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How being synanthropic affects the gut
bacteriome and mycobiome: comparison of
two mouse species with contrasting
ecologies
Barbora Bendová1,2, Jaroslav Piálek2, Ľudovít Ďureje2, Lucie Schmiedová1,2, Dagmar Čížková2,
Jean-Francois Martin3 and Jakub Kreisinger1*

Abstract

Background: The vertebrate gastrointestinal tract is colonised by microbiota that have a major effect on the host’s
health, physiology and phenotype. Once introduced into captivity, however, the gut microbial composition of free-
living individuals can change dramatically. At present, little is known about gut microbial changes associated with
adaptation to a synanthropic lifestyle in commensal species, compared with their non-commensal counterparts.
Here, we compare the taxonomic composition and diversity of bacterial and fungal communities across three gut
sections in synanthropic house mouse (Mus musculus) and a closely related non-synanthropic mound-building
mouse (Mus spicilegus).

Results: Using Illumina sequencing of bacterial 16S rRNA amplicons, we found higher bacterial diversity in M.
spicilegus and detected 11 bacterial operational taxonomic units with significantly different proportions. Notably,
abundance of Oscillospira, which is typically higher in lean or outdoor pasturing animals, was more abundant in
non-commensal M. spicilegus. ITS2-based barcoding revealed low diversity and high uniformity of gut fungi in both
species, with the genus Kazachstania clearly dominant.

Conclusions: Though differences in gut bacteria observed in the two species can be associated with their close
association with humans, changes due to a move from commensalism to captivity would appear to have caused
larger shifts in microbiota.

Keywords: Microbiome, Metabarcoding, Steppe mouse, Muridae, Symbiosis, Evolution

Background
Various animal species benefit from a commensal associ-
ation with humans, which offers advantages in terms of
extended and more predictable food supplies, lower pre-
dation pressure and an ability to spread outside of their
original distribution range [1–3]. At the same time,

however, commensals may suffer from higher human-
induced mortality [4] and a higher infection risk from
pathogens specific to humans or other human-
associated animals [5]. Moreover, abiotic and biotic
factors associated with human-altered and ancestral-
habitat environments of human-associated symbionts
differ, inducing corresponding changes in selective pres-
sures acting on commensal phenotypes [6]. Conse-
quently, individuals from symbiotic populations may
differ morphologically, physiologically and behaviourally
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from their wild ancestors (e.g. see [7–10]). Despite inten-
sive research in this field, several aspects of phenotypic
change due to a commensal lifestyle remain unexplored.
In particular, little is known about the effect of a com-
mensal lifestyle on the composition and function of mi-
crobial communities harboured within commensal
bodies [11] and putative phenotype changes that may be
induced by variation in microbial populations.
Animal-associated microbial composition has an im-

portant influence on both host health and physiology
[12–14], including digestive capacity [15] and interac-
tions with the host’s central nervous [16] and immune
systems [17–20] and, as such, can be considered a com-
ponent of the animal’s phenotype. At the same time,
animal-associated microbiota exhibit considerable plasti-
city due to changing physiological states and environ-
mental conditions, including diet variation, stress or
parasite infection [16, 21–23]. Consequently, there is a
high expectation that remodulation of a host’s micro-
biota due to a commensal lifestyle may parallel widely
observed changes in microbial populations after trans-
location of free-living individuals into captivity [24–27].
Murine rodents represent a suitable model group for

exploring the effect of commensalism on associated
microbiota as the switch between a commensal vs. non-
commensal lifestyle has taken place repeatedly during
the course of their evolution [1, 28]. To date, however,
most research on murine gut microbiota has focused on
captive murine species [12, 15, 21, 29–32], commensal
populations of murine rodents [33–35] or non-
commensal murine species that are phylogenetically dis-
tant to commensal taxa [11, 36]. Consequently, there is
little comparative data available aimed directly at the as-
sessment of commensalism on microbial structure. This
lack of knowledge is even greater as regards eukaryotic
microbiota, with the major component in non-
commensal animals, the fungal mycobiome, having only
been studied exceptionally [37], and never characterised
in wild rodents.
To gain an insight into microbial changes due to

