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Abstract 42 

Croplands and grasslands are agricultural systems that contribute to land–atmosphere 43 

exchanges of carbon (C). We evaluated and compared gross primary production (GPP), 44 

ecosystem respiration (RECO), net ecosystem exchange (NEE=RECO-GPP) of CO2, and two 45 

derived outputs - C use efficiency (CUE=-NEE/GPP) and C emission intensity (IntC= -46 

NEE/Offtake [grazed or harvested biomass]). The outputs came from 23 models (11 crop-47 

specific, eight grassland-specific, and four models covering both systems) at three cropping 48 

sites over several rotations with spring and winter cereals, soybean and rapeseed in Canada, 49 

France and India, and two temperate permanent grasslands in France and the United Kingdom. 50 

The models were run independently over multi-year simulation periods in five stages (S), either 51 

blind with no calibration and initialization data (S1), using historical management and climate 52 

for initialization (S2), calibrated against plant data (S3), plant and soil data together (S4), or 53 

with the addition of C and N fluxes (S5). Here, we provide a framework to address 54 

methodological uncertainties and contextualize results. Most of the models overestimated or 55 

underestimated the C fluxes observed during the growing seasons (or the whole years for 56 

grasslands), with substantial differences between models. For each simulated variable, changes 57 

in the multi-model median (MMM) from S1 to S5 was used as a descriptor of the ensemble 58 

performance. Overall, the greatest improvements (MMM approaching the mean of 59 

observations) were achieved at S3 or higher calibration stages. For instance, grassland GPP 60 

MMM was equal to 1632 g C m-2 yr-1 (S5) while the observed mean was equal to 1763 m-2 yr-1 61 

(average for two sites). Nash-Sutcliffe modelling efficiency coefficients indicate that MMM 62 

outperformed individual models in 91.4% of cases (S3 and S5). Our study suggests a cautious 63 

use of large-scale, multi-model ensembles to estimate C fluxes in agricultural sites if some site-64 

specific plant and soil observations are available for model calibration. The further development 65 

of crop/grassland ensemble modelling will hinge upon the interpretation of results in light of 66 
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the way models represent the processes underlying C fluxes in complex agricultural systems 67 

(grassland and crop rotations including fallow periods). 68 

 69 

Keywords: C fluxes; Croplands; Grasslands; Multi-model ensemble; Multi-model median 70 

(MMM) 71 

  72 
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1. Introduction 73 

The global emissions of CO2 in the atmosphere continue to increase together with impacts on 74 

climate (IPCC, 2013). With the global carbon (C) balance becoming an issue of great societal 75 

concern, process-based models are increasingly used to simulate biogeochemical processes 76 

(such as plant photosynthesis and ecosystem respiration) occurring in both natural and managed 77 

ecosystems, including agricultural systems (e.g. Brilli et al., 2017). These models use 78 

approaches that determine the allocation of C from atmospheric CO2 into plant biomass down 79 

to the soil organic matter (van Oijen et al., 2014; Grosz et al., 2017; Kuhnert et al., 2017). 80 

Process-based crop and grassland models (hereafter ‘models’) are important tools in 81 

agricultural and environmental research to extrapolate local observations in time and space, and 82 

to assess the impact of climate and agricultural practices on the functioning of soil-plant-83 

atmosphere systems (e.g. Jones et al., 2017a). They are largely used to represent current 84 

understanding of the impacts of soil physical conditions such as soil temperature and water 85 

content on soil processes such as net mineralisation and to estimate harvested phytomass (which 86 

is the output of major significance in agricultural production). Climate-change impact 87 

assessment studies have been conducted (at different places and scales) by forcing models with 88 

global-to-local scale projected climate data (e.g. Ludwig and Asseng, 2006; Tingem et al., 2008; 89 

Ruiz-Ramos and Mínguez, 2010; Graux et al., 2013; Vital et al., 2013; Zhang et al., 2017; 90 

Mangani et al., 2018), to determine the vulnerability of agricultural systems to a changing 91 

climate (e.g. Harrison et al., 2014, Lardy et al., 2014; Eza et al., 2015; Mangani et al., 2019). 92 

Extensively tested biogeochemical models (with sub-models describing C cycling, generally 93 

coupled to N cycling) are recognised as effective tools for studying the magnitude and spatial-94 

temporal patterns of C fluxes (Chang et al., 2015; Ma et al., 2015). They also play a prominent 95 

role in testing the effect of specific changes in management, plant properties or environmental 96 

factors (e.g. Kirschbaum et al., 2017), and for designing policies specific to the soil, climate, 97 
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and agricultural conditions of a location or region (e.g. Stocker et al., 2013). However, outputs 98 

from different crop/grassland models often differ (e.g. Palosuo et al., 2011; Sándor et al., 2016), 99 

thus leaving users with the question of deciding which model(s) they should use, and under 100 

which circumstances presenting a range of possible impacts and adaptation responses. This has 101 

led to a call for benchmarking actions at international level (Rosenzweig et al., 2013; Soussana 102 

et al., 2015), where an estimation of the uncertainties associated with models is done by running 103 

several models for the same system (ensemble modelling, e.g. Ehrhardt et al., 2018), which 104 

generate envelopes of uncertainty, and help to identify avenues for model improvement (Jones 105 

et al., 2017b; Challinor et al., 2018). Model inter-comparisons have been conducted using 106 

datasets collected worldwide, with the involvement of different modelling communities and the 107 

use of alternative simulation models (e.g. Martre et al., 2015; Sándor et al., 2017; Ehrhardt et 108 

al., 2018). These studies indicate that there are substantial differences between models. Many 109 

of the uncertainties regarding the simulation of crop and grassland processes can be attributed 110 

to differences in the structure of these models (Brilli et al., 2017). While there has been a range 111 

of published studies showing ensemble model simulation results for agricultural yield (e.g. 112 

Asseng et al., 2013; Bassu et al., 2014; Li et al., 2015), there are fewer studies targeting C 113 

dynamics (e.g. Smith et al., 1997; Kirschbaum et al., 2015; Basso et al., 2018; Puche et al., 114 

2019), and we are not aware of any published model intercomparison specifically assessing C 115 

fluxes with multiple models across a range of different experimental sites. In this study, we 116 

extended the analysis of the ensemble modelling performed by Ehrhardt et al. (2018) on 117 

agricultural production and N2O emissions via a multi‐stage modelling protocol (from blind 118 

simulations to partial and full calibration) by including a focus on C fluxes. We used a set of 119 

23 biogeochemical models (11 cropland and eight grassland models, plus four models 120 

simulating both crops and grasslands) and compared simulations with experimental data from 121 

five sites (three crop rotations with spring and winter cereals, soybean and rapeseed, and two 122 
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temperate grasslands). Comparisons included gross primary production (GPP), ecosystem 123 

respiration (RECO), the carbon balance represented by net ecosystem exchange (NEE<0 124 

indicating net C uptake by the system) and other derived outputs. The models were calibrated 125 

through different stages with access to different levels of site-specific information. They were 126 

evaluated as a multi-model ensemble, with the aim of quantifying model uncertainties in the 127 

simulation of C fluxes at different sites and with different land uses. 128 

 129 

2. Materials and methods 130 

2.1. Experimental sites and C measurements 131 

Observational data were available from two long-term, grazed experimental grasslands and 132 

three cropland sites, covering a variety of pedo-climatic conditions and agricultural practices 133 

from Canada, France (two sites), India and United Kingdom (Table 1). For consistency, we 134 

have maintained the site identifiers from Ehrhardt et al. (2018). 135 

 136 

Table 1. Crop and grassland sites for the modelling exercise, years of available data and 137 

evaluated variables. GPP: gross primary production; RECO: ecosystem respiration; NEE: net 138 

ecosystem exchange. 139 

Sites, country 

(latitude, longitude, elevation) 

Years of 

available data 

Evaluated 

variables 
References 

C1: Ottawa, Canada  

(45.29, -75.77, 94 m a.s.l.) 
2007-2012 

GPP, RECO, 

NEE 

Pattey et al. (2006); Jégo et al. 

