte, C. Briand et al., Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase, J. Biol. Chem, vol.276, pp.48915-48920, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01614791

E. Laugier, L. Tarrago, C. Vieira-dos-santos, F. Eymery, M. Havaux et al., Arabidopsis thaliana plastidial methionine sulfoxide reductases B, MSRBs, account for most leaf peptide MSR activity and are essential for growth under environmental constraints through a role in the preservation of photosystem antennae, Plant. J, vol.61, pp.271-282, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02929734

S. Luo and R. L. Levine, Methionine in proteins defends against oxidative stress, vol.23, pp.464-472, 2009.

A. B. Salmon, V. I. Pérez, A. Bokov, A. Jernigan, G. Kim et al., Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span, FASEB J, vol.23, pp.3601-3608, 2009.

L. Tarrago, A. Kaya, E. Weerapana, S. M. Marino, and V. N. Gladyshev, Methionine sulfoxide reductases preferentially reduce unfolded oxidized proteins and protect cells from oxidative protein unfolding, J. Biol. Chem, vol.287, pp.24448-24459, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02929722

D. T. Le, B. C. Lee, S. M. Marino, Y. Zhang, D. E. Fomenko et al., Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae, J. Biol. Chem, vol.284, pp.4354-4364, 2009.

Z. Lin, L. C. Johnson, H. Weissbach, N. Brot, M. O. Lively et al., Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function, Proc. Natl. Acad. Sci, vol.104, pp.9597-9602, 2007.

U. Kappler, M. Nasreen, and A. Mcewan, New insights into the molecular physiology of sulfoxide reduction in bacteria, Adv. Microb. Physiol, vol.75, pp.1-51, 2019.

A. Magalon, P. Ceccaldi, B. Schoepp-cothenet, and . Chapter, The Prokaryotic Mo/W-bisPGD Enzymes Family, Molybdenum and Tungsten Enzymes
URL : https://hal.archives-ouvertes.fr/hal-01435336

R. Hille, C. Schulzke, and M. L. Kirk, , pp.143-191, 2016.

A. Gennaris, B. Ezraty, C. Henry, R. Agrebi, A. Vergnes et al., Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons, Nature, vol.528, pp.409-412, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01477089

L. Tarrago, S. Grosse, M. I. Siponen, D. Lemaire, B. Alonso et al., Rhodobacter sphaeroides methionine sulfoxide reductase P reduces R-and S-diastereomers of methionine sulfoxide from a broad-spectrum of protein substrates, Biochem. J, vol.475, pp.3779-3795, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01936753

R. A. Melnyk, M. D. Youngblut, I. C. Clark, H. K. Carlson, K. M. Wetmore et al., Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich Peptide and methionine sulfoxide reductase, MBio, vol.6, pp.233-248, 2015.

T. Satoh and F. N. Kurihara, Purification and properties of dimethylsulfoxide reductase containing a molybdenum cofactor from a photodenitrifier, Rhodopseudomonas sphaeroides f.s. denitrificans, J. Biochem, vol.102, pp.191-197, 1987.

J. H. Weiner, D. P. Macisaac, R. E. Bishop, and P. T. Bilous, Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity, J. Bacteriol, vol.170, pp.1505-1510, 1988.

S. L. Mccrindle, U. Kappler, and A. G. Mcewan, Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration, Adv. Microb. Physiol, vol.50, pp.147-198, 2005.

M. Sabaty, S. Grosse, G. Adryanczyk, S. Boiry, F. Biaso et al.,

, His C-terminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis, BMC Biochem, vol.14, 2013.

K. E. Johnson and K. V. Rajagopalan, An active site tyrosine influences the ability of the dimethyl sulfoxide reductase family of molybdopterin enzymes to reduce S-oxides, J. Biol. Chem, vol.276, pp.13178-13185, 2001.

J. L. Simala-grant and J. H. Weiner, Kinetic analysis and substrate specificity of Escherichia coli dimethyl sulfoxide reductase. Microbiology (Reading), vol.142, pp.3231-3239, 1996.

M. Abo, M. Tachibana, A. Okubo, and S. Yamazaki, Enantioselective deoxygenation of alkyl aryl sulfoxides by DMSO reductase from Rhodobacter sphaeroides f.s. denitrificans, Bioorg. Med. Chem, vol.3, pp.109-112, 1995.

