E. J. Aird, K. N. Lovendahl, A. St-martin, R. S. Harris, G. et al., Increasing Cas9-723 mediated homology-directed repair efficiency through covalent tethering of DNA repair 724 template, Commun Biol, vol.1, p.54, 2018.

Z. Ali, A. Shami, K. Sedeek, R. Kamel, A. Alhabsi et al., , p.726

S. M. Hamdan, Fusion of the Cas9 endonuclease and the VirD2 relaxase 727 facilitates homology-directed repair for precise genome engineering in rice, Commun Biol, vol.728, issue.3, p.44, 2020.

A. Alok, D. Sandhya, P. Jogam, V. Rodrigues, K. K. Bhati et al., The Rise 730 of the CRISPR/Cpf1 System for Efficient Genome Editing in Plants, Front Plant Sci, vol.11, p.264, 2020.

M. M. Andersen, X. Landes, W. Xiang, A. Anyshchenko, J. Falhof et al., , p.732

A. K. Edenbrandt, S. E. Vedel, and B. J. Thorsen, Feasibility of new breeding 733 techniques for organic farming, Trends in Plant Science, vol.20, pp.426-434, 2015.

A. V. Anzalone, P. B. Randolph, J. R. Davis, A. A. Sousa, L. W. Koblan et al., , p.735

G. A. Newby and A. Raguram, Search-and-replace genome editing without double-736 strand breaks or donor DNA, Nature, vol.576, pp.149-157, 2019.

P. A. Atkins and D. F. Voytas, Overcoming bottlenecks in plant gene editing, Curr Opin Plant 738 Biol, vol.54, pp.79-84, 2020.

P. C. Bailey, C. Schudoma, W. Jackson, E. Baggs, G. Dagdas et al., , p.740

K. V. , Dominant integration locus drives continuous diversification of plant immune 741 receptors with exogenous domain fusions, Genome Biol, vol.19, p.23, 2018.

A. Bastet, C. Robaglia, and J. L. Gallois, eIF4E Resistance: Natural Variation Should Guide 743 Gene Editing, Trends Plant Sci, vol.22, pp.411-419, 2017.

A. Bastet, D. Zafirov, N. Giovinazzo, A. Guyon-debast, F. Nogué et al., Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated 746 with resistance to potyviruses, Plant Biotechnology Journal, vol.745, pp.1736-1750, 2019.

M. B. Begemann, B. N. Gray, E. January, G. C. Gordon, Y. He et al., , p.748

T. C. Oufattole and M. , Precise insertion and guided editing of higher plant genomes 749 using Cpf1 CRISPR nucleases, Sci Rep, vol.7, p.11606, 2017.

J. M. Bernabe-orts, I. Casas-rodrigo, E. G. Minguet, V. Landolfi, V. Garcia-carpintero et al., , p.751

M. Vazquez-vilar, A. Granell, and D. Orzaez, Assessment of Cas12a-mediated gene 752 editing efficiency in plants, Plant Biotechnol J, vol.17, pp.1971-1984, 2019.

S. S. Bharat, S. Li, J. Li, L. Yan, and L. Xia, Base editing in plants: Current status and 754 challenges, The Crop Journal, vol.8, pp.384-395, 2020.

F. Boutrot and C. Zipfel, Function, Discovery, and Exploitation of Plant Pattern Recognition 756 Receptors for Broad-Spectrum Disease Resistance, Annu Rev Phytopathol, vol.55, pp.257-286, 2017.

H. Burdett, B. Kobe, A. , and P. A. , Animal NLRs continue to inform plant NLR structure 758 and function, Arch Biochem Biophys, vol.670, pp.58-68, 2019.

M. Burmistrz, K. Krakowski, and A. Krawczyk-balska, RNA-Targeting CRISPR-Cas Systems and 760 Their Applications, International Journal of Molecular Sciences, vol.21, 2020.

N. M. Butler, N. J. Baltes, D. F. Voytas, and D. S. Douches, Geminivirus-Mediated Genome 762 Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases, Front Plant Sci, vol.763, p.1045, 2016.

