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Abstract. Most of the resonant photonic structures behave like open cavities for light where
light is trapped for some time before leaking or being absorbed. Their modes are called
quasi-normal modes and are associated with complex eigenfrequencies ωn = ω′

n + iω′′
n, ω′′

n

characterizing the rate at which the energy leaks from the structure. As a consequence, one can
show that the fields of these modes diverge far away from the scatterer. This is problematic when
one attempts to develop a theoretical description of the resonant interaction between light and
resonant photonic stuctures in terms of their quasi-normal modes. Moreover, the existence or
not of a non-resonant term in addition to these resonant contributions is still an open problem.
Here, we address these two problems by deriving pole-expansions of the scattering operators of
resonant optical structures. We evince the existence of a non-resonant term and we solve the
problem of the divergence by studying the scattered field in the time domain and by using the
causality principle. The quasi-normal mode expansion that we obtain will be of a great use to
study light-matter interactions since it allows to determine the optical response of a photonic
resonator both in the time and frequency domain.

1. Introduction
The resonant interaction between light and nanoscale photonic structures is a fundamental
process in photonics. Examples of such resonances are plasmonic resonances hosted by metallic
nanostructures, whispering gallery modes also called morphological-dependent resonances
occurring in small index dielectric microspheres/microdisks or low order Mie resonances featured
by high-refractive index nanoparticles. One can explain the existence of such resonances
because nanostructures behave like open cavities for light. These cavities consequently suffer
from significant leakage of electromagnetic energy due to scattering into their environment.
Besides scattering losses, some optical resonators such as plasmonic resonators can also suffer
from additional absorption losses. Resonances in photonics consequently all share a common
mathematical description. They can in fact all be considered to be modes of open optical cavities
often referred as quasi-normal modes or resonant states that are associated with complex eigen-
frequencies ωn = ω′n+iω′′n where ω′′n < 0 if the time-dependence of the fields is e−iωt. These modes

also fulfill the outgoing boundary conditions and thus asymptotically behave like eiknr = ei
ωn
c
r

when r → ∞. This condition coupled to the fact that ω′′n < 0 yields an exponential divergence
of the eigen-vectors. This divergence has long been known as “exponential catastrophe” [1] but
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is one of the main problems one faces when attempting to derive a theoretical description of the
interaction between light and resonant photonic structures based on their quasi-normal modes.
Such a quasi-normal mode expansion would however be of a great interest to strengthen the
understanding of the enhancement of light-matter interactions near a resonant photonic structure
[2]. Here, we will derive such a modal expansion and we are consequently going to address these
two major problems:
(i) Does the scattered field only contain resonant terms or is there also a non-resonant term?
(ii) The second problem is related to the already mentioned exponential catastrophe: how is
it possible to expand the scattered field on a set of exponentially diverging fields? We will
start by establishing the pole expansion of the scattering operators characterizing the optical
response of a resonant scatterer. This result will allow us to address problem (i). We will
subsequently study the optical response of the scatterer in the time-domain and we will show
that some considerations based on the causality principle will allow us to address the problem
of the “exponential catastrophe”. The usefulness and the accuracy of the QNM analysis will be
shown by studying the optical response of a dispersionless spherically symmetric scatterer.

2. Results:
2.1. Pole expansion of scattering operators:
Let us consider the case of light-scattering by a 3D scatterer of dielectric permittivity εs in the
frequency domain. An excitation field Eexc(kr) that is usually a plane wave or a superposition of
plane waves interacts with a scatterer. This process produces a scattered field Escat(kr) that is
radiated away from the scatterer. In the case of 3D scattering, it is more adapted to expand these

fields on the set of regular (M
(1)
n,m(kr),N

(1)
n,m(kr)) and outgoing VPWs (M

(+)
n,m(kr),N

(+)
n,m(kr)):

Eexc(kr) = E0

∑
n,m

e(h)n,m(ω)M(1)
n,m(kr) + e(e)n,m(ω)N(1)

n,m(kr) (1)

Escat(kr) = E0

∑
n,m

f (h)n,m(ω)M(+)
n,m(kr) + f (e)n,m(ω)N(+)

n,m(kr) (2)