commensalism in murine rodents, we studied the gut
microbiota of two closely related mouse species, the
mound-building mouse (Mus spicilegus; hereafter MS)
and the house mouse (Mus musculus; hereafter MM).
Together with two other mouse species, MM and MS
form a monophyletic group with a genetic distance be-
tween them of less than 1% [38]. MS are found in the
steppes or in agricultural landscapes and use large
mounds built from harvested plants as communal shel-
ters and reproduction sites; importantly, the MS lifecycle
is independent of human buildings [39]. Unlike the non-
commensal MS, MM benefit from a tight commensal
association with humans established ca. 8000 years ago
that has enabled its cosmopolitan spread [1].

Consequently, the MM lifecycle is dependent on human
infrastructure over most of its current distributional
range, including our sample sites.
In our study, we use culture-independent gut micro-

biota profiling based on high-throughput amplicone se-
quencing, focusing specifically on the gut bacteriome
(hereafter GB), which was characterised using 16S rRNA
profiling. Moreover, for the first time, our research de-
scribes the gut mycobiome (hereafter GM) structure of a
free-living mouse population using ITS2 sequencing. As
gut microbial variation in different gut sections from the
same individual may exceed interindividual variation of
microbial communities sampled within single gut com-
partments [35], we assessed whether there are any
species-specific patterns in gut microbial variation across
three gut sections (colon, caecum and ileum).

Results
Gut bacteriome
GB profiles of the two mouse species were dominated by
bacteria of the phyla Firmicutes (40% of all reads), Pro-
teobacteria (25.3%), Bacteroidetes (20%), Tenericutes
(7.4%) and Deferribacteres (6.1%, Fig. 1). Another six
phyla were detected in our dataset (Spirochaetes, TM7,
Actinobacteria, Cyanobacteria, Fusobacteria and Acido-
bacteria) at low abundances (< 1% reads). At both the
phylum and class level, GB content was comparable be-
tween MM and MS; however, the dominant bacterial
phyla and classes tended to vary between gut sections
(Fig. 1, Table S1). In particular, Bacilli (phylum Firmi-
cutes, represented by the genus Lactobacillus), Molli-
cutes (phylum Tenericures, represented by the genus
Mycoplasma) and Gammaproteobacteria (Proteobac-
teria, represented by the genus Aggregatibacter) were
more common in the ileum than the colon or caecum
(Fig. 1, Table S1). On the other hand, Bacteroidia
(phylum Bacteroidetes, represented by the genera Bac-
teroides and Odoribacter, unassigned S24–7 and Rikenel-
laceae), Clostridia (phylum Firmicutes, represented by
unspecified Lachnospiraceae and the genera Oscillospira
and Ruminococcus) and Epsilonproteobacteria (phylum
Proteobacteria, represented mainly by the genus Helico-
bacter) were consistently dominant in the colon and
caecum.
GB alpha diversity varied between gut sections (LME:

ΔDF = 2, χ2 = 10.62, p = 0.005, Table 1, Fig. 2). Specific-
ally, GB was less diverse in the ileum compared to the
colon or caecum (Tukey post-hoc comparison: p < 0.05
in both cases), whereas the diversity of colon and caecal
GB was comparable (Tukey post-hoc comparison: p =
0.8395). After the statistical control for this source of
variation, GB was more diverse in non-commensal MS
compared to commensal MM (LME: ΔDF = 1, χ2 = 6.17,
p = 0.013). At the same time, however, variation in
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microbial diversity between gut sections showed com-
parable pattern in the two species, as indicated by non-
significant species identity vs. gut section interaction
(LME: ΔDF = 2, χ2 = 3.64, p = 0.162). After statistical
control for variation between species and gut sections,

neither sex (LME: ΔDF = 1, χ2 = 0.06, p = 0.811) nor
sample location (LME: ΔDF = 1, χ2 = 0.73, p = 0.393) had
any effect on GB diversity.
According to both OTU prevalence-based (i.e. Jaccard)

and relative abundance-based (i.e. Bray-Curtis)

