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Introduction

Anaerobic digestion (AD) is considered as the most efficient and sustainable technology for organic waste treatment. It has the ability to enable simultaneously waste stabilization and valorization through the production of methane rich biogas and of digestate used as an organic amendment. Encouraged by the renewable energy policies, biogas production with AD has increased in the European Union to reach 18 billion m 3 methane (654 PJ) in 2015 [START_REF] Scarlat | Biogas: Developments and perspectives in Europe[END_REF]. However, The European Biomass Association (AEBIOM) estimates that AD still has a considerable potential for expansion with a biogas potential at about 78 billion m 3 methane. To reach this goal, the optimization of biogas production is essential to improve high process stability and efficiency and lower susceptibility to disturbances. Indeed, process failure reduces the economic and environmental performances of biogas technology as they lead to decreased methane yields and thus reduce revenues. Therefore, it is important that applied research on biogas technology improve robustness of these systems to stress factors, such as altered operating conditions or inhibitory compounds.

Among the broad range of inhibitors from AD substrates, high concentrations of ammonia and micro-pollutants such as phenol are considered as the primary cause of digester failure [START_REF] Gonzalez-Gil | Role of methanogenesis on the biotransformation of organic micropollutants during anaerobic digestion[END_REF][START_REF] Rajagopal | A critical review on inhibition of anaerobic digestion process by excess ammonia[END_REF]. Commonly used feedstock such as livestock manure, slaughterhouse byproducts and food industrial residues contain organic nitrogen such as urea and proteins, which readily release ammonia during their anaerobic degradation [START_REF] Yenigün | Ammonia inhibition in anaerobic digestion: A review[END_REF]. Previous studies addressing the topic of ammonia inhibition in AD have reported a large disparity in the inhibitory limits, which range from 27 to 1450 mg of NH3-N/L and from 1.1 to 11.8 g of NH4-N/L (Capson-Tojo et al., 2020).

In addition, various natural or anthropogenic phenolic compounds are detected in different types of effluents from coal gasification, coking, petroleum refining, petrochemical manufacturing and paper [START_REF] Rosenkranz | Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR[END_REF]. Phenols are also produced from biodegradation of naturally occurring aromatic polymers such as humic acids and tannins or from degradation of xenobiotic compounds such as pesticides [START_REF] Veeresh | Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review[END_REF]. As a result, contaminated sludge produced during the treatment of these various effluents can cause digester imbalance. Phenol concentrations greater than 1000 mg/L were reported to severely inhibit AD [START_REF] Dong | Enhancing effects of activated carbon supported nano zero-valent iron on anaerobic digestion of phenol-containing organic wastewater[END_REF] and generally, half maximal inhibitory concentrations (IC50) were reported to be between 1.1 and 1.8 g/L [START_REF] Chapleur | Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities[END_REF].The stability and efficiency of the overall AD process relies on tightly coupled synergistic activities between an intricate community of microorganisms. But the understanding of biological mechanisms of AD is still hampered by the extreme complexity of the microbial ecosystem involved in this process [START_REF] Li | Enhancement of methane production in anaerobic digestion process: A review[END_REF]. New knowledge is needed to unravel bioindicators of digesters inhibition which have the potential to guide and optimize operation management during unexpected onset of inhibitors and prevent biogas production.

Different methods for characterizing AD microbiome have been proposed and reviewed by Lim et al. [START_REF] Lim | The microbiome driving anaerobic digestion and microbial analysis[END_REF]. New molecular biology techniques have revealed the great diversity of the biogas-producing microbiomes. Thus, these omics technologies provide unprecedented opportunities to characterize microbiomes' diversity, composition, gene expression or metabolism and can be used to evidence bioindicators. For example, Hao et al. used quantitative PCR and 16S rDNA amplicon sequencing to evidence associations between process parameters and the abundance of specific microbial phylotypes in full scale digesters [START_REF] Hao | New insights into the key microbial phylotypes of anaerobic sludge digesters under different operational conditions[END_REF] High-throughput sequencing technologies, including 16S rRNA amplicon sequencing have enabled many studies to monitor microbial changes during steady state or the inhibition of anaerobic digesters, for example with phenolic compounds [START_REF] Chapleur | Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities[END_REF][START_REF] Madigou | Acclimation strategy to increase phenol tolerance of an anaerobic microbiota[END_REF]Poirier et al., 2016a) or ammonia [START_REF] Lü | Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina[END_REF]Poirier et al., 2016b). However, given a same inhibitor, independent studies regularly identified inconsistent microbial indicators, due to differences in inocula and substrates usage, geographical sites and/or at different times, and types of digesters.

The lack of reproducibility is further accentuated when studies focus on the identification of a single microbial bioindicator. Such univariate perspective is unlikely to shed light into the global and complex ecosystem of AD.