H. Butt, G. S. Rao, K. Sedeek, R. Aman, R. Kamel et al., Engineering herbicide 765 resistance via prime editing in rice, Plant Biotechnol J, 2020.

N. Capdeville, P. Schindele, and H. Puchta, Application of CRISPR/Cas-mediated base editing 767 for directed protein evolution in plants, Sci China Life Sci, vol.63, pp.613-616, 2020.

M. E. Carter, M. Helm, A. V. Chapman, E. Wan, A. M. Restrepo-sierra et al., Convergent Evolution of Effector Protease Recognition by 770 Arabidopsis and Barley, Mol Plant Microbe Interact, vol.32, pp.550-565, 2019.

T. Cermak, N. J. Baltes, R. Cegan, Y. Zhang, and D. F. Voytas, High-frequency, precise 772 modification of the tomato genome, Genome Biol, vol.16, p.232, 2015.

S. Cesari, Multiple strategies for pathogen perception by plant immune receptors, New Phytol, vol.774, pp.17-24, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02622765

S. Cesari, M. Bernoux, P. Moncuquet, T. Kroj, and P. N. Dodds, A novel conserved 776 mechanism for plant NLR protein pairs: the "integrated decoy, hypothesis. Front Plant Sci, vol.777, p.606, 2014.

J. S. Chen, E. Ma, L. B. Harrington, M. Da-costa, X. Tian et al., J.A, 2018.

, CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity, Science, vol.780, p.436

K. Chen, Y. Wang, R. Zhang, H. Zhang, and C. Gao, CRISPR/Cas Genome Editing and 782 Precision Plant Breeding in Agriculture, Annu Rev Plant Biol, vol.70, pp.667-697, 2019.

L. Chen, X. Qu, B. Hou, D. Sosso, S. Osorio et al., , 2012.

, Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport, Science, vol.785, p.207

D. E. Cook, C. H. Mesarich, and B. P. Thomma, Understanding plant immunity as a surveillance 787 system to detect invasion, Annu Rev Phytopathol, vol.53, pp.541-563, 2015.

T. Dahan-meir, S. Filler-hayut, C. Melamed-bessudo, S. Bocobza, H. Czosnek et al., Efficient in planta gene targeting in tomato using geminiviral replicons and 790 the CRISPR/Cas9 system, Plant J, vol.95, pp.5-16, 2018.

J. L. Dangl and J. D. Jones, Plant pathogens and integrated defence responses to infection, Nature, vol.792, pp.826-833, 2001.

J. C. De-la-concepcion, M. Franceschetti, D. Maclean, R. Terauchi, S. Kamoun et al., Protein engineering expands the effector recognition profile of a rice NLR immune 795 receptor, J, vol.794, 2019.

G. S. Demirer, H. Zhang, J. L. Matos, N. S. Goh, F. J. Cunningham et al., , p.797

L. Chio and M. J. Cho, High aspect ratio nanomaterials enable delivery of functional 798 genetic material without DNA integration in mature plants, Nat Nanotechnol, vol.14, pp.456-464, 2019.

P. N. Dodds, G. J. Lawrence, A. Catanzariti, T. Teh, C. A. Wang et al., , p.800

J. G. , Direct protein interaction underlies gene-for-gene specificity and coevolution of 801 the flax resistance genes and flax rust avirulence genes, Proceedings of the National 802 Academy of Sciences of the United States of America, vol.103, pp.8888-8893, 2006.

J. L. Doman, A. Raguram, G. A. Newby, and D. R. Liu, Evaluation and minimization of Cas9-804 independent off-target DNA editing by cytosine base editors, Nat Biotechnol, vol.38, pp.620-628, 2020.

K. El-mounadi, M. L. Morales-floriano, and H. Garcia-ruiz, Principles, Applications, and 806 Biosafety of Plant Genome Editing Using CRISPR-Cas9, Front Plant Sci, vol.11, p.56, 2020.

J. G. Ellis, G. J. Lawrence, J. E. Luck, and P. N. Dodds, Identification of Regions in Alleles of the 808 Flax Rust Resistance Gene <em>L</em&gt, 1999.