Fig. 1 Bar-plot showing the relative abundance of dominant bacterial phyla (a) and classes (b) in different gut sections (ileum, caecum and
colon) and host species (Mus musculus – MM; Mus spicilegus – MS). Individual bars represent individual samples

Table 1 Minimum adequate model describing the effect of predictors (gut section and species identity) on gut bacteriome alpha
diversity variation (Shannon index) in Mus spicilegus (MS) and Mus musculus (MM). The MS ileal gut bacteriome was used as the
reference level (i.e. Intercept) in minimum adequate model parametrization

Estimate Std. Error Df t value P value

(Intercept) 2.389 0.260 31 9.187 < 0.001

Gut section (ileum vs. caecum) 0.728 0.290 31 2.508 0.018

Gut section (ileum vs. colon) 0.857 0.284 31 3.017 0.005

Species (MM vs. MS) 0.638 0.248 31 2.575 0.015
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dissimilarities, MM vs. MS exhibited divergent GB con-
tent associated with the first PCoA axis. In addition, the
second PCoA axis tended to separate individuals from
different locations. Surprisingly, however, PCoA sug-
gested only slight GB divergence between gut sections
(Fig. 3). PERMANOVA analysis indicated that the effect
of species and sample location was highly significant for
both dissimilarity types, whereas differences between gut
sections were only supported by PERMANOVA for rela-
tive abundance-based dissimilarity. The effect of sex,
despite being marginally significant, explained only < 5%
of GB variation (Table 2).
Using negative binomial GLMMs, we detected 11

OTUs (represented by 11% of all reads in our dataset)
whose abundances varied between MM and MS. Re-
markably, four Oscillospira, two OTUs from the family
Clostidiaceae and one Odoribacter OTU were more
abundant in non-commensal MS than commensal MM.
The two species also differed in relative abundance of
two Helicobacter OTUs, one being more abundant in
MM and the other in MS (Fig. 4). According to
phylogenetic placement analysis, these OTUs represent
phylogenetically distant Helicobacter species, where
Campylobacter jejuni (GenBank accession: EU127548.1)
is considered as a root (Fig. S1). Furthermore, OTU-
level analysis identified 55 OTUs (representing 71% of
all reads) whose abundances varied between gut sections
(Fig. 5).

Gut mycobiome
Unlike the GB, GM profiles were highly homogenous
across all murine samples, with fungi of the genus
Kazachstania consistently dominant (representing 97%
of all reads and 28 OTUs). According to species-level as-
signment, most samples comprised K. pintolopesii, with
the GM of a single MM individual being dominated by
K. heterogenica. Other fungal taxa were represented by a
low proportion of reads (Fig. 6). Alongside the murine
samples, we also undertook GM profiling (using the
same methodology) of ten faecal microbiota samples
from a passerine bird (barn swallow [Hirundo rustica],
see [40] for details). The GM composition of these sam-
ples was much more diverse than the murine GM and
covered a broader range of phylogenetically distant fun-
gal taxa. Moreover, Kazachstania was almost absent in
these non-murine samples (Fig. S2). As such, we con-
clude that the high homogeneity and low diversity of the
murine GM profiles did not arise as an artefact of wet
laboratory procedures.

Discussion
Changes in gut microbiota due to association with
humans have been described for a range of vertebrate
species [11, 24–27, 34, 41, 42] living in wild vs. in captiv-
ity, i.e. zoological gardens [27, 42], domesticated animals
[26, 41] and laboratory animals [34, 43]. Overlaying wild
vs. captivity microbiome changes for different species