(2012); Sansoulet et al. (2014) 

C2: Grignon, France  

(48.85, 1.95, 125 m a.s.l.) 
2008-2012 

GPP, RECO, 

NEE 

Laville et al. (2011); Loubet et 

al. (2011) 

C3: Dehli, India  

(28.6, 78.22, 233 m a.s.l.) 
2006-2009 RECO Bhatia et al. (2012) 

G3: Laqueuille, France  

(45.64, 2.74, 1040 m a.s.l.) 
2003-2012 

GPP, RECO, 

NEE 

Allard et al. (2007); Klumpp et 

al. (2011) 

G4: Easter Bush, United Kingdom  

(55.52, -3.33, 190 m a.s.l.) 
2002-2010 

GPP, RECO, 

NEE 

Skiba et al. (2013), Jones et al. 

(2017c) 

 140 
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Cropland sites used different crop rotations (Table 2), including cereals (spring and winter 141 

wheat, triticale, maize and rice), legumes (soybean), rapeseeds (canola and mustard) and 142 

borages (phacelia). C-flux data were also observed and simulated for fallow periods, to better 143 

understand C fluxes due to ongoing soil processes and the decomposition of crop residues (e.g. 144 

Xiao et al., 2015), as well as the role of weeds in cultivated fields (e.g. Curtin et al., 2000). 145 

 146 

Table 2. Details about crop rotations in each cropland site (as in Table 1). 147 

Site Crop 
Sowing 

date 

Harvesting 

date / end of 

crop 

Length of the 

growing 

season (days) 

Number of daily 

measurements 

(days) 

C1 

Spring wheat 2007-05-19 2007-09-04 109 109 

Soybean 2008-06-10 2008-10-15 128 128 

Rapeseed (canola) 2009-04-24 2009-09-08 138 138 

Maize 2010-05-12 2010-11-15 188 188 

Spring wheat 2011-05-10 2011-08-29 112 112 

Rapeseed (canola) 2012-05-15 2012-09-19 128 128 

C2 

 

Rapeseed (mustard) 2008-01-01 2008-04-14 104 104 

Maize 2008-04-27 2008-09-25 152 152 

Winter wheat 2008-10-17 2009-07-31 288 288 

Triticale 2009-10-13 2010-07-19 280 280 

Phacelia 2010-09-13 2011-04-19 219 219 

Maize 2011-04-20 2011-09-06 140 140 

Winter wheat 2011-10-18 2012-08-03 290 260 

Rapeseed (canola) 2012-10-25 2012-12-31 68 GPP:68; RECO: 66 

C3 

 

Winter wheat 2006-11-29 2007-04-13 136 32 

Rice 2007-07-14 2007-10-15 94 17 

Winter wheat 2007-12-01 2008-04-16 137 34 

Rice 2008-07-25 2008-10-22 90 3 

Winter wheat 2008-11-25 2009-04-22 149 0 

 148 

These sites provided high quality, previously published data encompassing climate, soil, 149 

agricultural practices, and C and N fluxes. They were either equipped with an eddy covariance 150 

system to determine the net ecosystem exchange (NEE) of CO2 or with closed chambers for 151 

measuring respiration fluxes and automated weather stations for recording climatic conditions. 152 

The NEE data were partitioned into two main fluxes: gross primary production (GPP), which 153 

is the photosynthetic plant production from atmospheric CO2, and ecosystem respiration 154 
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(RECO), which is the total C respired by plants, soil organisms and (in the case of grasslands) 155 

grazing animals. 156 

C-flux data were made available on a daily basis, for each day of year in grassland sites and for 157 

a varying number of days in crop sites (Table 2). 158 

 159 

2.2. Models and simulation study 160 

The 23 models (Table 3) and the model codes and outputs provided (Table 4) encompass all 161 

but one of the 24 biogeochemical models described in Ehrhardt et al. (2018). These models vary 162 

in their complexity (number of parameters, type of inputs and outputs) and in their constitutive 163 

processes (Ehrhardt et al., 2018, appendices S1 and S2). Model anonymity was maintained 164 

throughout the paper. The identities of models were kept anonymous by using model codes 165 

from M01 to M24 (the order of models being not identical with the one used in Table 3). Model 166 

M11 is not included here because it did not provide access to C-flux outputs. Modelling groups 167 

from 11 countries (Australia, Canada, China, France, Germany, India, Italy, New Zealand, 168 

Spain, United Kingdom and United States of America) were involved. Models were initialized 169 

and calibrated against vegetation, soil and atmospheric fluxes from the study sites as described 170 

in Ehrhardt et al (2018). During this exercise, modellers were given access to gradually more 171 

detailed data to run and evaluate their models (from uncalibrated to fully calibrated 172 

simulations), using a multi-stage protocol described in Ehrhardt et al. (2018). In short, model 173 

evaluation followed five ascending calibration levels including the use of: (S1) no data apart 174 

from site weather and management data for the simulation periods, i.e. a blind test without 175 

model calibration and initialization; (S2) additional historical climate and management data (for 176 

years preceding simulation periods for initialization purposes) and regional productivity; (S3) 177 

biomass production and phenology data; (S4) soil temperature, moisture and mineral N data; 178 
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(S5) N2O emission and soil organic C and N flux data (the full suite of measurements taken at 179 

respective sites). 180 

Nineteen models took part in stage S1. One of these stopped providing outputs at S2 and a 181 

second at S4. Four models entered the exercise at S2, and received feedback from these results 182 

and continued providing outputs until S5. Three modelling teams (M14, M16, M23) used 183 

automatic or semi-automatic techniques to calibrate the model parameters (i.e. Bayesian 184 

calibration, the Latin Hypercube Sampling method and a mixed manual/automatic method) 185 

while the others used a manual, informed ad-hoc approach. 186 

 187 

Table 3. The 23 biogeochemical models used in the model intercomparison study. 188 

Simulated 

system 
Model name Availability 

Cropland 

Agro-C v.1.0 On request to Yao Huang (huangy@mail.iap.ac.cn) 

APSIM v.7.5 http://www.apsim.info 
APSIM v.7.6 http://www.apsim.info 

CERES-EGC 

https://www6.versailles-

grignon.inra.fr/ecosys/Productions/Logiciels- 

Modeles/CERES-EGC 

DailyDayCent On request to Brian Grant (Brian.Grant@canada.ca) 

DNDC http://www.dndc.sr.unh.edu 

EPIC 810 http://epicapex.tamu.edu/model-executables 

FASSET v2.5 http://www.fasset.dk 

Infocrop http://www.iari.res.in/?option=com_content&view=article&id=1334 

SALUS On request to Bruno Basso (basso@msu.edu) 

STICS v.8.2 http://www6.paca.inra.fr/stics_eng 

Grassland 

APSIM-

GRAZPLAN 
http://www.apsim.info 

APSIM-

SoilWater 
http://www.apsim.info 

APSIM-

SWIM v.7.7 
http://www.apsim.info 

CenW v. 4.1 http://www.kirschbaum.id.au/Welcome_Page.htm 

DairyMod 

Ecomod 

v.5.3.1 

http://www.imj.com.au/dm 

LPJmL 

v.3.5.3 

https://www.pik-potsdam.de/research/projects/activities/biosphere-

water-modelling/lpjml 

PaSim https://www1.clermont.inra.fr/urep/modeles/pasim.htm 

SPACSYS v. 