, Gene Specificity. The Plant Cell, vol.11, p.495

A. Endo, M. Masafumi, H. Kaya, and S. Toki, Efficient targeted mutagenesis of rice and 811 tobacco genomes using Cpf1 from Francisella novicida, Sci Rep, vol.6, p.38169, 2016.

G. Farnham and D. C. Baulcombe, Artificial evolution extends the spectrum of viruses that 813 are targeted by a disease-resistance gene from potato, Sciences of the United States of America, vol.814, pp.18828-18833, 2006.

A. R. Fernie, Y. , and J. , De Novo Domestication: An Alternative Route toward New Crops for 816 the Future, Mol Plant, vol.12, pp.615-631, 2019.

M. Fossi, K. R. Amundson, S. Kuppu, A. B. Britt, and L. Comai, Regeneration of Solanum 818 tuberosum plants from protoplasts induces widespread genome instability, Plant Physiol, vol.819, pp.78-86, 2019.

J. Gallego-bartolome, DNA methylation in plants: mechanisms and tools for targeted 821 manipulation, New Phytol, vol.227, pp.38-44, 2020.

N. M. Gaudelli, A. C. Komor, H. A. Rees, M. S. Packer, A. H. Badran et al., , 2017.

, Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage, Nature, vol.824, pp.464-471

Z. Ge, L. Zheng, Y. Zhao, J. Jiang, E. J. Zhang et al., Engineered xCas9 826 and SpCas9-NG variants broaden PAM recognition sites to generate mutations in Arabidopsis 827 plants, Plant Biotechnol J, vol.17, pp.1865-1867, 2019.

S. B. Gelvin, Integration of Agrobacterium T-DNA into the Plant Genome, Annu Rev Genet, vol.829, pp.195-217, 2017.

A. Giannakopoulou, A. Bialas, S. Kamoun, and V. G. Vleeshouwers, Plant immunity switched 831 from bacteria to virus, Nat Biotechnol, vol.34, pp.391-392, 2016.

J. Gil-humanes, Y. Wang, Z. Liang, Q. Shan, C. V. Ozuna et al., , p.833

F. Barro and C. Gao, High-efficiency gene targeting in hexaploid wheat using DNA 834 replicons and CRISPR/Cas9, Plant J, vol.89, pp.1251-1262, 2017.

E. Grund, D. Tremousaygue, and L. Deslandes, Plant NLRs with Integrated Domains: Unity 836 Makes Strength, Plant Physiology, vol.179, pp.1227-1235, 2019.

J. Grünewald, R. Zhou, C. A. Lareau, S. P. Garcia, S. Iyer et al., , p.838

M. J. Joung and J. K. , A dual-deaminase CRISPR base editor enables concurrent 839 adenine and cytosine editing, Nature Biotechnology, vol.38, pp.861-864, 2020.

L. Guo, S. Cesari, K. De-guillen, V. Chalvon, L. Mammri et al., , p.841

Y. Peng, Specific recognition of two MAX effectors by integrated HMA 842 domains in plant immune receptors involves distinct binding surfaces, Proceedings of the 843 National Academy of Sciences, vol.115, p.11637, 2018.

L. Hao, Q. Ruiying, L. Xiaoshuang, L. Shengxiang, X. Rongfang et al., CRISPR/Cas9-Mediated Adenine Base Editing in Rice Genome, Rice Science, vol.26, pp.125-846, 2019.

M. Hashimoto, Y. Neriya, Y. Yamaji, and S. Namba, Recessive Resistance to Plant Viruses: 848 Potential Resistance Genes Beyond Translation Initiation Factors, Frontiers in Microbiology, vol.7, 2016.

S. Henikoff and L. Comai, Single-nucleotide mutations for plant functional genomics, Annu 850 Rev Plant Biol, vol.54, pp.375-401, 2003.

S. Li, J. Li, J. Zhang, W. Du, J. Fu et al., Synthesis-dependent repair 953 of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice, J Exp 954 Bot, vol.69, pp.4715-4721, 2018.