The definition of (M
(1)
n,m(kr),N

(1)
n,m(kr)) and (M

(+
n,m(kr),N

(+)
n,m(kr)) is provided in [3]. It is

particularly useful to introduce the T-matrix that relates the scattered field to the incident
field. For a spherically-symmetric scatterer, the T-matrix is diagonal and its coefficients are

equal to T
(i)
n (ω) =

f
(i)
n,m(ω)

e
(i)
n,m(ω)

where i = e or h. The total field outside the scatterer is equal to the

superposition of the excitation field and the scattered field: Etot(kr) = Eexc(kr)+Escat(kr). One
can also make the choice to express the total field as a superposition of incoming Ein(kr) and
outgoing fields Eout(kr): Etot(kr) = Ein(kr)+Eout(kr). Ein(kr) and Eout(kr) may be expanded

on the set of incoming (M
(−)
n,m(kr),N

(−)
n,m(kr)) and outgoing (M

(+)
n,m(kr),N

(+)
n,m(kr)) VPWs. One

can introduce the S-matrix that relates the outgoing field to the incoming field and its diagonal

coefficients can be shown to be equal to S
(i)
n (ω) = 1 + 2T

(i)
n (ω). In this study, we want to

describe the light scattering by a nanoparticle in terms of its quasi-normal modes. It is thus
necessary to establish a link between the quasi-normal modes of a scatterer and the scattering
operators i.e. the S and T matrices. Since quasi-normal modes are the sourceless solutions of
Maxwell equations, the QNM eigen-frequencies necessarily correspond to the poles of the S and
T matrices i.e. the conditions for which a scattered field can exist without any excitation field.
A quasi-normal mode description of light-scattering by a nanoparticles can consequently be
obtained by deriving the pole expansion of its S and T matrix coefficients [4, 6, 7, 8]. We
derived this pole expansion for a dispersionless spherically-symmetric scatterer and found the
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following expressions [3]:

S(i)
n (ω) ≈ e−2ikR

S(i)
n.r. +

M∑
α=−M

r
(i)
n,α

ω − ω(i)
p,n,α

 (3)

T (i)
n (ω) ≈ S

(i)
n.r.e−2ikR − 1

2
+
e−2ikR

2

M∑
α=−M

r
(i)
n,α

ω − ω(i)
p,n,α

(4)

where ω
(i)
p,n,α are the poles of the S and T matrices and correspond to the eigen-frequencies

of the quasi-normal modes of the scatterer. r
(i)
n,α is the residue associated with the pole

ω
(i)
p,n,α whose expressions are provided in [3]. S

(i)
n.r. is the non-resonant term and is equal to

S
(i)
n.r. ≡ 1 +

∑M
α=−M

r
(i)
n,α

ω
(i)
p,n,α

and is calculated by using the sum rules reported in [3, 5]. The poles

ω
(i)
p,n,−α are equal to −ω(i)∗

p,n,α. One clearly sees that these formulas predict the existence of a non-
resonant term for both the T and S matrix coefficients. This expression consequently provides
an answer to question (i) in the introduction. These formula are quite useful since they allow for
an accurate prediction of the optical response of a scatterer in terms of a finite number of eigen-

frequencies ω
(i)
p,n,α. Thanks to these formulas, resonances in the optical response of a photonic

structure may be easily explained thanks to a small number of modes. This is illustrated in
Fig. 1 where the dipole electric partial scattering cross-section of a ε = 16 spherical dielectric
scatterer is shown. Overall, a very accurate prediction of the partial by taking M = 50 i.e by
taking into account 100 poles.

Figure 1. Comparison between exact calculations (solid black line) and the quasi-normal mode
expansion (dashed red line) of the electric dipolar scattering efficiency for a ε = 16 dielectric
spherical scatterer. The quasi-normal mode expansion is carried by setting M = 50 in Eq. (4).

2.2. Exponential catastrophe and scattered field in the time domain:
In the previous section, the existence of a non-resonant term was established. Now, let us
consider the problem of the exponential divergence of the quasi-normal modes. Since these
modes satisfy the outgoing boundary condition, their field is proportional to ei

ωn
c
r when r →∞

as a consequence it exponentially diverges far away from the scatterer. One could think that this
divergence forbids the derivation of the scattered field on the set of quasi-normal modes. In [3],
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we showed that it was possible to derive such an expansion when one considers light-scattering
in the time domain. In fact, if the excitation field is causal, meaning that it possesses a cutoff
in time, one can establish that the scattered field admits a divergence-free modal expansion of
the scattered field. In order to obtain such a divergence-free expansion of the time-dependent
scattered field, we start by expressing the frequency dependent scattered field using the pole
expansion of the S and T matrices previously obtained. We then evaluate its inverse-Fourier
transform by means of the residue theorem. We thus found that there are two types of terms in
the time-dependent optical response of a scatterer: a non-resonant term that possesses the same
temporal envelope as the excitation field and resonant terms that correspond to the convolution
between the excitation and exponentially decreasing terms.

3. Conclusion:
Here, we have reported our results concerning the quasi-normal mode analysis of the optical
response of Mie resonators. By deriving pole-expansion of the scattering operators, we evinced
the existence of a non-resonant term in the quasi-normal mode expansion of the scattered field.
We also achieved to derive a divergence-free expansion of the time-dependent scattered field by
using the causality principle.
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