Fig. 2 Box-plot showing variation in gut bacteriome Shannon diversity between gut sections (ileum, caecum and colon) and host species (Mus
musculus – MM; Mus spicilegus – MS)
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potentially allows for the identification of general pat-
terns of microbiome change due to association with
humans. On the other hand, the opportunity to establish
altered (co)adaptations between microbiota and their
hosts in the context of human-altered living environ-
ments and lifestyle of the host is limited in captivity. A
change in the microbiota of the first generation of ani-
mals bred in captivity, for example, may simply repre-
sent an unstable, transient state that does not yet show
shifts typical for human associated lifestyles. Here, we
contrast the gut microbiome of two closely-related
mouse species adapted to ecological niches differing
greatly in tightness of association with humans (the
commensal house mouse [MM] and the non-commensal
mound-building mouse [MS]), to get insight on how can
commensal association with humans affect bacterial and
fungal communities residing in the gut.
In our study, MS displayed a higher gut bacteriome di-

versity than MM. This may parallel the commonly ob-
served decrease in microbial diversity after introduction
of wild animals to captivity [24, 25, 42, 44], ascribed to

Fig. 3 Principal Coordinate Analysis (PCoA) ordination of among-sample divergence for the gut bacteriome of three gut sections (ileum, caecum
and colon) from two mouse species (Mus musculus – MM; Mus spicilegus – MS) and two localities (Čečejovce; Drienovec). Results show the first
two PCoA axes running on the Jaccard and Bray-Curtis dissimilarities

Table 2 Results of PERMANOVA analysis testing for the effect of
sex, sample location, gut section and species identity on
variation in gut bacteriome composition. The Table presents
results for absence vs. presence (Jaccard) and relative
abundance (Bray-Curtis) dissimilarities not accounting for
operational taxonomic unit phylogeny

Dissimilarity Variable Df Sum Of Sqs. F value P value R2

Jaccard sex 1 0.621 1.891 0.004 0.047

locality 1 1.090 3.320 < 0.001 0.083

mouse species 1 1.306 3.979 < 0.001 0.099

gut section 2 0.664 1.012 0.436 0.050

residual 29 9.520 0.721

Bray-Curtis sex 1 0.603 2.077 0.007 0.049

locality 1 1.117 3.851 < 0.001 0.092

mouse species 1 1.052 3.626 < 0.001 0.086

gut section 2 0.993 1.711 0.008 0.082

residual 29 8.414 0.691
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reduced variation either in environmental factors affect-
ing GB richness (such as diet composition) or in envir-
onmental bacteria colonising gut. While GB diversity
between the two mouse species showed significant dif-
ferences, GB diversity variation between different gut
sections was even more dramatic, with ileal GB being
less diverse than that from the colon and caecum. These
within-gut diversity changes are consistent with most
previous studies on different mammalian taxa, including
rodents [32, 35, 36], and can be explained by spatial gra-
dients in immune function, acidity level, nutrient con-
centrations and various host-derived secretions within
the gut [30, 45, 46].
In addition to changes in GB diversity, we also ob-

served differences in GB composition between the two
species. Subsequent differential-abundance analysis iden-
tified 11 OTUs (represented by 11% of high-quality

reads) whose proportions varied between the two spe-
cies, with the greatest difference being the increase in
abundance of four Oscillospira OTUs in MS. Interest-
ingly, in parallel to our findings, a previous study on
cattle showed that individuals relying on outdoor pasture
hosted more abundant Oscillospira populations than
indoor-bred individuals [47]. According to a few inde-
pendent studies on human subjects, an increase in Oscil-
lospira abundance was associated with reduced body
weight [48]. Moreover, a comparative study on several
vertebrate species exposed to a fasting regime revealed
consistent enrichment of their GB by Oscillospira [44].
Together, these observations suggest that variation in
the abundance of Oscillospira OTUs between MS and
MM may reflect differences in nutritional conditions be-
tween the commensal and non-commensal niches.
Along with Oscillospira, two OTUs from the family

Fig. 4 Box-plots for operational taxonomic units (OTU) varying in relative abundance (log10 scaled) between Mus musculus (MM) and Mus
spicilegus (MS). Dots = individual observations; gut section indicated by different colours. Genus level assignation for each OTU is provided in each
box-plot title
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Clostridiaceae and one Odoribacter OTU were more
abundant in non-commensal MS than commensal MM.
All these taxa (including Oscillospira) are anaerobes,
capable of fermenting complex plant polysaccharides
and producing bioactive short-chained fatty acids