Q. Lin, Y. Zong, C. Xue, S. Wang, S. Jin et al., Prime genome editing in rice and wheat, Nature Biotechnology, vol.38, pp.582-585, 2020.

J. Liu, N. J. Nannas, F. F. Fu, J. Shi, B. Aspinwall et al., , 2019.

, Sequence Disruption Following Biolistic Transformation in Rice and Maize, Plant Cell, vol.31, pp.368-959

X. Liu, R. Qin, J. Li, S. Liao, T. Shan et al., A CRISPR-Cas9-mediated 961 domain-specific base-editing screen enables functional assessment of ACCase variants in rice. 962, Plant Biotechnol J, 2020.

Y. Liu, H. I. Kao, and R. A. Bambara, Flap endonuclease 1: a central component of DNA 964 metabolism, Annu Rev Biochem, vol.73, pp.589-615, 2004.

Y. Lu and J. K. Zhu, Precise Editing of a Target Base in the Rice Genome Using a Modified 966 CRISPR/Cas9 System, Mol Plant, vol.10, pp.523-525, 2017.

M. Luo, H. Li, S. Chakraborty, R. Morbitzer, A. Rinaldo et al., , p.968

T. Richardson and T. Lahaye, Efficient TALEN-mediated gene editing in wheat, 2019.

, Plant Biotechnol J, vol.17, pp.2026-2028

M. F. Maher, R. A. Nasti, M. Vollbrecht, C. G. Starker, M. D. Clark et al., Plant gene 971 editing through de novo induction of meristems, Nat Biotechnol, vol.38, pp.84-89, 2020.

H. Manghwar, K. Lindsey, X. Zhang, J. , and S. , CRISPR/Cas System: Recent Advances and 973 Future Prospects for Genome Editing, Trends Plant Sci, vol.24, pp.1102-1125, 2019.

A. Maqbool, H. Saitoh, M. Franceschetti, C. E. Stevenson, A. Uemura et al., , p.975

R. Terauchi and M. J. Banfield, Structural basis of pathogen recognition by an 976 integrated HMA domain in a plant NLR immune receptor, 2015.

K. Mara, F. Charlot, A. Guyon-debast, D. G. Schaefer, C. Collonnier et al., POLQ plays a key role in the repair of CRISPR/Cas9-induced double-stranded breaks in 979 the moss Physcomitrella patens, New Phytol, vol.222, pp.1380-1391, 2019.

S. M. Miller, T. Wang, P. B. Randolph, M. Arbab, M. W. Shen et al., , p.981

G. A. Rees, H. A. Liu, and D. R. , Continuous evolution of SpCas9 variants compatible 982 with non-G PAMs, Nature Biotechnology, vol.38, pp.471-481, 2020.

M. Ming, Q. Ren, C. Pan, Y. He, Y. Zhang et al., CRISPR-Cas12b enables efficient plant genome engineering, Nat Plants, vol.6, pp.202-208, 2020.

R. Mishra, R. K. Joshi, and K. Zhao, Base editing in crops: current advances, limitations and 986 future implications, Plant Biotechnol J, vol.18, pp.20-31, 2020.

K. A. Molla, Y. , and Y. , Predicting CRISPR/Cas9-Induced Mutations for Precise Genome 988 Editing, Trends in Biotechnology, vol.38, pp.136-141, 2020.

B. Moury, C. Charron, B. Janzac, V. Simon, J. L. Gallois et al., Evolution 990 of plant eukaryotic initiation factor 4E (eIF4E) and potyvirus genome-linked protein (VPg): A 991 game of mirrors impacting resistance spectrum and durability, Infection, Genetics and 992 Evolution, vol.27, pp.472-480, 2014.

K. Negishi, H. Kaya, K. Abe, N. Hara, H. Saika et al., An adenine base editor with 994 expanded targeting scope using SpCas9-NGv1 in rice, Plant Biotechnol J, vol.17, pp.1476-1478, 2019.