5.2 
https://www.rothamsted.ac.uk/rothamsted-spacsys-model 

DayCent v4.5 

20061 
http://www.nrel.colostate.edu/projects/daycent-downloads.html 

mailto:huangy@mail.iap.ac.cn
http://www.apsim.info/
http://www.apsim.info/
https://www6.versailles-grignon.inra.fr/ecosys/Productions/Logiciels-
https://www6.versailles-grignon.inra.fr/ecosys/Productions/Logiciels-
https://www6.versailles-grignon.inra.fr/ecosys/Productions/Logiciels-
mailto:Brian.Grant@canada.ca
http://www.dndc.sr.unh.edu/
http://epicapex.tamu.edu/model-executables
http://www.fasset.dk/
http://www.iari.res.in/?option=com_content&view=article&id=1334
mailto:basso@msu.edu
http://www.apsim.info/
http://www.apsim.info/
http://www.apsim.info/
http://www.kirschbaum.id.au/Welcome_Page.htm
http://www.imj.com.au/dm
https://www.pik-potsdam.de/research/projects/activities/biosphere-water-modelling/lpjml
https://www.pik-potsdam.de/research/projects/activities/biosphere-water-modelling/lpjml
https://www1.clermont.inra.fr/urep/modeles/pasim.htm
https://www.rothamsted.ac.uk/rothamsted-spacsys-model
http://www.nrel.colostate.edu/projects/daycent-downloads.html
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Cropland 

and 

grassland 

Daily 

DayCent 4.5 

20101 

http://www.nrel.colostate.edu/projects/daycent-downloads.html 

DayCent v4.5 

20131 
http://www.nrel.colostate.edu/projects/daycent-downloads.html 

Landscape 

DNDC v0.9.2 

Under licence agreement with Institute of Meteorology and Climate 

Research, Germany (http://www.imk.kit.edu) 
1 Different versions of the model result in different parameter settings and a few variations in the model structure (Sándor et 189 

al., 2018): DayCent v4.5 2006 applies grazing on a daily basis as linear impact on aboveground biomass and root/shoot ratio, 190 

with aboveground biomass removed as a percentage of total aboveground biomass; DayCent v4.5 2010 and 2013 apply grazing 191 

on a daily basis with aboveground biomass removed as a percentage of total aboveground biomass rather than as continuous 192 

grazing. 193 

 194 

Table 4. C-flux outputs (as in Table 1) provided by different models. 195 

Model 

type 

Model 

code 

Outputs Calibration 

method1 GPP RECO NEE 

Crop models 

M01 ✓ ✓ ✓ Manual 

M02 NA ✓ NA Manual 

M04 NA ✓ NA Manual 

M09 ✓ ✓ ✓ Manual 

M12 NA ✓ NA Manual 

M13 NA ✓ NA Manual 

M18 NA ✓ NA Manual 

M19 ✓ ✓ ✓ Manual 

M20 NA NA ✓ Manual 

M25 NA ✓ NA Manual 

M26 NA ✓ NA Manual 

Grassland 

models 

M03 NA ✓ NA Manual 

M06 ✓ ✓ ✓ Manual 

M16 ✓ ✓ ✓ Automatic 

M21 ✓ ✓ ✓ Manual 

M22 ✓ ✓ ✓ Manual 

M23 ✓ ✓ ✓ 
Manual/ 

Automatic 

M24 ✓ ✓ ✓ Manual 

M28 ✓ ✓ ✓ Manual 

Both systems M05 ✓ ✓ ✓ Manual 

http://www.nrel.colostate.edu/projects/daycent-downloads.html
http://www.nrel.colostate.edu/projects/daycent-downloads.html
http://www.imk.kit.edu/
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M07 ✓ ✓ ✓ Manual 

M08 NA ✓ NA Manual 

M14 ✓ ✓ ✓ Automatic 
1 With automatic methods, all the parameters were recalibrated at each calibration stage; with the manual methods, previously 196 

calibrated parameters were carried forward into the next calibration stage. 197 

 198 

2.3. Data analysis 199 

Three independent modelled C fluxes (GPP, RECO, NEE) were compared against observed 200 

values at each calibration stage. Modelled and measured outputs at the dates when 201 

measurements were made were aggregated and analysed by calendar year for grasslands (g C 202 

m-2 yr-1), and by growing season (from sowing to harvest) for crops (g C m-2 season-1). Fluxes 203 

from fallow periods (from harvest of one crop to the time of planting of the next crop) were 204 

considered separately. For crop rotations, data were aggregated by crop season, not by calendar 205 

year. To ensure consistency of results among the growing periods of different crops, a daily-206 

based seasonal extrapolation of C fluxes (𝐶𝑎𝑚(𝑠), g C m-2 season-1)  was obtained as a function 207 

of the number of measuring days in crop seasons (nmeas) and the length (number of days) of crop 208 

growing seasons (ns) as in Table 2: 209 

𝐶𝑎𝑚(𝑠) =
∑ 𝐶𝑎𝑚(𝑑)
𝑛𝑚𝑒𝑎𝑠
𝑖=1

𝑛𝑚𝑒𝑎𝑠
· 𝑛𝑠 210 

where Cam(d) is the daily amount of assimilated or emitted C (g C m-2 d-1). 211 

Two derived output variables were also analysed on seasonal basis for crops and on annual 212 

basis for grasslands, one representing C emission intensity and one C use efficiency. The 213 

potential to sustain or even increase crop/grassland yields is a desirable characteristic of any 214 

mitigation option both in terms of adoption of the technology by farmers (Vellinga et al., 2011) 215 

and its benefit in reducing GHG emissions per area of land and per unit of product, which is 216 

referred to as ‘emission intensity’ (van Groenigen et al. 2010). In this study, C emission 217 

intensity (IntC) was calculated as the ratio between the amount of C emitted as CO2 (C) and the 218 
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total amount of C in harvested agricultural production, that is, grain yield for crops and the 219 

offtake (annual sum of animal intake and harvested aboveground biomass) for grasslands (after 220 

Ehrhardt et al., 2018). Carbon use efficiency (CUE) was obtained as the ratio between CO2-C 221 

exchanged by the ecosystem and GPP (-NEE/GPP). A synthetic indicator such as the CUE is 222 

useful to inform about the ability to retain part of GPP and thus increase total C content in the 223 

agro-ecosystem (Sándor et al., 2016). The outputs analysed on seasonal/annual bases were also 224 

presented on a daily basis as a practical way to compare models across contrasting locations. 225 

We documented the variability of the multi-model simulation exercise across different 226 

calibration stages, while inspecting how multi-model median (MMM) converged to the mean 227 

of observations. For each simulated variable, we used box-plots to compare the variability of 228 

estimates by different models (with focus on multi-year averages) to the observed variability, 229 

and we represented model ensembles with MMM, which has the advantage to exclude distinctly 230 

biased model members with a disproportionate influence on the mean (Rodríguez et al., 2019). 231 

MMM is the median value of simulated data, which was calculated on daily outputs for each 232 

stage. The advantage of using MMM was established on a theoretical basis and in practical 233 

studies in crop and grassland modelling (Wallach et al., 2018). The absolute bias (best, 234 

0≤ABIAS<∞, worst) was calculated as an average of the absolute differences between MMM 235 

estimates and means of observations at each season or year. Scatterplots of simulated versus 236 

observed daily data and the modelling efficiency (-∞<EF≤1, positive values indicating that 237 

model estimates are more accurate than the mean of the observed data; Nash and Sutcliffe, 238 

1970) were also provided to compare individual models and the MMM. Then, to explore how 239 