Our study aims at identifying a robust microbial signature, consisting in multiple microbial bioindicators, reflective of the interaction network within anaerobic digesters whilst leveraging on in-house and other existing studies. The analytical challenge was to combine such independent studies plagued by unwanted variation (e.g. different substrates and types of digesters) that outweigh the interesting biological variation of ammonia and phenol inhibitions. We applied a recently developed integration method MINT (Multivariate INTegrative) (Rohart et al., 2017a) that provides an integrated view of anaerobic digester microbiota subject to distinct types of inhibition. By integrating two independent in-house experiments, we identified reproducible microbial bioindicators that characterize ammonia inhibition, phenol inhibition and no inhibition. We evaluated this model by predicting AD status on two external studies assessing the influence of ammonia on AD. By doing so, we demonstrate the feasibility of detecting robust indicators evidencing the microbial symptoms of AD process dysfunction in independent studies which suggests promising applications in various biotechnologies thanks to the expansion of data deposited in public databases.

Materials and methods

Experimental data

Four studies assessing the influence of ammonia or phenol on AD were selected to build the predictive models [START_REF] Lü | Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina[END_REF][START_REF] Peng | Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community[END_REF]Poirier & Chapleur, 2018a;Poirier & Chapleur, 2018b). We selected these studies as they describe the effect of different levels of the previously mentioned inhibitors on both the performances of the digesters and the dynamics of the microbiome through 16S metabarcoding. Additionally, for each study, raw sequencing data had been deposited in publicly available databases and could be linked to the samples described in the original papers with no ambiguity.

In all studies, gas productions were measured to evaluate whether AD was inhibited. As described in supplementary material , studies 1 and 2 were conducted in our laboratory with the same type of substrate (biowaste) but with two different inocula collected one year apart from an industrial mesophilic digester treating wastewater treatment sludge. Samples were taken across time and under different inhibitory conditions. DNA was extracted and 16S rRNA gene was sequenced providing datasets of raw sequences associated to different inhibitory conditions. Study 1 aimed at assessing in parallel the effect of ten different levels of total ammonia nitrogen (TAN) (from 0 to 50 g TAN/L) and phenol (from 0 to 5 g/L) on the microbial community of batch anaerobic digester (Poirier & Chapleur, 2018b). Study 2 assessed the influence of support media addition to mitigate AD ecosystem inhibition in presence of two inhibitory conditions (19 g/L of TAN and 1.5 g/L of phenol, respectively) (Poirier & Chapleur, 2018a). Studies 3 and 4 were conducted in two distinct external laboratories. Study 3 was conducted by Lü et al. using as inoculum an anaerobic granular sludge collected from a plant-scale 35°C upflow anaerobic sludge bed reactor (Shanghai, China) with liquid internal recirculation that was treating paper mill wastewater. They evaluated the effectiveness of biochar of different particle sizes in alleviating different ammonia inhibition levels (0, 3.5 and 7 g TAN/L) during AD of 6 g/L glucose [START_REF] Lü | Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina[END_REF]. Study 4 by Peng et al. used an inoculum collected from a lab-scale, high-solids anaerobic digester and sought for microbial community changes during inhibition by ammonia (from 2.7 to 3.6 g TAN/L) in high solid AD of food waste in a continuous stirredtank reactor [START_REF] Peng | Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community[END_REF].

In order to train an accurate and relevant MINT model, we removed some samples from studies 1 and 2 that were deemed non-representative of our analytical objectives (listed in supplementary material. In studies 1 and 2, only samples collected after at least 10 days of incubation were retained to ensure that the microbial community was representative of the inhibitory conditions. Samples taken after more than 60 days of incubation were removed as biogas production was completed. Moreover, for studies 1 and 2, methane cumulated production data were fitted to a modified Gompertz three-parameter model (Eq. ( 1)) where M(t) is the cumulative CH4 production (mL) at time t (d); P is the ultimate CH4 yield (mL); Rmax is the maximum CH4 production rate (mL/d); λ is the lag phase (d); e is the mathematical constant (also known as Euler number):

( ) = × - × × ( -) + 1 (Eq.1)
Reactors were deemed inhibited when Rmax was less than 80% of Rmax in the controls without inhibitor, and not inhibited when Rmax was greater than 90% of Rmax in the controls without inhibitor. In study 1, samples from reactors incubated with 250 or 500 mg/L of phenol and 5.0 g/L of ammonium were discarded as the inhibition status (inhibited-non-inhibited)

was not well defined. Samples collected from batch digesters incubated with 50 g/L of ammonium or 5 g/L of phenol were removed as these incubations were totally inhibited and microbial community did not evolve. In total 81 samples remained in studies 1 and 2, taken in 35 different digesters. All samples from study 3 and bacterial samples from study 4 were retained and their inhibition status predicted with the model (respectively 37 and 10, table S2).

Data processing

In these four studies, sequencing of the V3-V4 or V4-V5 region of the 16S rRNA gene was performed with three different approaches, as described in supplementary material . Data from external studies were downloaded from NCBI with fastq-dump 2.8. Adapters from each study were specifically removed with cutadapt v1.12 [START_REF] Martin | Cutadapt removes adapter sequences from high-throughput sequencing reads[END_REF]. All sequences were imported into FROGS pipeline (Find, Rapidly, Otus with Galaxy Solution) [START_REF] Escudié | FROGS: Find, Rapidly, OTUs with Galaxy Solution[END_REF] . Samples from studies 1 and 2 were processed together while studies 3 and 4 were processed independently because of the differences in sequencing approaches.