V. Nekrasov, C. Wang, J. Win, C. Lanz, D. Weigel et al., Rapid generation of a 996 transgene-free powdery mildew resistant tomato by genome deletion, Sci Rep, vol.7, p.482, 2017.

Q. Niu, S. Wu, X. Yang, P. Liu, Y. Xu et al., Expanding the scope of CRISPR/Cas9-998 mediated genome editing in plants using an xCas9 and Cas9-NG hybrid, J Integr Plant Biol, vol.999, pp.398-402, 2019.

R. Oliva, C. Ji, G. Atienza-grande, J. C. Huguet-tapia, A. Perez-quintero et al., , p.1001

H. Nguyen and B. Liu, Broad-spectrum resistance to bacterial blight in rice using 1002 genome editing, Nat Biotechnol, vol.37, pp.1344-1350, 2019.

L. Pauwels, R. De-clercq, J. Goossens, S. Inigo, C. Williams et al., A Dual sgRNA Approach for Functional Genomics in Arabidopsis thaliana, G3 1005 (Bethesda), vol.8, pp.2603-2615, 2018.

A. Peng, S. Chen, T. Lei, L. Xu, Y. He et al., Engineering canker-1007 resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 1008 promoter in citrus, Plant Biotechnol J, vol.15, pp.1509-1519, 2017.

S. E. Pottinger, A. Bak, A. Margets, M. Helm, L. Tang et al., Optimizing 1010 the PBS1 Decoy System to Confer Resistance to Potyvirus Infection in Arabidopsis and 1011 Soybean, Molecular Plant-Microbe Interactions®, vol.33, 2020.

S. E. Pottinger and R. W. Innes, RPS5-Mediated Disease Resistance: Fundamental Insights and 1013 Translational Applications, Annu Rev Phytopathol, vol.58, 2020.

H. Puchta, The repair of double-strand breaks in plants: mechanisms and consequences for 1015 genome evolution, J Exp Bot, vol.56, pp.1-14, 2005.

D. E. Pyott, Y. Fei, and A. Molnar, Potential for gene editing in antiviral resistance, Current 1017 Opinion in Virology, vol.42, pp.47-52, 2020.

R. Qin, J. Li, H. Li, Y. Zhang, X. Liu et al., Developing a highly 1019 efficient and wildly adaptive CRISPR-SaCas9 toolset for plant genome editing, Biotechnol J, vol.17, pp.706-708, 1020.

R. Qin, J. Li, X. Liu, R. Xu, J. Yang et al., SpCas9-NG self-targets the sgRNA sequence 1022 in plant genome editing, Nat Plants, vol.6, pp.197-201, 2020.

R. Qin, S. Liao, J. Li, H. Li, X. Liu et al., Increasing fidelity and efficiency by 1024 modifying cytidine base-editing systems in rice, The Crop Journal, vol.8, pp.396-402, 2019.

Q. Que, Z. Chen, T. Kelliher, D. Skibbe, S. Dong et al., Plant DNA Repair 1026 Pathways and Their Applications in Genome Engineering, Methods Mol Biol, vol.1917, pp.3-24, 2019.

B. Ren, L. Liu, S. Li, Y. Kuang, J. Wang et al., , 2019.

, Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and 1029 Other Atypical PAMs in Rice, Mol Plant, vol.12, pp.1015-1026

B. Ren, F. Yan, Y. Kuang, N. Li, D. Zhang et al., Improved Base 1031 Editor for Efficiently Inducing Genetic Variations in Rice with CRISPR/Cas9-Guided 1032, 2018.

, Hyperactive hAID Mutant. Mol Plant, vol.11, pp.623-626

P. F. Sarris, V. Cevik, G. Dagdas, J. D. Jones, and K. V. Krasileva, Comparative analysis of plant 1034 immune receptor architectures uncovers host proteins likely targeted by pathogens, BMC 1035 Biol, vol.14, issue.8, 2016.

P. F. Sarris, Z. Duxbury, S. U. Huh, Y. Ma, C. Segonzac et al., A Plant Immune Receptor Detects Pathogen Effectors that 1038, Target WRKY Transcription Factors. Cell, vol.161, pp.1089-1100, 2015.