MMM varied with the number of models in the ensemble we performed a calculation for each 240 

z-score transformed MMM, 𝑧 =
𝑀𝑀𝑀−�̅�

𝑠𝑑𝑜𝑏𝑠
, obtained by dividing the multi-model data deviation 241 

from the mean of observations (�̅�) by the standard deviation of observations (sdobs) (after 242 

Ehrhardt et al., 2018). We calculated z-scores on all possible combinations of sets of k out of 243 
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n=15 models (k=2, … n). The minimum number of models providing plausible estimates at 244 

each site was that for which z-scores were comprised between -2 and +2 (approximating the 245 

95% confidence limit of a normal distribution). 246 

R software (https://cran.r-project.org) was used for statistical analysis and graphical 247 

visualization. 248 

 249 

3. Results 250 

The overall results are presented and discussed, with selected graphs, for grassland and cropland 251 

sites. At cropland sites, simulated C fluxes are also analysed for each individual crop. In this 252 

way, we addressed the models’ ability to simulate different crops and environmental situations 253 

(beyond assessing C fluxes at different sites), where the ability to model C fluxes from one crop 254 

may not be the same as for another crop. Results from similar short cereals (triticale, winter and 255 

spring wheat) are grouped. Fallow C fluxes are associated with C fluxes from field crops 256 

because they cover their off-growing season period (i.e. between the harvest of one crop and 257 

the sowing of the next crop in a rotation). 258 

 259 

3.1. Uncertainties and ensemble performance by land use 260 

Fig. A in the Supplementary material and Table 5 show the multi-model uncertainties (spread 261 

of responses with different models) under different land uses (fallow, crop and grassland). 262 

Observed mean RECO varied between 32 g C m-2 yr-1 (fallow) and 1561 g C m-2 yr-1 (grassland) 263 

considering all calibration stages. The latter value is about three times higher than seasonal 264 

observed crop values, e.g. maize (674 g C m-2 season-1) or triticale (553 g C m-2 season-1), as in 265 

Table 5. Also, there is considerable difference between observed means and MMM RECO 266 

values, e.g. for S5, 1561 vs. 1123 g C m-2 yr-1 for grasslands, 674 vs. 375 g C m-2 season-1 for 267 

maize, 420 vs. 320 g C m-2 season-1 for spring wheat and 606 vs. 275 g C m-2 season-1 for 268 

https://cran.r-project.org/
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soybean. Overall, observed RECO was underestimated by the MMM in all stages and land uses. 269 

The GPP MMM also showed high variability with winter wheat, triticale and maize (ranging 270 

from 745 to 1354 g CO2-C m-2 season-1 at S5 and S3, respectively), comparable with the 271 

variability of grasslands across calibration stages (1061-1568 g C m-2 yr-1).  There was also high 272 

variability in estimated NEE with winter cereals and maize (Fig. A in the Supplementary 273 

material and Table 5), but MMM generally approached observation means, e.g. maize mean 274 

observation and MMM were -539 (S3) and -544 g C m-2 season-1 (S5), respectively. Model 275 

estimates for grasslands showed less variability in NEE predictions (from -157 at S5 to -99 at 276 

S1 compared to the observed mean of -219 g C m-2 yr-1). Seasonal CUE values (presented on 277 

different scales for fallow, crop and grassland systems in Fig. A in the Supplementary material 278 

and Table 5) were generally positive, with the exception of phacelia. Models tend to show 279 

higher uncertainties towards negative values at early calibration stages, e.g. S1 of winter 280 

cereals, maize, phacelia and rice. A lower uncertainty is associated with IntC values, mainly 281 

with grasslands. Some GPP (and IntC) predictions were different from zero event under fallow 282 

conditions (some non-zero biomass production was also observed experimentally). 283 

The absolute bias (ABIAS), calculated by comparing the MMM and observed mean of different 284 

output variables for different land uses, showed that we can expect an improvement of model 285 

performances after S3, when vegetation and yield data were provided for calibration (Fig. 1). 286 

For instance, GPP of maize, and RECO, GPP and NEE of spring wheat simulations show the 287 

best fit at S3, while triticale and winter wheat show greater improvement at S4 and S5. 288 

 289 

3.1.1. Grassland systems 290 

There was considerable variability in the simulated and observed GPP and RECO values (Fig. 291 

A in the Supplementary material and Table 5). On average, the annual mean of observed GPP 292 

values was 1763 g C m-2 yr-1, but simulations underestimated it because MMM ranged from 293 
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1062 (S1) to 1568 (S5) g C m-2 yr-1. Overall, RECO predictions had a wider range in grasslands 294 

than in crops (Fig. A in the Supplementary material and Table 5). Similar to GPP, models 295 

mostly underestimated mean of RECO (1561 g C m-2 yr-1), as predictions varied from 969 (S2 296 

MMM) to 1248 (S1 MMM) g C m-2 yr-1 (the latter was similar to S3 MMM=1235 g C m-2 yr-297 

1). On the other hand, NEE and IntC values were well estimated with MMM values lying within 298 

the range of observations (-610 to 66 g C m-2 yr-1 and -0.18 to 2.54 yr-1, respectively). In 299 

addition, IntC was near zero in grasslands. The models tended to underestimate CUE and to 300 

slightly overestimate NEE. Best estimates (least difference between MMM and observation 301 

mean) were obtained at S5 for both: NEE: -157.4 versus -218.9 g C m-2 yr-1; CUE: 0.07 yr-1 302 

versus 0.11yr-1. 303 

 304 

3.1.2. Arable crops 305 

The RECO MMM predictions varied between 58 (fallow, S1) and 512 (maize, S3) g C m-2 306 

season-1 for the various crops (Fig. A in the Supplementary material and Table 5). The ABIAS 307 

values slightly reduced after S3 (Fig. 1). In general, there was high variability in RECO and 308 

GPP predictions, especially under maize, soybean and rice. On average, crops showed 309 

negative NEE predictions, with the exception of fallow and phacelia, which showed net C 310 

emission (NEE>0). Overall, CUE predictions and observations had similar patterns.311 
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Table 5. Multi-model median values of ecosystem respiration (RECO), gross primary production (GPP), net ecosystem exchange (NEE), carbon 312 

use efficiency (CUE) and C intensity (IntC), calculated over multiple years at crop and grassland sites for two calibration stages (S3 and S5) and 313 

the observations (Obs). 314 

Output / 

Land-use 

RECO GPP NEE CUE IntC 

S3 S5 Obs S3 S5 Obs S3 S5 Obs S3 S5 Obs S3 S5 Obs 

Fallow 92.65 72.43 31.93 10.78 1.00 11.84 83.19 64.45 44.34 0.00 0.00 -3.81 0.00 0.00 0.00 

Winter 

wheat 
238.13 217.57 259.04 1353.82 745.43 1204.44 -561.93 -610.89 -622.59 0.48 0.55 0.52 0.91 0.88 0.75 

Spring 

wheat 
386.48 320.25 420.11 476.48 476.48 476.48 -62.42 -64.38 -56.37 0.16 0.23 0.05 0.13 0.15 0.08 

Triticale 448.80 289.63 553.35 1517.53 1107.80 1107.80 -563.15 -501.46 -554.46 0.38 0.50 0.50 0.84 0.89 0.83 
Maize 511.93 374.71 674.35 1338.48 1166.02 1241.43 -538.85 -544.12 -567.08 0.41 0.44 0.40 0.53 0.60 0.62 

Soybean 287.96 274.96 605.62 453.97 453.97 753.79 -11.84 -37.48 -148.17 0.00 0.00 0.20 0.21 0.26 0.77 
Rapeseed 199.61 164.45 296.25 255.78 256.10 450.97 -80.34 -81.93 -171.93 0.12 0.12 0.32 0.46 0.46 0.68 