Taxonomic assignment of Operational Taxonomic Units (OTUs) was performed using Silva 132 SSU as reference database. OTUs were trimmed by keeping only those present more than 10 times in the whole dataset (resp. 1133, 399, 158 OTUs for studies 1 and 2, 3, 4). For joint analysis of data from studies 1 and 2, data was processed as obtained. For joint analysis of studies 1, 2, 3 and 4, the three distinct biom files were concatenated and data were discussed at the genus level. Sequences of interest were then assigned at the species level using the Blastn+ algorithm [START_REF] Camacho | BLAST+: architecture and applications[END_REF]).

Statistical analyses and predictive model

OTUs abundances were scaled with total sum scaling to account for uneven sequencing depth. OTUs that exceeded 3% in at least one sample were retained for the analysis. The total relative abundance of these minor OTUs represented 17% of the total number of sequences.

Data were then transformed with centered log ratio (CLR) transformation to account for compositional structure of the scaled data. All statistical analyses were implemented with mixOmics R package, as described in (Rohart et al., 2017b).

In order to obtain a first understanding of the major sources of variation in the training data (studies 1 and 2), and to obtain a first insight into the similarities between samples, we conducted principal component analyses (PCA) on the 16S rRNA tags datasets (pca function).

A sparse Partial Least Squares Discriminant Analysis (Sparse PLS-DA) was then conducted to assess the potential to discriminate the samples according to the type of inhibition (Lê Cao et al., 2016) (sPLS-DA function) and identify microbial signatures characterizing inhibition type. Classification accuracy was calculated based on the microbial signature identified by the method, as described in (Rohart et al., 2017b). Finally, the MINT sPLS-DA method (referred to as MINT in the following), that generalizes sPLS-DA while accounting for study-specific effects was applied (Rohart et al., 2017a) (mint.splsda function). Parameters to tune in MINT included the number of PLS-DA components, and the number of variables to select, which was performed using 10-fold cross-validation. The final MINT model was then fitted on the data, and the classification performance was estimated using the perf function and 10-fold cross-validation repeated 10 times. Graphical display of the discriminative OTU signature identified by MINT were output using clustered image maps (cim function). The multivariate model not only identifies a microbial signature characterizing inhibition status, but it also enables to predict the groups of samples from external data sets as described in detail in (Rohart et al., 2017b). For prediction, we trained another MINT model on studies 1 and 2 for conditions ammonia/no inhibition and predicted the inhibition status of the test samples (studies 3 and 4) using the predict.mint.splsda function. The prediction area was visualized with a colored background on the sample plot, as described in (Rohart et al., 2017b). Code and functions used for data analysis are described in (Rohart et al., 2017a;Rohart et al., 2017b) and available at http://mixomics.org/ and https://gitlab.irstea.fr/olivier.chapleur/mint-206 bioindicators/. 207 3 Results and discussion 3.1 Integration of independent studies to identify microbial bioindicators 3.1.1 Inhibition status classification of digesters according to methane production performance A total of 81 samples were selected from studies 1 and 2. These samples were collected in 35 distinct digesters (Poirier & Chapleur, 2018a;Poirier & Chapleur, 2018b). Prior to identifying potential bioindicators characteristic of both type of inhibition, inhibition status of each digester (non-inhibited, inhibited by phenol or inhibited by ammonia) has been characterized. For this purpose, maximum CH4 production rate (mL CH4/day) was chosen as the most informative performance indicator. These values were calculated for each digester using Grofit package of R software (version 3.1.2) in both previous studies (Poirier & Chapleur, 2018a;Poirier & Chapleur, 2018b). To integrate both studies, we decided that samples were inhibited as soon as maximum CH4 production rate decreased by more than 20% compared to control and not inhibited if CH4 production rate decreased by less than 10%. Figure 1 presents boxplots describing the distribution of the relative decrease of maximum CH4 production rate of each digester according to their inhibition status.

According to this threshold, we determined that 29 samples were non-inhibited whereas 24 samples were inhibited by phenol and 28 samples by ammonia. In study 1, samples were non-inhibited as soon as initial inhibitor concentration remained lower than 0.1 g/L of phenol or 2.5 g/L of TAN. In digesters inhibited by ammonia and phenol a decrease by respectively 20 to 60% and 20 to 80% of methanogenic activity was observed. In study 2, regardless support addition, all digesters facing 19g/L of TAN were considered as inhibited (decrease of methanogenic activity by 60 to 90%). In presence of 1.5g/L of phenol, only digesters supplemented with activated carbons were considered as non-inhibited.

MINT modelling accounts for study effect

Considering, the inhibition status classification according to methane production performance, PCA was performed on the data (Fig. 2A), for a first exploration of the major sources of variation in the data. Sample distribution highlighted a strong study effect. Samples on the left part of the individual plot were related to study 1 conducted with the inoculum A while samples collected during study 2 conducted with inoculum B were on the right side of the individual plot.