(SCFA) with anti-inflammatory capacity [49, 50]. As def-
icit of SCFA is associated with increased emergence of
metabolic disorders and impaired cognitive and immune
functions [51], an experimental study linking differences
in the abundance of specific SCFA-producing bacteria to

Fig. 5 Variation in the abundance of dominant operational taxonomic units between gut sections, with GLMM estimates and 95% confidence
intervals for all pair-wise gut section comparisons. Positive values indicate higher abundance in the second named gut section than the first.
Non-significant differences based on Tukey comparisons (p > 0.05) are indicated by semi-transparent colours. Different colours indicate Phylum
level identity
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potential differences in immune and physiological func-
tion between MM and MS would be of great interest.,
MM and MS gut bacteriome also differed in abundance
of two Helicobacter and two Lachnospiraceae OTUs.
Helicobacter, a common inhabitant of murine GB [36,
52], can induce pathological states under certain circum-
stances [29, 53]. Some Helicobacter species are trans-
ferred across generations by social contact between
community members and, consequently, exhibit phylo-
geographic codivergence with their hosts [54, 55]. This
does not appear to be the case regarding the differences
in abundance of Helicobacter OTUs in MM and MS,
however, as they represent phylogenetically distant line-
ages and group with Helicobacter clades of low host spe-
cificity. Particularly, Helicobacter OTUs abundant in MS
exhibited relatedness to H. canicola and H. bilis, whereas
those abundant in MM clustered with H. apodemus.
In this study, considerable differences in GB compos-

ition were observed between gut sections, irrespective of
host species identity, with the abundance of 55 OTUs
(representing 71% of all reads) varying between gut sec-
tions. Variation in GB taxonomic content between gut
sections was generally congruent with most previously
published data on mammalian species [35, 36]. In
particular, the distal parts of the gut (i.e. the colon and
caecum) were enriched with OTUs of the phylum Bac-
teroidetes (taxa Bacteroides, Prevotella, S24–7, Rikenella-
ceae), class Clostridia (genera Ruminococcus, Oscillospira

and unassigned Lachnospiraceae) and the genus Helico-
bacter (from phylum Proteobacteria). On the other hand,
the ileal GB was characterised by an increased abun-
dance of Candidatus Arthromitus, Lactobacillus (both of
the phylum Firmicutes), Mycoplasma (phylum Teneri-
cutes), Aggregatibacter (phylum Proteobacteria) and
Mucispirillum (phylum Defferibacteres). GB composition
also varied between sample locations, implying that the
individuals sampled were exposed to different environ-
mental bacterial pools, despite being only 10 km apart,
which is consistent with previous studies on wild MM
microbiota [33, 43]. Finally, males and females exhibited
only slight variation in GB, accounting for ~ 4% of total
variation in GB composition.
Surprisingly, both MM and MS exhibited highly uni-

form gut mycobiome structure, with the genus Kazach-
stania (including two species, K. pintolopesii and K.
heterogenica) as the dominant component, representing
ca. 75–100% of high-quality reads. Kazachstania, a spe-
cies complex of Ascomycetous yeasts, has been isolated
from a number of captive species, including K. heteroge-
nica and K. pintolopesii from rodents, K. slooffiae from
pigs and horses and K. bovina from cows and birds [56].
Although little is known about its functions, recent ex-
perimental studies have shown the importance of
Kazachstania for the development of a healthy porcine
microbiome, where Kazachstania populations support
growth of SCFA-producing bacteria [57, 58]. On the

Fig. 6 Composition of the murine gut mycobiome. Variation in the dominant fungal taxa of two mouse species (Mus musculus and Mus
spicilegus) and across gut sections. Individual bars represent individual samples
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other hand, presence of Kazachstania in Mongolian ger-
bils (Meriones unguiculatus) exacerbated pathologic ef-
fects after experimental infection with Helicobacter suis
[59]. Similarly, mixed infection of Kazachstania and
Escherichia coli was reported as a causal agent of a fatal
disease in captive bred primates [60]. Interestingly, the
GM of free-living mice from our populations differed
from GM profiles previously reported for captive MM,
with captive individuals exhibiting much higher diversity
and presence of other prevailing yeast genera, such as
Candida or Saccharomyces [23, 31].