Phacelia 296.39 234.00 326.83 193.10 228.62 228.62 154.87 73.03 98.20 -0.43 0.00 -0.43 0.00 0.00 0.00 

Rice 110.08 100.20 34.34 933.61 606.26 NA -505.50 -405.69 NA 0.56 0.66 NA 1.12 1.02 NA 

Grassland 1234.75 1123.23 1561.14 1456.27 1568.14 1762.74 -102.97 -157.40 -218.84 0.02 0.07 0.11 0.23 0.40 0.49 

  315 
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With wheat and triticale, simulations were lower than the measured RECO, whose means were 316 

about 259 g C m-2 season-1 for winter wheat, 420 g C m-2 season-1 for spring wheat and 553 g 317 

C m-2 season-1 for triticale (Fig. A in the Supplementary material and Table 5). Model 318 

performances improved after S3, with MMM of 238 for winter wheat, 386 for spring wheat and 319 

449 g C m-2 season-1 for triticale. All three cereal crops had negative NEE values, especially 320 

under winter wheat and triticale. CUE was slightly overestimated under winter wheat. In 321 

contrast, CUE MMM of spring wheat and triticale were within the range of observed CUEs at 322 

higher calibration levels. CUE and IntC showed a similar pattern of model variability. 323 

In rice, only the RECO values were measured, thus only simulated data are available for the 324 

other C outputs. The models tended to overestimate RECO in rice, where the observations 325 

ranged between 30 and 39 g C m-2 season-1, whilst the S5 estimation was roughly three times 326 

higher (100 g C m-2
 season-1) (Fig. A in the Supplementary material and Table 5). Overall, there 327 

was high variability in model predictions for all calibration stages, but rice showed the greatest 328 

variability in GPP predictions. This was mostly evident at S4, when soil properties were 329 

included with plant measurements to perform calibration. The variability of NEE, CUE and 330 

IntC, however, was similar to that of other crops. 331 

All the models underestimated observed maize seasonal RECO and GPP values (661-1070 and 332 

1102-1671 g C m-2 season-1, respectively), but model variability was limited for NEE, CUE and 333 

IntC (Table 5 and Fig. A in the Supplementary material). Fig. 1 shows a complex pattern of 334 

ABIAS values, which were generally high at all calibration stages for RECO and GPP and even 335 

increased at S4 for GPP and IntC, while simulations and observations were closer for NEE and 336 

CUE. 337 

Overall, rapeseed was characterized by high variability in the observations: RECO: 69-660 g C 338 

m-2 season-1, GPP: 59-930 g C m-2 season -1, CUE: -0.73-0.57 season -1, IntC: 0-1.5 season -1 339 

(Fig. A in the Supplementary material). The models tended to underestimate RECO and GPP 340 
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observations, and to overestimate NEE and CUE. Net C emissions were predicted against the 341 

net C uptake reflected in measurements. Variations of simulated MMM IntC values were within 342 

the range of observations in spite of their high variability. 343 

After maize and triticale, the simulations of soybean exhibited the highest variability within the 344 

investigated crops on seasonal aggregation (Fig. A in the Supplementary material, Table 5). 345 

RECO (606 g C m-2 season-1) and GPP (754 g C m-2 season-1) values were underestimated, with 346 

high model variability (Table 5), but ABIAS tended to decrease after S2 (Fig. 1). For NEE and 347 

CUE, observations and predictions were closer to each other, but there were large differences 348 

between observed and predicted NEE. 349 

Among crops, phacelia showed the lowest uncertainty of RECO, GPP and NEE predictions. 350 

Simulated MMM RECO (234-296 g C m-2 season-1) tended to underestimate the observed value 351 

(327 g C m-2 season-1), in contrast to other outputs. With this crop, NEE was positive, which 352 

indicated net C emission. The observed mean was ~98 g C m-2 season-1 and the MMM ranged 353 

between 35 (S5) to 209 (S1) g C m-2 season-1. 354 

With fallow, MMM RECO predictions were within the range of observations that ranged 355 

between 16 and 161 g C m-2 season-1. Observed and simulated GPP values were close to zero 356 

and the simulations were within the range of variation of the measurements (5.8-31 g C m-2 357 

season-1). NEE values showed the second highest positive simulated and observed values after 358 

phacelia on a seasonal basis (MMM predictions were within the range of measurements: 15 and 359 

130 g C m-2 season-1, Fig. A in the Supplementary material). The observed CUE values were 360 

the lowest (Fig. A in the Supplementary material) while the ABIAS was the highest 361 

(ABIASCUE=4.26 season-1, Fig. 1). The observed variability, between -0.16 and -0.04 season-1, 362 

was reflected in the model simulations. 363 

  364 

3.2. Uncertainties and ensemble performance by site 365 
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Overall, RECO and GPP were underestimated at grassland sites (Fig. 2). Mean observed RECO 366 

was about 1650 g C m-2 yr-1 at G3 site and 1538 g C m-2 yr-1 at G4 site, while the MMM 367 

predictions varied from 716 to 1262 and from 1057 to 1457 g C m-2 yr-1, respectively. 368 

Improvements were observed at S3, and best predictions were obtained at S5, especially at G4 369 

site, e.g. 1457 g C m-2 yr-1 (S5 MMM) versus 1538 g C m-2 yr-1 (observed mean), Fig.2. For 370 

crop sites, we observed some considerable improvements after S2, e.g. with S3 showing the 371 

best estimates of RECO, where the MMM and observed mean were very similar 241 and 242 372 

g C m-2 season-1 (average for C1, C2 and C3) (Fig. 2.). 373 

 374 

3.2.1. C1 375 

The mean of observed seasonal RECO (611 g C m-2 season-1) was underestimated at all 376 

calibration stages, although there was an improvement after S3 (Fig. 2). The observed means 377 

of GPP (842 g C m-2 season-1), CUE (0.21 season-1) and IntC (0.74 season-1) were well 378 

approached by the MMM predictions. The NEE values, which were lower than in C2 and C3, 379 

were generally underestimated. However, C fluxes excluded fallow periods, since data were 380 

not provided. 381 

 382 

3.2.2. C2 383 

Detailed C-flux data were available at this site for both cropped and fallow periods and showed 384 

large ranges of variability for all outputs. The MMM predictions were within these ranges. 385 

RECO and GPP were mostly overestimated (Fig. 2). The observed NEE (16 g C m-2 season-1) 386 
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of C2 was near zero. Model predictions tended to underestimate it but the simulations were still 387 

within the range of observations. 388 

  389 

3.2.3. C3 390 

Overall, C3 showed the lowest model variability. At this site, only RECO observations were 391 

available. The observed mean (42 g C m-2 season-1) was overestimated, with the MMM ranging 392 

between 78 and 113 g C m-2 season-1. 393 

 394 

3.2.4. G3 395 

GPP and RECO observations did not vary as much at this site as the model predictions. Fig. 2 396 

shows that the accuracy of GPP predictions tended to increase through the calibration stages, 397 

with RECO showing best estimates at S3. For instance, at S5, MMM (1775 g C m-2 yr-1) was 398 

close to the observed mean (1898 g C m-2 yr-1). The MMM values of NEE, CUE and IntC 399 

showed slight differences for different calibration stages, but an improvement was observed at 400 

S5 (209 g C m-2 yr-1, 0.11 yr-1, 0.54 yr-1, respectively) compared with the observations (-248 g 401 

C m-2 yr-1, 0.13 yr-1, 0.62 yr-1, respectively). G3 showed a high C uptake (observed means 402 

NEE=-248 versus MMM at S5=-209 g C m-2 yr-1). 403 

 404 

3.2.5. G4 405 

At this site, the ranges of variation of RECO and GPP observations were similar to G3. 406 