However, a clear influence of the type of inhibition on microbial community could still be observed. For both studies, ecosystems facing ammonia inhibition were strongly discriminated from samples that were non-inhibited or inhibited by phenol. Similarly, within the study 1 conducted without support media, samples collected from batch digester inhibited by phenol were separated from non-inhibited samples.

A supervised PLS-DA model was then fitted on the data. Sparse version of the method was applied to select features and to identify discriminative OTUs that best described the difference between groups of samples. In order to conduct sPLS-DA, parameters such as the number of components, and the number of OTUs to select must be specified. We set these parameters based on the classification performance of sPLS-DA using cross-validation.

Thirty-nine OTUs were thus selected by sPLS-DA and achieved a balanced error rate to 7.0%.

Samples distribution based on the first two components is presented on Fig. 2B. As expected, sPLS-DA enabled to mitigate the study effect compared to the unsupervised PCA. However, within each condition, the study effect was still present: each sample collected in Study 1 was clearly separated from the ones collected in Study 2.

In order to counteract this bias, we applied MINT that combines independent studies measured on the same OTU predictors and identifies reproducible bioindicator signatures across heterogeneous studies. As described above for sPLS-DA, we chose the optimal number of components and number of OTUs to select based on cross-validation, resulting in 45 OTUs and achieved a balanced error rate to 9.2% (2 components) (supplementary material). Samples representation from MINT is presented in Fig. 2C. It evidenced that the study effect was accounted for, with the strongest separation observed according to inhibiting condition rather than studies. The classification error rate of the final MINT model was 9.2% confirming the good performance of MINT to classify our samples and identify a microbial signature.

Analysis of microbial community

Microbial signatures identified with MINT were output in a clustered image map (or heatmap, 81 samples and 45 OTUs) in Fig. 3. This representation confirmed that, based on their microbial community composition, samples could be grouped by inhibition type (noninhibited samples, samples inhibited by ammonia and samples inhibited by phenol).

Moreover, the 45 OTUs selected by MINT were clustered into five different groups with a hierarchical clustering algorithm. The first group (Group A) was composed of 9 OTUs which were specifically correlated to digesters inhibited by phenol. Similarly, a second group of 17 OTUs (Group E) was associated to samples inhibited by ammonia. In group D, 6 OTUs were characteristic of both inhibitory conditions (phenol and ammonia). Group C included of 6

OTUs characterizing non-inhibited ecosystems while Group B was composed of 7 OTUs not recovered under ammonia inhibition. Interestingly, 6 of the 7 OTUs recovered in Group B were found in samples where phenol degradation was advanced. Consequently, the presence of these OTUs in this group may be explained by the variability of the inhibitory pressure throughout the incubation because of phenol degradation, and thus to their resilience capacity after phenol inhibition. Our following results are reported at the genus level, which was the most precise taxonomic level we could obtain with 16S rRNA sequencing.

Genera correlated to non-inhibitory conditions

The only discriminative archaeal OTU evidenced by the model, belonging to Methanosarcina genus, was negatively correlated to ammonia inhibition. Its belonging to Group B indicated that this genus was also inhibited by phenol but could still grow once phenol was degraded, confirming that this genus is characteristic of non-inhibitory conditions. OTU_156 and OTU_6 assigned to Clostridiaceae 1 family and more precisely to Caloramator and Clostridium butyricum, strictly anaerobic acetogenic species described as butyrate producer [START_REF] Cassir | Clostridium butyricum: from beneficial to a new emerging pathogen[END_REF] were also correlated to non-inhibitory conditions. This result confirmed the observation that was made for studies 1 and 2 during which butyrate production was inhibited by phenol and ammonia (Poirier et al., 2016a;Poirier et al., 2016b).

While butyrate, acetate and propionate are regularly mentioned as indicators of process imbalance [START_REF] Ahring | Volatile fatty acids as indicators of process imbalance in anaerobic digestors[END_REF], our study tends to indicate that early variations in butyrate producers abundances could also be used as a bioindicator of inhibition. Interestingly, a single member of Chloroflexi phylum (OTU_26) kept for our model was also greatly associated to digesters for which phenol degradation had occurred. It was only assigned to the family Anaerolinaceae, which is widespread in full-scale digesters [START_REF] Kirkegaard | Identifying the abundant and active microorganisms common to full scale anaerobic digesters[END_REF]. Its filamentous form was suggested to favor synergistic relationship with archaeal populations such as Methanosaeta also known to be inhibited by phenol and ammonia [START_REF] Mcilroy | Culture-Independent Analyses Reveal Novel Anaerolineaceae as Abundant Primary Fermenters in Anaerobic Digesters Treating Waste Activated Sludge[END_REF]. Cloacimonetes phylum (formerly known as WWE1) was also specifically and strongly correlated to digesters where phenol degradation was advanced. It was represented by three distinct OTUs (OTU_11, OTU_35 and OTU_77). Only OTU_77 could be assigned at the genus level as Cloacomonas. As Anaerolinaceae, this genus was recovered in various studies analyzing methanogenic sludge which suggested it was a syntrophic bacterium capable of degrading propionate, amino acids and cellulose [START_REF] Regueiro | Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: Part 2--correlations between microbiomes and environment[END_REF]. Another study indicated that this genus was sensitive to different inhibitions and notably to the antibiotic monensin which is released in cow manure and recovered in anaerobic digester [START_REF] Spirito | Redundancy in Anaerobic Digestion Microbiomes during Disturbances by the Antibiotic Monensin[END_REF]. The last phylum that was specifically correlated to digesters where phenol was partly degraded was Thermotogaceae with a single OTU (OTU_58) assigned to Petrotogaceae, which is known to be involved in phenol degradation [START_REF] Na | Microbial community analysis of anaerobic granules in phenol-degrading UASB by next generation sequencing[END_REF].