Conclusions
Massive changes in gut bacteriome composition,
explaining ~ 20% of total GB variation, have been docu-
mented in several previous studies following introduc-
tion of MM from commensal populations to breeding
facilities [34]. These changes had a dramatic effect on
host physiology, immune function and fitness [43, 61],
with important implications on the usage of captive MM
colonised by breeding facility-specific gastrointestinal
microbiota as models for biomedical research. Similarly,
the gut mycobiome profiles reported from captive MM
appear to show pronounced differences to the com-
mensal population GM described in this study [23, 31].
The fact that such massive changes in GB and associated
host phenotype occurred between two human-associated
lifestyles (commensal and captive) leads to the obvious
assumption that transition from a wild-living to a com-
mensal niche will have an even more dramatic effect.
Nevertheless, our study comparing gut microbiota differ-
ences between commensal MM and non-commensal MS
suggests relatively low differences in GB content and di-
versity between the two species, accounting for < 10% of
total GB variation. Moreover, mouse GM was surpris-
ingly uniform and consistently dominated by Kazachsta-
nia, both in commensal MM and non-commensal MS.
Consequently, we suggest that translocation from a com-
mensal population to captivity has a comparatively
higher effect on mouse gut microbiota than gut micro-
biota changes associated with adaptation to a com-
mensal niche. Further observation research (1) covering
more commensal vs. non-commensal species pairs or (2)
focusing on temporal dynamics of gut microbiota
changes as well as (3) experimental studies aimed at dir-
ect microbiota manipulations would help to uncover de-
tails behind variation in gut microbiota vs. host
physiology associated with commensal life style.

Methods
Sample collection
The mice used in this study were live-trapped in east
Slovakia between the 7th and 9th of December 2015,
with 4 individuals of MM trapped in a farm granary at

Drienovec (N 48° 36.683′, E 20° 56.333′) and 8 individ-
uals of MS obtained from field habitat near Drienovec
and Čečejovce (N 48° 33.881′, E 21° 4.137′). In each
case, the traps were controlled twice per day, with
trapped individuals taken back to the laboratory and
caged separately in clean cages with sterile bedding to
avoid microbial cross-infection. All mice were sacrificed
by cervical dislocation and dissected within 12-h of trap-
ping. Each of the three gut sections (ileum, caecum and
colon) was placed on a sterile Petri dish. They were cut
longitudinally. The content was gently washed out with
sterile physiological saline solution and the tissue sam-
ples were placed separately into sterile cryotubes, rapidly
frozen in liquid nitrogen and stored at − 80 °C. Whole
compartments were taken from the caecum and colon,
and the distal part only from the ileum (1 cm). Sampled
species are not under legislative protection. Ethical state-
ment regarding sample collection and experimental pro-
cedures is provided in “Declarations” section.

Gut bacteriome genotyping
Metagenomic DNA from gut tissue samples was ex-
tracted in April 2016 in a laminar flow cabinet using the
PowerSoil DNA isolation kit (MO BIO Laboratories Inc.,
USA). We failed to collect a caecum sample from one
MS individual; consequently, the final dataset included
35 samples of metagenomic DNA (Table S2).
Primers flanking the V3–V4 variable region on bacter-