Observed GPP (1767 g C m-2 yr-1) was generally underestimated by the models (ranging from 407 

1255 to 1490 C m-2 yr-1), but the MMM of RECO at S5 (1457 g C m-2 yr-1) approached the 408 

mean of observations (1537 g C m-2 yr-1). The MMM of NEE at S5 (-110 g C m-2 yr-1) was also 409 

close to the observation mean (-148 g C m-2 yr-1). For CUE, the positive values of both MMM 410 
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(ranging from 0.03 to 0.13 yr-1) and observation mean (0.12 yr-1) reflected the C uptake at this 411 

grassland site. 412 

 413 

 3.3. Individual models versus multi-model ensemble 414 

Daily comparisons were not straightforward in this study because discontinuous observations 415 

were tied to specific days, but the models did not have access to the diurnal pattern of the 416 

processes (e.g. timing of specific weather or management events). With this caveat in mind, for 417 

interpretation, we plotted simulated versus observed daily C fluxes as a visualisation tool to 418 

compare the model ensemble results with individual model results. The scatterplots of Figs. 3, 419 

4 and 5 and Figs. B-J in the supplement, are examples for GPP, RECO and NEE at the S5 420 

calibration stage for the G3 grassland site, of the comparison of the performances of individual 421 

models and MMM values. Consistent with the findings above, the MMM outperformed most 422 

of the individual models. Considering R2 values and alignments with the 1:1 lines, this was the 423 

case for nine out of 10 models and seven out of 11 models simulating GPP and RECO. When, 424 

in a few cases, individual models provided relatively satisfactory results, this was generally true 425 

for one output but not for another. For example, M21 provided satisfactory results for GPP (Fig. 426 

3) but not for RECO (Fig. 4). M16 (which was calibrated according to an automatic technique) 427 

was distinctly outperforming the MMM for both GPP (Fig. 3) and RECO (Fig. 4) estimates, but 428 

underperformed for other outputs, e.g. NEE (Fig. 5). Similar patterns of results were obtained 429 

at the S3 (Supplementary material, Figs. B-D) and other calibrations stages (data not shown), 430 

and for the G4 site (data not shown). Likewise for croplands, the MMM tended to outperform 431 

individual models, e.g. for GPP, RECO and NEE at C2 site (Figs. E to J in supplementary 432 

material for calibration stages S3 and S5). 433 

 434 
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Nash-Sutcliffe modelling efficiency coefficients (EF), calculated on daily data of GPP, RECO 435 

and NEE at the five sites for both S3 and S5 (Table 6), were not always positive with MMM 436 

(e.g. NEE at C1 and RECO at C3), but they indicate that MMM outperformed individual models 437 

in 215 out of 233 cases (that is, 92.3% of cases). 438 

 439 

Table 6. Nash-Sutcliffe modelling efficiency (EF) values for C-flux outputs (as in Table 1) 440 

provided by different models (as in Table 4) at S3 and S5 calibration stages at cropland (C1, 441 

C2, C3) and grassland (G3, G4) sites. Grey cells indicate that output variables were neither 442 

measured nor simulated. 443 

Model Stage Output C1 C2 C3 G3 G4 

M01 

S3 

RECO -0.20 -0.29 -273.42   

GPP -0.72 0.22    

NEE -3.66 0.29    

S5 

RECO -0.20 0.00 -273.42   

GPP -0.72 0.35    

NEE -3.67 0.36    

M02 

S3 

RECO -0.04 -0.18 -9.87   

GPP      

NEE      

S5 

RECO -0.42 -0.20 -14.69   

GPP      

NEE      

M03 

S3 

RECO      

GPP      

NEE      

S5 

RECO      

GPP      

NEE      

M04 

S3 

RECO -1.39 -0.93 -1.26   

GPP      

NEE      

S5 

RECO -1.39 -0.93 -1.38   

GPP      

NEE      

M05 

S3 

RECO 0.07 -1.30 -316.84 -0.44 -1.14 

GPP 0.52 -1.13  0.00 -0.65 

NEE -0.07 -1.60  0.28 0.08 

S5 

RECO -0.34 -0.30 -17.97 -0.01 -0.79 

GPP 0.43 0.44  0.33 -0.25 

NEE -0.02 0.48  0.11 0.30 

M06 S3 

RECO    -1.17 -0.41 

GPP    -0.38 0.16 

NEE    -0.38 0.24 
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S5 

RECO    -1.17 -0.31 

GPP    -0.38 0.22 

NEE    -0.38 0.29 

M07 

S3 

RECO -2.62 -3.96 -120.78 -0.47 0.09 

GPP -0.69 -0.39  -0.47 -0.02 

NEE -6.60 -21.28  -0.17 -0.07 

S5 

RECO -9.09 -3.80 -43.52 -0.88 -0.06 

GPP -1.68 -17.22  -0.19 0.53 

NEE -3.39 -21.02  -0.13 -0.66 

M08 

S3 

RECO -0.76 -0.83 -7.31 -1.39 -1.06 

GPP      

NEE      

S5 

RECO -0.75 -0.78 -15.17 -1.36 -1.01 

GPP      

NEE      

M09 

S3 

RECO 0.02 -9.66 -193.83   

GPP -0.14 -1.07    

NEE -1.50 0.36    

S5 

RECO -0.09 0.12 -260.92   

GPP -0.10 0.56    

NEE -1.33 0.32    

M12 

S3 

RECO -0.57 -4.26 -21.31   

GPP      

NEE      

S5 

RECO -0.73 -0.56 -13.32   

GPP      

NEE      

M13 

S3 

RECO 0.63 0.23 -9.05   

GPP      

NEE      

S5 

RECO 0.69 0.23 -9.05   

GPP      

NEE      

M14 

S3 

RECO -3.25 -2.09 -2980.13 0.02 -1.36 

GPP 0.27 0.04  0.13 0.13 

NEE -4.38 -1.04  -0.43 -1.85 

S5 

RECO -5.41 -3.60 -49.00 -0.47 -0.31 

GPP 0.50 0.08  -0.09 -0.06 

NEE -6.37 -1.19  -0.10 -1.08 

M16 

S3 

RECO    0.42 0.41 

GPP    0.20 0.26 

NEE    -0.73 -0.96 

S5 

RECO    -0.11 0.41 

GPP    0.57 0.58 

NEE    -0.92 0.07 

M18 

S3 

RECO -0.01 -0.55 -34.56   

GPP      

NEE      

S5 

RECO 0.20 -0.72 -35.33   

GPP      

NEE      

M19 S3 
RECO -0.50 -2.25 -601.23   

GPP -0.93 -0.06    
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NEE -1.43 -0.27    