Genera correlated to a single type of inhibition

The model permitted the identification of genera specifically related to each type of inhibition. Interestingly, among the 17 OTUs that were correlated with ammonia inhibition, 9 of them belonged to 8 genera exclusively recovered in digesters inhibited by ammonia. They were assigned Caldicoprobacter, Clostridium sensu stricto 15, Defluviitalea, Tepidimicrobium, Vagococcus, Tissierella, Lachnospiraceae NK4136 group and to an unknown genus of the Family XI. Among them, recent studies found that Caldicoprobacter populations were dominant in reactors exposed to high levels of ammonia (Poirier et al., 2016b). Similarly, Rui et al., evidenced that Tissierella genus was positively correlated to high concentration of TAN [START_REF] Rui | The core populations and cooccurrence patterns of prokaryotic communities in household biogas digesters[END_REF] while Defluviitalea were also dominant in digesters treating animal manure [START_REF] Ma | Defluviitalea raffinosedens sp. nov., a thermophilic, anaerobic, saccharolytic bacterium isolated from an anaerobic batch digester treating animal manure and rice straw[END_REF].

For the phenol, three OTUs belonging to Clostridiales order and assigned to genus Sporoanaerobacter (Family XI), to an unknown genus of the vadinBB60 family and to an unassigned genus of the Ruminococcaceae family were evidenced. However, these cosmopolitan families are widely represented in anaerobic digesters.

On the other hand, we observed that some genera were similarly associated to digesters inhibited by phenol and to non-inhibited digesters suggesting that they were specifically sensitive to ammonia inhibition but not to phenol inhibition. It was notably the case for OTUs belonging to Syntrophomonadaceae, one of the major families of AD ecosystems. It consisted of five OTUs all assigned to Syntrophomonas genus but to unknown species. According to the model, three of them were related to non-inhibited digesters while two others were linked to phenol inhibition. Syntrophomonas are obligate anaerobic and syntrophic bacteria, which have the ability to oxidize saturated fatty acids, which is expected to enhance VFAs consumption. These functions are crucial in AD process. Thus, this result tended to confirm that under inhibitory conditions, reorganizations within the Syntrophomonas populations which carry these functions occur, thus confirming that the plasticity of the ecosystem is directly responsible for its resistance and resilience capacities [START_REF] Shade | Fundamentals of microbial community resistance and resilience[END_REF]. Notably, the high functional redundancy among Syntrophomonas species seemed to allow the preservation of global metabolic chain and methane production.

Genera correlated to both inhibitions

A few bioindicators were also associated to both types of inhibition. It was notably the case for the four OTUs belonging to genus Bacteroidetes, as well as for both couples of OTUs belonging to family Porphyromonadaceae and assigned to Petrimonas and Proteiniphilum.

These three genera have been acknowledged to play an important role in degrading complex carbohydrates and proteins and catalyzing the production of VFAs and CO2. Furthermore, the maintenance of important percentages of Bacteroidetes within a digester has already been suggested to be responsible for the ability of the anaerobic microbiota to counteract disturbances such as shock loadings [START_REF] Regueiro | Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: Part 2--correlations between microbiomes and environment[END_REF]. Similarly, within Clostridiales order, genera Anaerosalibacter, Mobilitalea, Peptostreptococcus and two unknown genera of Lachnospiraceae family were correlated to both inhibitions. Lachnospiraceae and particularly to genus Mobilitalea as well as Peptostreptococcus and Anaerosalibacter were described as resistant to phenol and ammonia inhibition and have been suggested to play important roles in protein hydrolysis (Biddle et al.,2013). They were also reported to hydrolyze a variety of polysaccharides by different mechanisms.

Clostridiales are key bioindicators of inhibition

Interestingly, 25 out of the 45 discriminant OTUs selected in our model belonged to Clostridiales order. Among these 25 OTUs, 20 were related to inhibited ecosystems, which tended to indicate that inhibitory pressure by phenol or by ammonia would preferentially select more resistant bacteria affiliated to this order. A dominance of the Clostridiales order has been reported by many studies at suboptimal conditions for methanogenesis (increased ammonia or salt concentrations) [START_REF] De Vrieze | Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome[END_REF]. Moreover, the importance of this class is regularly mentioned as crucial in AD process [START_REF] Joyce | Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass[END_REF]. However, the majority of the OTUs belonging to this class could not be specifically correlated with only one type of inhibition. It could be hypothesized that it may be due to the high functional redundancy within these genera and diverse populations as mentioned previously. This limitation was also observed for other phyla and notably for Bacteroidetes and Spirochaetae.