I. M. Saur, S. Bauer, B. Kracher, X. Lu, L. Franzeskakis et al., , 1040.

R. Panstruga and T. Maekawa, Multiple pairs of allelic MLA immune receptor-1041 powdery mildew AVRA effectors argue for a direct recognition mechanism, 2019.

S. Savary, L. Willocquet, S. J. Pethybridge, P. Esker, N. Mcroberts et al., The global 1043 burden of pathogens and pests on major food crops, Nat Ecol Evol, vol.3, pp.430-439, 2019.

N. Savic, F. C. Ringnalda, H. Lindsay, C. Berk, K. Bargsten et al., , p.1045

J. Hall, Covalent linkage of the DNA repair template to the CRISPR-Cas9 1046 nuclease enhances homology-directed repair, 2018.

Z. Shimatani, S. Kashojiya, M. Takayama, R. Terada, T. Arazoe et al., Targeted base editing in rice and tomato using a 1049 CRISPR-Cas9 cytidine deaminase fusion, Nat Biotechnol, vol.35, pp.441-443, 2017.

S. Shmakov, O. O. Abudayyeh, K. S. Makarova, Y. I. Wolf, J. S. Gootenberg et al., Discovery and Functional 1052 Characterization of Diverse Class 2 CRISPR-Cas Systems, Mol Cell, vol.60, pp.385-397, 2015.

D. Stirnweis, S. D. Milani, S. Brunner, G. Herren, G. Buchmann et al., Suppression among alleles encoding nucleotide-binding-leucine-rich repeat 1055 resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants, Plant J, vol.1054, pp.893-903, 1056.

J. Tamborski and K. V. Krasileva, Evolution of Plant NLRs: From Natural History to Precise 1058 Modifications, Annu Rev Plant Biol, vol.71, pp.355-378, 2020.

J. Tan, F. Zhang, D. Karcher, and R. Bock, Engineering of high-precision base editors for site-1060 specific single nucleotide replacement, Nat Commun, vol.10, p.439, 2019.

J. Tan, F. Zhang, D. Karcher, and R. Bock, Expanding the genome-targeting scope and the 1062 site selectivity of high-precision base editors, Nat Commun, vol.11, p.629, 2020.

X. Tang, G. Liu, J. Zhou, Q. Ren, Q. You et al., A 1064 large-scale whole-genome sequencing analysis reveals highly specific genome editing by both 1065 Cas9 and Cpf1 (Cas12a) nucleases in rice, Genome Biol, vol.19, p.84, 2018.

X. Tang, L. G. Lowder, T. Zhang, A. A. Malzahn, X. Zheng et al., , p.1067

Q. Li, A CRISPR-Cpf1 system for efficient genome editing and transcriptional 1068 repression in plants, Nat Plants, vol.3, p.17018, 2017.

X. Tang, Q. Ren, L. Yang, Y. Bao, Z. Zhong et al., Single 1070 transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome 1071 editing, Plant Biotechnol J, vol.17, pp.1431-1445, 2019.

X. Tang, S. Sretenovic, Q. Ren, X. Jia, M. Li et al., , 2020.

, Plant prime editors enable precise gene editing in rice cells, Mol Plant, vol.13, pp.667-670

F. Teng, T. Cui, G. Feng, L. Guo, K. Xu et al., Repurposing 1075 CRISPR-Cas12b for mammalian genome engineering, Cell Discov, vol.4, p.63, 2018.

E. Toda, N. Koiso, A. Takebayashi, M. Ichikawa, T. Kiba et al., , p.1077

N. Kato and T. Okamoto, An efficient DNA-and selectable-marker-free genome-1078 editing system using zygotes in rice, Nat Plants, vol.5, pp.363-368, 2019.

R. A. Van-der-hoorn and S. Kamoun, From Guard to Decoy: a new model for perception of 1080 plant pathogen effectors, Plant Cell, vol.20, pp.2009-2017, 2008.