S5 

RECO -0.15 0.37 -100.46   

GPP 0.11 0.47    

NEE 0.15 0.26    

M20 

S3 

RECO      

GPP      

NEE 0.19 0.41    

S5 

RECO      

GPP      

NEE 0.34 0.49    

M21 

S3 

RECO    -0.52 -0.53 

GPP    0.07 0.48 

NEE    -3.66 -1.82 

S5 

RECO    -0.55 -0.61 

GPP    0.18 0.39 

NEE    -4.26 -1.36 

M22 

S3 

RECO    0.40 0.49 

GPP    0.16 0.58 

NEE    -0.49 0.27 

S5 

RECO    0.40 0.49 

GPP    0.16 0.58 

NEE    -0.49 0.27 

M23 

S3 

RECO    0.44 -0.61 

GPP    0.11 -0.21 

NEE    -0.76 -0.07 

S5 

RECO    0.52 0.38 

GPP    0.47 0.40 

NEE    0.19 0.24 

M24 

S3 

RECO    -0.63 -0.25 

GPP    -0.25 0.19 

NEE    -0.20 0.30 

S5 

RECO    -0.63 -0.29 

GPP    -0.25 0.23 

NEE    -0.20 0.34 

M25 

S3 

RECO -0.03 -0.38 -4.78   

GPP      

NEE      

S5 

RECO -0.03 -0.38 -4.78   

GPP      

NEE      

M26 

S3 

RECO 0.02 0.07 -15.64   

GPP      

NEE      

S5 

RECO 0.07 0.07 -15.52   

GPP      

NEE      

M28 

S3 

RECO    -0.89 -0.50 

GPP    0.22 -0.59 

NEE    -1.30 -0.45 

S5 

RECO    -1.52 -0.72 

GPP    -0.52 -0.17 

NEE    -0.40 -0.05 

MMM S3 RECO 0.10 0.15 -6.12 0.21 0.38 
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GPP 0.23 0.61  0.47 0.55 

NEE 0.12 0.57  0.29 0.30 

S5 

RECO 0.03 0.01 -3.53 0.17 0.25 

GPP 0.32 0.58  0.53 0.62 

NEE 0.22 0.55  0.30 0.45 

 444 

3.4. Minimum ensemble size 445 

We attempted to identify the minimum number of models required to obtain reliable results for 446 

stages S3 and S5, with focus on the three independent outputs (GPP, RECO, NEE) on both 447 

grassland and cropland sites (Figs. 6 and K-O in the supplement). For different sites, we 448 

observed that there could be large differences in the z-score results obtained with different 449 

ensemble sizes with different output variables. In general, grassland sites were characterized by 450 

greater z-score values than C1 and C2 crop sites. However, C3 (Indian crop site) showed the 451 

greatest deviation from observations (Fig. M in the supplement). For C1, our analysis suggests 452 

that the ensemble size could be reduced down to five models for RECO and even below for 453 

GPP, but for NEE only ensemble sizes of at least 13 models reduced z-score values within the 454 

range -2 and +2 (Fig. 6 and Fig. K in the Supplementary material). C2 resulted the easiest site 455 

to simulate, with z-scores mostly within the range -1 and +1 - (i.e. approximating the 68% 456 

confidence limit of a normal distribution) for any model ensemble at both S3 and S5 calibration 457 

stages for RECO, GPP and NEE (Fig. L in the Supplementary material). Compared to C1, the 458 

estimated minimum number at G3 varied less with output variables: 7 models for NEE, 9 459 

models for GPP and 11 models with RECO (Fig. 6 and Fig. N in the Supplementary material). 460 

At G4, S5 calibration stage showed that the minimum number of models would be around nine 461 

for RECO, seven for GPP and six for NEE (Fig. O in the Supplementary material). Overall 462 

(considering all the sites), our analysis suggests that ensemble sizes below 13 models might not 463 

always guarantee sufficient accuracy in C-flux estimates. We note in particular the increasing 464 

variability of z-scores observed with RECO at C3 (up to about +15) as the ensemble size 465 

decreases (Fig. M in the Supplementary material). 466 
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 467 

4. Discussion 468 

The results in this paper show that the suitability of a multi-model ensemble to simulate 469 

agricultural C fluxes depends on the variables being collected to calibrate models. With respect 470 

to emission-related processes, up to recently it has been considered that it is “premature to fully 471 

trust model outputs as representing reality” (Oertel et al., 2016, p. 344). In our exercise (which 472 

is the first on agricultural C fluxes), we provided an update on what we can reasonably expect 473 

from using an ensemble of biogeochemical models. These results reinforced the idea that at 474 

large-scale, multiple model ensembles could be a promising way to orient future modelling 475 

studies, with plant and soil observations as a minimum data requirement for model calibration 476 

(S3 and S4). Additional observations (such as C-N fluxes) might not be needed for a more 477 

detailed model calibration (e.g. results for S5 in Fig. 2). For instance, the use of N2O emission 478 

data for calibration could increase the uncertainty of model estimates (e.g., Del Grosso et al., 479 

2011; Hense et al., 2013), considering the high spatial and temporal variability associated with 480 

heterogeneous and intermittent N2O emissions (e.g. Grant and Pattey, 2003). Unlikely our 481 

results have been affected by the different calibration techniques used. In fact, Wallach et al. 482 

(2019) showed that different calibration techniques do not seem to be primarily responsible for 483 

differences in model performance, and considering that most of the modelling teams derived 484 

parameter values based on a manual trial-and-error approach (Table 4). When several 485 

(differently packaged) models and complex datasets are mobilised in large-scale multi-model 486 

ensembles, the uncertainty in calibrated parameters tends to be confounded with the uncertainty 487 

in model structure (Wallach and Thorburn, 2017). Usually, calibration techniques are 488 

considered a lower priority in agricultural ensemble modelling, where the reduction of 489 

uncertainties is mostly limited by the limited quality of the calibration data (e.g. Angulo et al., 490 

2003; Maiorano et al., 2017). However, each situation can be so unique (e.g. supplied data are 491 
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incorrectly measured or are affected by unreported factors, such as pest damage) that generic 492 

lessons cannot be drawn from this whole exercise. During the course of this exercise, some 493 

modelling teams noticed model structural problems, which could later be resolved. 494 

In our study, the improvements in C-flux estimates (and uncertainty reduction) obtained with 495 

the multi-stage calibration process showed that the use of additional data at S5 did not always 496 

lead to improved results compared to S3 and S4. In particular, the additional calibration 497 

performed with C and N fluxes (S5) produced some less accurate predictions of crop GPP than 498 

those obtained with soil properties and soil temperature and water dynamics (S4), which 499 

produced the best predictions in general. Then, we noticed some non-zero GPP values during 500 

fallow periods, when no growing plants are expected and GPP should be zero. In practice, some 501 

weeds may be present, giving some limited GPP. Models are not expected to confidently predict 502 

the occasional escape of some weeds from the attempts to control them but the way different 503 

models address site-, method- and weather-specific phenomena (which was not investigated in 504 

this study) could have produced some limited photosynthetic activity during fallow periods. 505 

For an accurate estimate of GPP in grasslands, however, more detailed model calibration may 506 

be needed. C-flux estimates from grassland models are generally more uncertain than from crop 507 

models due to the inherent complexity of grassland systems (multi-species communities of 508 

grasses, legumes and forbs) and their management. The latter may include relatively simple 509 

grazing schemes, e.g. intensive grazing by heifer cows as in G3, and combinations of mowing 510 

and grazing with ewes, lambs, heifers and calves like in G4 (whose representation in models is 511 

not straightforward). S4 and S5 substantially improved some MMM predictions for both G3 512 

and G4. Soil-based calibration (S4) improved the simulations but the full calibration (S5) 513 

provided the best fit. Future multi-model comparison studies should use mown grasslands 514 

(which are simpler management schemes than grazing) to try to resolve some of the differences 515 

between observations and modelled values. 516 
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The estimation of RECO was also more uncertain in grasslands than in crops. Big fluctuations 517 

of this variable in grasslands are likely due to the variability of grazing animals’ respiration, 518 

which adds to the variability of plant and soil respiration fluxes (e.g. Kirschbaum et al., 2015; 519 

Cai et al., 2018). The envelope of inter-annual variability decreased after S2, which indicates 520 

that a calibration based on biomass growth and plant and leaf development is essential for 521 

reliable estimates of RECO. 522 

Both observed and simulated NEE showed negative values (net C uptake), with the exception 523 

of fallow periods and the phacelia growing season. It is known that phacelia, as a cover crop, 524 

may increase soil CO2 emission due to an enhanced input of organic residues (e.g. Bodner et 525 

al., 2018). The lowest values were associated with maize, winter wheat, rice and triticale crops. 526 