Furthermore, the lack of sequencing precision associated to the short length of 16S regions amplified prevented the affiliation at taxonomic rank such as species or subspecies. Despite the fact that we could not conclude about the correlation between these OTUs and the type of inhibition, the model still highlighted that the emergence of these genera were associated to a selection pressure caused by phenol or ammonia. Notably, it confirmed the negative correlation observed by Heyer et al., between Methanosarcinales, which is a marker of steady state and bacterial orders such as Clostridiales and Spirochaetales [START_REF] Heyer | Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type[END_REF]. It also reinforced the link found by Lee et al. between Spirochaetales and inhibited ecosystems [START_REF] Lee | Distribution and abundance of Spirochaetes in full-scale anaerobic digesters[END_REF].

A predictive model for ammonia inhibition validated in two external studies

Samples from external studies 3 and 4 were analyzed with distinct sequencing techniques. Thus, different bioinformatic treatments were applied to raw sequences of each dataset due to differences in sequencing primers and targeted regions. OTUs were subsequently aggregated at the genus level (called 'clusters') in order to merge the three datasets. Since both external studied were focused on inhibition by ammonia only, we trained a new MINT model from our in-house samples where we removed the phenol condition. A total of 55 samples collected during studies 1 and 2 were retained, including 29 samples considered as non-inhibited and 26 as inhibited by ammonia.

Inhibition status prediction of external samples

In order to be consistent with the experimental strategy of the authors, samples from Lü et al., study were categorized into four groups depending on the sampling time and on the inhibitory pressure. Samples collected from digesters non-inhibited with ammonia were gathered in the "No inhibition" group. Samples inhibited with 3g/L of TAN were clustered in the "Ammonia moderate concentration" group. Samples inhibited with 7g/L of TAN were divided into two groups: "Ammonia inhibition, early days" for samples collected at the end of the lag phase and "Ammonia inhibition, final days" for samples collected near the end of the methane-production phase. Similarly, samples from Peng et al., study were categorized into four groups depending on the operational time when they were collected. Samples from day 0 to day 127, where methane yield remained stable circa 0.5 mL CH4/g VS, were clustered in the "No inhibition" group. Samples from day 139 to day 152 were clustered into the "Ammonia inhibition start" group. During this phase, methane yield began to strongly fluctuate and slightly decrease down to 0.4 mL CH4/g VS. Samples from day 172 to day 212 during which methane yield dropped down to 0.25 mL CH4/g VS, were clustered in the "Ammonia inhibition" group. Both samples from day 223 to day 232 were clustered in the "Ammonia inhibition decrease" group where biogas production restarted while methane yield remained below 0.25 mL CH4/g VS.

Ammonia inhibition model

As previously, PCA and sPLSDA were performed on the data (Fig. 4A and Fig. 4B). An optimal number of 17 clusters were selected by the model, leading to a balanced error rate of 1.7% for sPLD-DA Sample distribution before applying MINT confirmed the strong study effect. The efficiency of MINT to discriminate the in-house samples into inhibition / noinhibition conditions is depicted in Fig. 4C for the first two MINT components, with the first (horizontal) component highly discriminative of the inhibitory status of the digester. Yet, three of the inhibited samples were located on the left hand side of the plot. They corresponded to the most inhibited samples of study 1 with the highest concentration of TAN (25 g/L).

The OTUs selected in this second MINT model (supplementary material) were consistent with the observation made with the first model in our previous section (Figure 5). Among them, 10 clusters were positively correlated to non-inhibited digesters. Notably, it confirmed that Clostridium butyricum (Cluster_6) could be considered as a robust bioindicator of non-inhibitory conditions. Furthermore, clusters assigned to Cloacimonetes phylum (Cluster_11, Cluster_43 and Cluster_49) and particularly to genus Cloacomonas clearly related to non-inhibited digesters were re-evidenced. Nevertheless, due to the novelty of this phylum, missing reference genomes most probably hampered a deeper taxonomic classification of Cloacimonetes species. The ecological function of Cloacimonetes is thus not established, but this group is suggested to be only present in mesophilic conditions, involved in amino acid fermentation, syntrophic propionate oxidation and extracellular hydrolysis [START_REF] Muller | Bacterial community composition and fhs profiles of low-and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising bacteria[END_REF]. It was also evidenced that its abundance decreased with increasing ammonia levels [START_REF] Westerholm | Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production[END_REF]. We also confirmed that Syntrophomonas (Cluster_17) was more represented in absence of ammonia. Moreover, the second model also revealed three new genera considered as discriminant of non-inhibited digesters conditions. These genera were assigned to two families belonging to Clostridiales order: Ruminococcaceae (Cluster_34 and Cluster_69), and Christensenellaceae (Cluster_42).