C. C. Van-schie and F. L. Takken, Susceptibility genes 101: how to be a good host, Annu Rev 1082 Phytopathol, vol.52, pp.551-581, 2014.

T. Van-vu, V. Sivankalyani, E. J. Kim, D. T. Doan, M. T. Tran et al., Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral 1085 replicon in tomato, Plant Biotechnol J, 2020.

S. Van-wersch, L. Tian, R. Hoy, L. , and X. , Plant NLRs: The Whistleblowers of Plant Immunity, 1087.

F. Veillet, L. Chauvin, M. P. Kermarrec, F. Sevestre, M. Merrer et al., The Solanum tuberosum GBSSI gene: a target for 1090 assessing gene and base editing in tetraploid potato, Plant Cell Rep, vol.38, pp.1065-1080, 2019.

F. Veillet, L. Perrot, L. Chauvin, M. Kermarrec, A. Guyon-debast et al., Transgene-Free Genome Editing in Tomato and Potato Plants Using 1093, 2019.

, Agrobacterium-Mediated Delivery of a CRISPR/Cas9 Cytidine Base Editor, International 1094 Journal of Molecular Sciences, vol.20

F. Veillet, L. Perrot, A. Guyon-debast, M. P. Kermarrec, L. Chauvin et al., , p.1096

M. Mazier and F. Nogue, Expanding the CRISPR Toolbox in P. patens Using SpCas9-1097 NG Variant and Application for Gene and Base Editing in Solanaceae Crops, Int J Mol Sci, vol.21, 2020.

R. T. Walton, K. A. Christie, M. N. Whittaker, and B. P. Kleinstiver, Unconstrained genome 1099 targeting with near-PAMless engineered CRISPR-Cas9 variants, Science, vol.368, pp.290-296, 2020.

F. Wang, C. Wang, P. Liu, C. Lei, W. Hao et al., Enhanced Rice Blast 1101 Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene 1102 OsERF922, PLoS One, vol.11, p.154027, 2016.

J. Wang, X. Meng, X. Hu, T. Sun, J. Li et al., xCas9 expands the scope of 1104 genome editing with reduced efficiency in rice, Plant Biotechnol J, vol.17, pp.709-711, 2018.

M. Wang, Y. Lu, J. R. Botella, Y. Mao, K. Hua et al., Gene Targeting by Homology-1106 Directed Repair in Rice Using a Geminivirus-Based CRISPR/Cas9 System, Mol Plant, vol.10, pp.1007-1107, 2017.

M. Wang, Z. Xu, G. Gosavi, B. Ren, Y. Cao et al., 1109 (2020a). Targeted base editing in rice with CRISPR/ScCas9 system, Plant Biotechnol J, vol.1110, pp.1645-1647

Q. Wang, M. Alariqi, F. Wang, B. Li, X. Ding et al., The 1112 application of a heat-inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid 1113 cotton (G. hirsutum) plants, Plant Biotechnology Journal, 2020.

Y. Wang, X. Cheng, Q. Shan, Y. Zhang, J. Liu et al., Simultaneous editing of 1115 three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery 1116 mildew, Nature Biotechnology, vol.32, pp.947-951, 2014.

F. Wolter and H. Puchta, The CRISPR/Cas revolution reaches the RNA world: Cas13, p.1118, 2018.

, Swiss Army knife for plant biologists, The Plant Journal, vol.94, pp.767-775

R. Xu, J. Li, X. Liu, T. Shan, R. Qin et al., Development of a plant prime editing 1120 system for precise editing in the rice genome, 2020.

R. Xu, R. Qin, H. Li, D. Li, L. Li et al., Generation of targeted mutant rice 1122 using a CRISPR-Cpf1 system, Plant Biotechnol J, vol.15, pp.713-717, 2017.

R. Xu, R. Qin, H. Li, J. Li, J. Yang et al., Enhanced genome editing in rice using single 1124 transcript unit CRISPR-LbCpf1 systems, Plant Biotechnology Journal, vol.17, pp.553-555, 2019.