However, models could underestimate NEE values from the whole crop rotation system (e.g. 527 

C2 site), because they underestimate the release of CO2 to the atmosphere from fallow periods. 528 

This means that models need to improve their simulations of bare soil processes during the 529 

intercrop period. However, improvements in model predictions were observed after the S3 530 

calibration stage. The C uptake (NEE<0) observed and modelled in C1 and C3 crop rotations 531 

did not include fallow periods for which measurements were not made available, thus NEE 532 

values were only for the crop growing seasons. In both grassland sites G3 and G4, model results 533 

reflected the limited variability of NEE observations, which was roughly half those of RECO 534 

and GPP. Thus, with NEE, some performance gain was obtained from the uncertainty 535 

compensation. 536 

Higher CUE promotes biomass accumulation and, indirectly, C stabilization in soil layers, 537 

while lower CUE favours respiration and C losses (Bradford and Crowther, 2013; Geyer et al., 538 

2019). In our site–by-site analysis, CUE values were generally better estimated after S3 539 

calibration stage. Among crops, phacelia and soybean showed the highest variability in their 540 
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MMM values, while fallow periods provided the worst estimates (Fig. A in the Supplementary 541 

material). 542 

For IntC, the provision of phenology and production data at S3 was effective in improving model 543 

predictions (Fig. A in the Supplementary material), which is expected considering that IntC is 544 

calculated on grain yield/grassland offtake. 545 

Overall, the MMM provided more accurate simulations in most cases than individual models 546 

(as shown by the regression lines of Figs. 3-5 and Figs B-J in the Supplementary material). 547 

Even though some individual models were outperforming the MMM (e.g. M6, M16, M22, M23, 548 

M24) in certain cases (outputs/sites/calibration stages), that response was not general (e.g. 549 

Table 6). We confirm with this study that it is difficult to define an a priori criterion that could 550 

be used to select a subset of models that would perform better than others would. In terms of 551 

minimum number of models required to obtain reliable results, our study indicates that the 552 

suggested minimum ensemble size (~10 models) proposed by Martre et al. (2015) for crop 553 

growth should be increased (at least 13 models) when model ensembles are implemented to 554 

simulate C fluxes at different climatic regions worldwide. Only in specific situations, e.g. C2 555 

site, ~9 models could provide reliable C-flux estimates. With grasslands, the minimum 556 

ensemble size should include at least 11 models. 557 

5. Summary and conclusions 558 

This study presents a framework for interpretation of model performance and uncertainties 559 

obtained with a set of biogeochemical models (individually and in an ensemble) simulating C 560 

fluxes in cropping and grassland systems at a variety of distant and contrasted sites. There are 561 

multiple foci when designing multi-model studies of agricultural systems (such as crop rotations 562 

and grasslands) depending on the questions to be answered. Our study shows that we could not 563 

identify the best model(s) for crop and grassland C fluxes and no probability of success could 564 

be assigned to prove the suitability of using one biogeochemical model rather than another. We 565 
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demonstrate the potential that a multi‐model ensemble can have for jointly estimating different 566 

C fluxes (primary production, ecosystem respiration and net ecosystem exchanges) and 567 

production-scaled emissions (e.g. CO2-C emission intensities and C use efficiencies). 568 

We showed that reduced calibration datasets (vegetation data) could be adequate for providing 569 

sufficiently reliable outputs (e.g. to continue to progress towards updating the inventory of C 570 

databases, West et al., 2010), but additional biophysical and biogeochemical data can further 571 

improve results under certain circumstances. Further improvements of data sources, such as 572 

phenological observations, could help refine model estimates and form a baseline for screening 573 

agricultural practices and mitigation options at croplands and grasslands, as presented in Sándor 574 

et al. (2018). Moreover, there is a high uncertainty of modelled fluxes during fallow periods, 575 

which would need more accurate data. 576 

These results paved the way for using model ensemble medians for field-scale estimation of C 577 

fluxes. Our results inform about the possible use of model ensembles for upscaling projections 578 

of C fluxes and derived outputs, from field scale to larger spatial units (e.g. gridded projections) 579 

as needed for Tier 3 national inventories (e.g. Folberth et al., 2016; Zscheischler et al., 2017). 580 

However, model inter-comparisons have their limitations. Although our comparison was large 581 

compared to other studies (e.g. Sándor et al., 2016), there was a lack of case studies in this 582 

exercise from Africa, South America and Oceania, which would extend the geographical 583 

coverage. Our study-sites mostly targeted agricultural areas of the Northern hemisphere (four 584 

temperate and one tropical), as part of a broader study covering more agricultural areas in both 585 

hemispheres (Ehrhardt et al., 2018). 586 

Moreover, the various model types and variants evaluated here did not cover all the modelling 587 

approaches used to simulate C fluxes from crop and grassland systems (e.g. the model used by 588 

Senapati et al., 2016). They reasonably represent current approaches (the basis of development 589 

and processes were scrutinized), but we think that crop and grassland model inter-comparisons 590 
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with the inclusion of more models should be continued to assess and improve our ability to 591 

simulate biogeochemical processes with acceptable quality. Further analyses and better 592 

understanding of these multi-model ensembles are required to achieve key progress in crop and 593 

grassland modelling, by assessing more in-depth model responses and uncertainties against 594 

climate and management drivers. 595 
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Figure legends 954 
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Fig. 1. Variation of MMM absolute bias (ABIAS) values for ecosystem respiration (RECO), 957 

gross primary production (GPP), net ecosystem exchange (NEE), carbon use efficiency (CUE) 958 

and C intensity (IntC) calculated over multiple years at cropland (C1, C2 and C3) and grassland 959 

(G3 and G4) sites, for five calibration stages (S1-S5). 960 
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 961 

Fig. 2. Seasonal changes in ecosystem respiration (RECO), gross primary production (GPP), net 962 

ecosystem exchange (NEE), carbon use efficiency (CUE) and C intensity (IntC) calculated over 963 

multiple years at C1, C2 and C3 crop, and G3 and G4 grassland sites, for five calibration stages 964 
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(S1 to S5) and the observation (Obs). Number of crop seasons/grassland years: soybean: 1; 965 

triticale: 1; phacelia: 1; spring wheat: 2; rice: 2; maize: 3; rapeseeds: 4; winter wheat: 5; fallow: 966 

9; grasslands: 19. For each calibration stage, black lines show multi-model median. Boxes 967 

delimit the 25th and 75th percentiles. Whiskers are 10th and 90th percentiles. Circles indicate 968 

outliers. For Obs, black line shows the observed mean. 969 
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 972 

Fig. 3. S5 calibration stage: comparison of simulated (individual models and multi-model 973 

median) and observed daily gross primary production (GPP) data across multiple years at G3 974 

site. 975 
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 978 

Fig. 4. S5 calibration stage: comparison of simulated (individual models and multi-model 979 

median) and observed daily ecosystem respiration (RECO) data across multiple years at G3 980 

site. 981 
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 983 

Fig. 5. S5 calibration stage: comparison of simulated (individual models and multi-model 984 

median) and observed daily net ecosystem exchange (NEE) data across multiple years at G3 985 

site. 986 
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988 

 989 

Fig. 6. z-scores for ecosystem respiration (RECO), gross primary production (GPP) and net 990 

ecosystem exchange (NEE) calculated with different ensemble sizes C1 crop site (top) and G3 991 

grassland site (bottom), for calibration stage S5. Black lines show median values. Boxes delimit 992 

the 25th and 75th percentiles. Whiskers are 10th and 90th percentiles. Circles indicate outliers.  993 
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