Nevertheless, genera belonging to Clostridiales order are known to be involved in various metabolic activities which prevent us from elucidating their specific role under non-inhibiting conditions.

On the other hand, seven clusters were strongly linked to ammonia inhibition. Six of them belonged to Clostridiales order and notably to genera that were previously identified in the first model as specific markers of this type of inhibition (Caldicoprobacter, Defluviitalea, Anaerosalibacter, Tepidimicrobium and Tissierella). Another unknown genus belonging to Family XI was also discriminant confirming the great resistance of this family to ammonia inhibitory pressure. The last OTU was assigned to Sphaerochaeta, which belongs to Spirochaetales order. This order was associated to both types of inhibitions in the previous model. Interestingly, the heatmap presented in Fig. 5 emphasized that six of these seven clusters were significantly more abundant in samples collected in digesters inhibited with the highest ammonia concentration, thus reinforcing the robustness of these bioindicators.

The bioindicators highlighted by the second model were consistent with those evidenced by the model integrating phenol inhibition, thus confirming the robustness of this statistical analysis.

Prediction of the inhibitory status of samples analyzed by external studies

This second model was built to predict the inhibitory status of samples collected in two external studies 3 and 4. The prediction results are indicated in supplementary material . In order to visualize external samples distribution in the model, Fig. 6 presents the test samples from studies 3 and 4 projected on the two first components of the trained model, as well as prediction areas (Rohart et al., 2017b).

As expected, inhibited samples were separated against the non-inhibited samples on the first component. Two samples (11 and 39) were wrongly predicted as 'inhibited'. Samples of reactors that just started inhibition ("early days" in Lü et al. and 'start of the inhibition' in Peng et al.) were mostly predicted at an intermediary position and predicted as either inhibited or non-inhibited. We hypothesized that microbial community had started to change but was not yet totally characteristic of inhibited reactors. Interestingly, sample 45 (Peng et al., day 223, just after inhibitory pressure was lowered) was predicted as inhibited while sample 46 (Peng et al. day 232, several days after inhibitory pressure was lowered) was predicted as noninhibited. This result may illustrate the progressive resilience of the microbial community after the inhibition. Sample 14 (moderate ammonia, final days, no addition of activated charcoal) was predicted as inhibited while samples 13, 15, 16 (moderate ammonia, but early days or addition of activated charcoal) were predicted as non-inhibited, in agreement with the conclusions of the authors. Finally, taking into account all the samples from digesters clearly non-inhibited [START_REF] Heyer | Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type[END_REF] or clearly inhibited by ammonia [START_REF] Gonzalez-Gil | Role of methanogenesis on the biotransformation of organic micropollutants during anaerobic digestion[END_REF] we estimated that the model predicted the inhibitory status of external samples with an accuracy of 93% as only two samples were incorrectly predicted.

Further perspectives for anaerobic digesters management

16S rRNA gene sequencing have revolutionized environmental biotechnology research and helped to progressively unravel the complexity of AD inhibition, but we still need to improve the resilience of AD systems and promote its implementation at a larger scale to avoid system failure. Our study focused on identifying robust microbial indicators from 16S sequencing data by integrating two in-house studies. We built a multivariate model that was highly predictive of inhibition status, as demonstrated in two external studies.

Despite the complexity and the functional redundancy of the microbial community within digesters, our model revealed the feasibility of detecting key indicators evidencing the state of the AD process whilst addressing the challenge of study-specific effects. The microbial indicators we identified were separate from cosmopolitan OTUs that tended to cooccur in all conditions. Thus, they can be considered as bioindicators to announce early signs of process dysfunction in anaerobic digesters, or, on the contrary, indicate steady functioning.

Additionally these bioindicators are specific of one type of inhibitor, phenol or ammonia. Our study also emphasized on the benefit of using multivariate methods to identify a microbial signature from a training dataset (here our two in-house studies) then predict the inhibitory status of external studies despite differences in sequencing primers and targeted regions. Future investigation will include a finer definition of the role of the identified microorganisms in AD process. As 16S reference databases are currently still incomplete, taxonomic assignment at the genus level results in a substantial lack of data interpretation.

Consequently, the use of multiple marker genes DNA gyrase subunit B (gyrB) (Poirier et al., 2018), RNA polymerase subunit B (rpoB) [START_REF] Case | Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies[END_REF], DNA recombinase protein (recA), protein synthesis elongation factor-G (fusA), and dinitrogenase protein subunit D (nifD) [START_REF] Holmes | Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam[END_REF]) could improve the assignation and abundance estimation for crucial taxonomic groups. Moreover, the use of shotgun metagenomic and metatranscriptomic tools will also be useful to obtain different type of information such as functional bioindicators.

When successful, integrative multi-studies analysis not only enables to increase sample size and statistical power, but also to share and re-use data deposited in public databases. Our proposed approach will benefit the research community interested in identifying reproducible microbial signatures. Given the uncertainty related to inhibition thresholds in individual reactors, identifying robust microbial biomarkers can improve digester management. An increasing number of 16S sequences databases is becoming available to build predictive models of different types of inhibition, irrespective of the digesters operating conditions.