S. P. Hanlon, D. L. Graham, P. J. Hogan, R. A. Holt, C. D. Reeve et al., Asymmetric reduction of racemic sulfoxides by dimethyl sulfoxide reductases from Rhodobacter capsulatus, Escherichia coli and Proteus species. Microbiology (Reading), vol.144, pp.2247-2253, 1998.

N. Makukhin, V. Havelka, E. Poláchová, P. Rampírová, V. Tarallo et al., Resolving oxidative damage to methionine by an unexpected membrane-associated stereoselective reductase discovered using chiral fluorescent probes, FEBS J, vol.286, pp.4024-4035, 2019.

V. Nosek and J. Mí?ek, Enzymatic kinetic resolution of chiral sulfoxides-An enantiocomplementary approach, Chem. Commun. (Cambridge), vol.55, pp.10480-10483, 2019.

R. Dhouib, D. S. Othman, V. Lin, X. J. Lai, H. G. Wijesinghe et al., A Novel, Molybdenum-Containing Methionine Sulfoxide Reductase Supports Survival of Haemophilus influenzae in an, In vivo Model of Infection. Front. Microbiol, 1743.

B. Ezraty, J. Bos, F. Barras, and L. Aussel, Methionine sulfoxide reduction and assimilation in Escherichia coli: New role for the biotin sulfoxide reductase BisC, J. Bacteriol, vol.187, pp.231-237, 2005.

S. Gonin, P. Arnoux, B. Pierru, J. Lavergne, B. Alonso et al., Crystal structures of an Extracytoplasmic Solute Receptor from a TRAP transporter in its open and closed forms reveal a helix-swapped dimer requiring a cation for alpha-keto acid binding, BMC Struct. Biol, vol.7, issue.11, 2007.
URL : https://hal.archives-ouvertes.fr/cea-00164193

A. K. Thompson, J. Gray, A. Liu, and J. P. Hosler, The roles of Rhodobacter sphaeroides copper chaperones PCu(A)C and Sco (PrrC) in the assembly of the copper centers of the aa(3)-type and the cbb(3)-type cytochrome c oxidases, Biochim. Biophys. Acta, vol.1817, pp.955-964, 2012.

L. Banci, I. Bertini, S. Ciofi-baffoni, E. Katsari, N. Katsaros et al., A copper(I) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase, Proc. Natl. Acad. Sci, vol.102, pp.3994-3999, 2005.

A. C. Ind, S. L. Porter, M. T. Brown, E. D. Byles, J. A. De-beyer et al., Inducible-Expression Plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans, Appl. Environ. Microbiol, vol.75, pp.6613-6615, 2009.

B. Pierru, S. Grosse, D. Pignol, and M. Sabaty, Genetic and biochemical evidence for the involvement of a molybdenum-dependent enzyme in one of the selenite reduction pathways of Rhodobacter sphaeroides f. sp. denitrificans IL106, Appl. Environ. Microbiol, vol.72, pp.3147-3153, 2006.

P. T. Bilous and J. H. Weiner, Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101, J. Bacteriol, vol.162, pp.1151-1155, 1985.

N. Cobb, T. Conrads, and R. Hille, Mechanistic studies of Rhodobacter sphaeroides Me2SO reductase, J. Biol. Chem, vol.280, pp.11007-11017, 2005.

B. Ghesquière, V. Jonckheere, N. Colaert, J. Van-durme, E. Timmerman et al., Redox proteomics of protein-bound methionine oxidation, Mol. Cell Proteom, vol.10, 2011.

E. Vandermarliere, B. Ghesquière, V. Jonckheere, K. Gevaert, and L. Martens, Unraveling the specificities of the different human methionine sulfoxide reductases, Proteomics, vol.14, 1990.

A. G. Mcewan, N. P. Cotton, S. J. Ferguson, and J. B. Jackson, The role of auxiliary oxidants in the maintenance of a balanced redox poise for photosynthesis in bacteria, Biochim. Biophys. Acta (BBA) Bioenerg, vol.810, pp.140-147, 1985.

J. R. Anthony, K. L. Warczak, and T. J. Donohue, A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis, Proc. Natl. Acad. Sci, vol.102, pp.6502-6507, 2005.