ial 16S rRNA gene (i.e., S-D-Bact-0341-b-S-17
[CCTACGGGNGGCWGCAG] and S-D-Bact-0785-a-A-
21 [GACTACHVGGGTATCTAATCC]) were used
during the polymerase chain reaction (PCR) step [62],
both forward and reverse primers being tagged with 10-
bp barcodes for sample demultiplexing. For the PCR, we
used 8.2 μl of KAPA HIFI Hot Start Ready Mix (Kapa
Biosystems, USA), 0.56 μM of each primer and 6.2 μl of
DNA template. PCR conditions were as follows: initial
denaturation at 98 °C for 5 min, followed by 30 cycles
each of 98 °C (15 s), 55 °C (20 s) and 72 °C (40 s) and a
final extension at 72 °C (5 min). The PCR products, to-
gether with negative controls (PCR products for blank
DNA isolates), were run on 1.5% agarose gel, the con-
centration of the PCR product being assessed based on
gel band intensity using GenoSoft software (VWR Inter-
national, Belgium). The samples were subsequently
pooled at equimolar concentration and run on 1.5%
agarose gel, with bands of appropriate size excised from
the gel and purified using the High Pure PCR product
Purification Kit (Roche, Switzerland), according to the
manufacturer’s instructions. Sequencing adaptors were
ligated using TruSeq nano DNA library preparation kits
(Illumina, USA) and the resulting amplicon libraries se-
quenced on a single MiSeq run (Illumina, USA) using v3
chemistry and 2 × 300 bp paired-end reads at Centre de
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Biologie pour la Gestion des Populations (CBGP, Mon-
tferrier sur Lez Cedex, France). Technical PCR dupli-
cates were sequenced for individual samples.

Gut mycobiome genotyping
The ITS2 region was amplified using universal ITS3
(GCATCGATGAAGAACGCAGC) and ITS4 (TCCTCC
GCTTATTGATATGC) primers [63] flanked by oligo-
nucleotides compatible with Nextera adaptors (Illumina,
USA). For the PCR reaction, we used 5 μl KAPA HIFI
Hot Start Ready Mix (Kapa Biosystems, USA), 0.2 μM of
each primer and 4.6 μl of DNA template. PCR condi-
tions were as follows: initial denaturation at 95 °C for 3
min, followed by 30 cycles each of 95 °C (30 s), 53 °C (30
s) and 72 °C (30 s) and a final extension at 72 °C (5 min).
Nextera sequencing adaptors were appended to the
resulting PCR products during the second PCR round
using 10 μl of KAPA HIFI Hot Start Ready Mix (Kapa
Biosystems, USA), 2 μM of each primer and 6 μl of PCR
product from the first PCR. PCR conditions were as fol-
lows: initial denaturation at 95 °C for 3 min, followed by
15 cycles each of 95 °C (30 s), 55 °C (30 s) and 72 °C (30
s) and a final extension at 72 °C (5 min). PCR products
of the second PCR were run on 1.5% agarose gel and
pooled at equimolar concentration. The final library was
cleaned up using Agencourt AmpureXP beads (Beckman
Coulter Life Sciences). Products of the desired size
(250–700 bp) were extracted by PipinPrep (Sage Science
Inc., USA) and sequenced on Illumina Miseq (v3 kit,
300 bp paired-end reads) at the Central European Insti-
tute of Technology (CEITEC), Masaryk University, Brno
(Czech Republic). Technical PCR duplicates were se-
quenced for individual samples as in the GB analysis.
We failed to amplify and sequence ITS2 in two DNA
samples.

Bioinformatics analysis
Skewer [64] was used for both sample demultiplexing
and detection and trimming of gene-specific primers. In
the next step, reads of low quality (expected error rate
per paired-end read > 1) were eliminated. Dada2 [65]
was used for denoising of quality-filtered reads and
quantification of 16S rRNA and ITS2 haplotypes (here-
after operational taxonomic units; OTUs) in each sam-
ple. Next, UCHIME [66] was employed for detection of
chimeric OTUs. The gold.fna (available at: https://
drive5.com/uchime/gold.fa) and UNITE databases [67]
were used as references for chimeras filtering from the
GB and GM datasets, respectively. After elimination of
chimeric haplotypes, taxonomy for non-chimeric OTUs
was assigned at 80% posterior confidence by RDP Classi-
fier [68]. The GreenGenes database version gg.13.8 [69]
was used for bacterial OTU annotation, and the UNITE
database [67] for fungal OTU annotation. Bacterial OTU