Leveraging on these data will allow to optimize the prediction quality by recursively updating monitoring model. We anticipate that a single metagenetic sequencing will reduce the number and the complexity of analyses targeting different inhibitors, as bioindicators identified could be correlated to different types of inhibitions. Moreover, miniaturization and portability of sequencers will soon allow high frequency on-line measurements of microbial dynamics, involving low workload, and limited sampling issues [START_REF] Shaffer | Inner Workings: Portable DNA sequencer helps farmers stymie devastating viruses[END_REF]. Such tools could be very useful in the daily management of AD systems and complement the existing physicochemical-based management. They can provide support to detect early warning indicators of process failure but also enhance the process performance by implementing the most suitable operating conditions for microbial communities.

Conclusion

A robust microbial signature of AD inhibition by ammonia and phenol was identified by integrating two independent16S metabarcoding studies with the multivariate approach MINT.

The model based on the identified biomarkers was successful in predicting ammonia inhibition in independent digesters. This outcome highlights the potential of our approach to for other inhibitors and studies to discover new warning bioindicators. These data could thereafter be aggregated and used to build robust statistical models of AD inhibition to detect instabilities from various sources at early stages in industrial plants, and ultimately improve management of AD.

Figures legends:

Figure 1: Relative maximal specific methanogenic activity in the digesters of studies 1 and 2. The different boxplots correspond to the different groups of digesters in each study. Relative maximal specific methanogenic activity was calculated as the ratio of maximal specific methanogenic activity in a digester divided by the maximal specific methanogenic activity in controls without inhibitor. 

  . De Vrieze et al. evaluated the microbial community in full-scale AD plants through amplicon sequencing of both the 16S rRNA gene and the 16S rRNA transcripts to compare the total and active microbial community directly (De Vrieze et al., 2018).

Methanosarcina

  genus is known to play a key role in AD of many feedstocks (FitzGerald et al., 2015). However, although its robustness has been evidenced during different disruption situations (De Vrieze et al., 2012; Lins et al., 2014), it appeared that a drop of its relative abundance can reveal the presence of inhibitors such as ammonia or phenol in digesters.

Figure 2 :

 2 Figure 2: (A) Principal Component Analyses (PCA), (B) Sparse Partial Least Squares Discriminant Analysis, (C) Multivariate Integrative Sparse Partial Least Squares Discriminant Analysis of OTUs distribution in samples from studies 1 and 2, inhibited by phenol, ammonia or not inhibited. On the factorial maps each sample is represented with a coloured marker. The colour scale represents the type of inhibitor. The type of marker represents the study. OTU data was generated by 16S rRNA gene sequencing.

Figure 3 :

 3 Figure 3: Heatmap of the most discriminant OTUs. Heatmap was built after selection of the most discriminant OTUs with Multivariate Integrative Sparse Partial Least Squares Discriminant Analysis of all OTUs generated by 16S rRNA gene sequencing for the different samples of studies 1 and 2, inhibited by phenol, ammonia or not inhibited. Name of the OTUs is indicated at the bottom. The color scale on the left represents the type of inhibitor. The color key of the heatmap shows the abundance of the OTUs after CLR transformation (from blue = low abundance to brown red = high abundance).

Figure 4 :

 4 Figure 4: (A) Principal Component Analyses (PCA), (B) Sparse Partial Least Squares Discriminant Analysis, (C) Multivariate Integrative Sparse Partial Least Squares Discriminant Analysis of taxonomic distribution (genus level) in samples from studies 1 and 2, inhibited by ammonia or not inhibited. On the factorial maps each sample is represented with a coloured marker. The colour scale represents the type of inhibitors. The type of marker represents the study. Taxonomic data was generated by 16S rRNA gene sequencing and aggregation of the data at the genus level.

Figure 5 :

 5 Figure 5: Heatmap of the most discriminant clusters of OTUs. Heatmap was built after selection of the most discriminant clusters with Multivariate Integrative Sparse Partial Least Squares Discriminant Analysis of all clusters generated after OTUs aggregation at the genus level for the different samples of studies 1 and 2, inhibited ammonia or not inhibited. Name of the clusters is indicated at the bottom. The color scale on the left represents the type of inhibitor. The color key of the heatmap shows the abundance of the clusters after CLR transformation (from blue = low abundance to orange = high abundance).

Figure 6 :

 6 Figure 6: Projection of samples from studies 3 and 4 in the individual plot determined after Multivariate Integrative Sparse Partial Least Squares Discriminant Analysis of samples from studies 1 and 2. Each sample from studies 3 and 4 is represented by a marker. Type of marker indicates the study. Color of the marker indicates the inhibition status in the reactor where the sample was taken. A prediction area, based on studies 1 and 2 was calculated and is plotted on the graph. The different figures indicate remarkable samples.

  

  

  

  

  1. Paired-end reads from Lü et al., and Peng et al., studies were merged with pear v0.9.11 (Zhang et al., 2014).
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