W. Xu, C. Zhang, Y. Yang, S. Zhao, G. Kang et al., Versatile 1126 Nucleotides Substitution in Plant Using an Improved Prime Editing System, Molecular Plant, vol.13, pp.675-678, 1127.

Z. Xu, X. Xu, Q. Gong, Z. Li, Y. Li et al., , 2019.

, Engineering Broad-Spectrum Bacterial Blight Resistance by Simultaneously Disrupting 1130 Variable TALE-Binding Elements of Multiple Susceptibility Genes in Rice, Mol Plant, vol.12, pp.1434-1131

F. Yan, Y. Kuang, B. Ren, J. Wang, D. Zhang et al., Highly 1133 Efficient A.T to G.C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice, Mol 1134 Plant, vol.11, pp.631-634, 2018.

H. Yang, P. Gao, K. R. Rajashankar, and D. J. Patel, PAM-Dependent Target DNA Recognition 1136 and Cleavage by C2c1 CRISPR-Cas Endonuclease, Cell, vol.167, pp.1814-1828, 2016.

X. Yin, A. K. Biswal, J. Dionora, K. M. Perdigon, C. P. Balahadia et al., , p.1138

R. A. Coe and T. Kretzschmar, CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of 1139 a stomatal developmental gene EPFL9 in rice, Plant Cell Rep, vol.36, pp.745-757, 2017.

S. S. Zaidi, M. M. Mahfouz, and S. Mansoor, CRISPR-Cpf1: A New Tool for Plant Genome 1141 Editing, Trends Plant Sci, vol.22, pp.550-553, 2017.

S. S. Zaidi, M. S. Mukhtar, and S. Mansoor, Genome Editing: Targeting Susceptibility Genes for 1143 Plant Disease Resistance, Trends Biotechnol, vol.36, pp.898-906, 2018.

B. Zetsche, J. S. Gootenberg, O. O. Abudayyeh, I. M. Slaymaker, K. S. Makarova et al., , p.1145

S. E. Volz, J. Joung, J. Van-der-oost, and A. Regev, Cpf1 is a single RNA-guided 1146 endonuclease of a class 2 CRISPR-Cas system, Cell, vol.163, pp.759-771, 2015.

H. Zhang, L. Li, Y. He, Q. Qin, C. Chen et al., , 2020.

, Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA 1149 viruses for infection, Proc Natl Acad Sci U S A, vol.117, pp.9112-9121

X. Zhang, L. Chen, B. Zhu, L. Wang, C. Chen et al., Increasing the efficiency and targeting range of cytidine base editors through fusion 1152 of a single-stranded DNA-binding protein domain, Nat Cell Biol, vol.22, p.1151, 2020.

Y. Zhang, A. A. Malzahn, S. Sretenovic, and Y. Qi, The emerging and uncultivated potential of 1154 CRISPR technology in plant science, Nat Plants, vol.5, pp.778-794, 2019.

Y. Zhang, M. Pribil, M. Palmgren, and C. Gao, A CRISPR way for accelerating improvement 1156 of food crops, Nature Food, vol.1, pp.200-205, 2020.

Y. Zhao, X. Yang, G. Zhou, and T. Zhang, Engineering plant virus resistance: from RNA 1158 silencing to genome editing strategies, Plant Biotechnology Journal, vol.18, pp.328-336, 2020.

Z. Zhong, S. Sretenovic, Q. Ren, L. Yang, Y. Bao et al., , 2019.

, Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting 1161 Cas9-NG, Mol Plant, vol.12, pp.1027-1036

Y. Zong, Q. Song, C. Li, S. Jin, D. Zhang et al., Efficient C-to-T base 1163 editing in plants using a fusion of nCas9 and human APOBEC3A, Nat Biotechnol, vol.36, pp.950-953, 2018.

Y. Zong, Y. Wang, C. Li, R. Zhang, K. Chen et al., Precise 1165 base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion, Nat Biotechnol, vol.35, pp.438-440, 1166.

E. Zuo, Y. Sun, W. Wei, T. Yuan, W. Ying et al., , p.1168, 2019.