sequences were aligned using PyNast [70] and their
phylogenetic tree constructed using FastTree [71]. We
did not conduct phylogenetic reconstruction for ITS2
OTUs as ITS2 evolution is driven to a large extent by in-
sertions and deletions, which complicates identification
of homologous positions for phylogenetically disparate
taxa. OTU tables (i.e. OTU read counts in individual
samples), OTU sequences, their taxonomic annotations
and phylogeny along with sample metadata were merged
into separate GB and GM databases using the package
phyloseq [72] in R (R Core Team 2015).

Statistical analysis
The GM database comprised 589,406 high-quality se-
quences grouped in 153 non-chimeric OTUs. The num-
ber of ITS2 reads per sample ranged between 1826 and
32,002 (median = 17,896). Only basic descriptive tools
were used in GM analysis as the sample structure was
highly homogenous (detailed below). The GB database
comprised 1,088,282 high quality sequences grouped in
1634 non-chimeric OTUs. As the number of bacterial
reads varied between samples (range = 1415 – 58,106,
median = 29,188), we rarefied the OTU table to achieve
even sequencing depth per sample and used the down-
sampled database for further statistical analysis unless
otherwise stated. The Shannon index was used as an
alpha diversity measure, with per-sample Shannon diver-
sities included as a response variable in generalised lin-
ear mixed effect models (GLMM), while sex, sampling
location, gut section and species identity were included
as alpha diversity predictors. We also tested for potential
effects of species vs. gut section interaction. Individual
identity was included a random term in order to account
for pseudo-replication as multiple gut sections were ana-
lysed for each individual. Nonsignificant predictors were
eliminated from the initial model in a step-wise manner
in order to obtain the minimal adequate model [73].
Marginal effects for significant predictors (i.e. effect of
predictor in questions controlled for the effects of other
significant predictors) are reported. Dissimilarity based
on OTU prevalence (binary Jaccard index) and relative
abundance (Bray-Curtis index) was used to study diver-
gence in microbiota composition between samples. First,
we visualised the between-sample divergence pattern
using Principal Coordinate Analysis (PCoA), then ap-
plied PERMANOVA (adonis2 function from the vegan R
package) to test whether predictors already included in
the alpha diversity analysis drove variation in microbial
profile composition. To account for within-individual
covariance, individual identity was included as a con-
straint for permutations (i.e. strata). We reported mar-
ginal probability values, i.e. significance of the variable in
question controlled for the effect of all other variables
included in the PERMANOVA model. To identify OTUs
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exhibiting variation in abundance between different gut
sections and between the two species, we employed
mixed models (from R package BhGLM [74]) assuming
negative binomial error distribution. These analyses were
only conducted for a subset of dominant OTUs (repre-
sented by > 0.1% reads and present in > 5 samples, n =
119). The marginal effect of the predictor in question
(i.e. effect of species identity statistically controlled for
systematic variation between gut sections and vice versa)
was tested using likelihood-ratio tests, with qvalue [75]
used as a multiple testing correction method. As in the
previous analyses, individual identity was included as a
random effect. Tukey post-hoc tests were employed after
likelihood ratio testing to identify specific gut section
pairs where the OTU in question exhibited significant
variation in abundance. In specific cases, phylogenetic
placement was used to provide a more detailed insight
into OTU taxonomy. A set of reference 16S rRNA se-
quences exhibiting > 97% similarity with the OTUs in
question was extracted from the Silva database v. 132
[76]. Sequences were aligned using mafft [77] and a
phylogenetic tree constructed using RAxML [78]. Boot-
strap analysis based on 1000 replications was used to es-
timate support for the tree nodes.
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Additional file 1: Figure S1. Phylogenetic placement of two
Helicobacter operational taxonomic units whose abundances varied
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