C. Arteta, V. Lempitsky, and A. Zisserman, Counting in the wild, pp.483-498, 2016.

L. Boominathan, S. S. Kruthiventi, and R. V. Babu, Crowdnet: A deep convolutional network for dense crowd counting, Proceedings of the 24th ACM International Conference on Multimedia, pp.640-644, 2016.

P. G. Brodrick, A. B. Davies, and G. P. Asner, Uncovering ecological patterns with convolutional neural networks, Trends Ecol. Evol, vol.34, issue.8, pp.734-745, 2019.

R. Chan, M. Rottmann, F. Hüger, P. Schlicht, and H. Gottschalk, Application of decision rules for handling class imbalance in semantic segmentation, 2019.

C. C. Davis, C. G. Willis, B. Connolly, C. Kelly, and A. M. Ellison, Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms, Am. J. Bot, vol.102, pp.1599-1609, 2015.

T. Falk, D. Mai, R. Bensch, Ö. C?ic?k, A. Abdulkadir et al., , 2019.

, U-net: deep learning for cell counting, detection, and morphometry, Nat. Methods, vol.16, pp.67-70

S. Farmer and E. Schilling, Phylogenetic analyses of Trilliaceae based on morphological and molecular data, Syst. Bot, vol.27, pp.674-692, 2002.

H. Goëau, A. Mora-fallas, J. Champ, N. Love, S. J. Mazer et al., New fine-grained method for automated visual analysis of herbarium specimens: a case study for phenological data extraction, Appl. Plant Sci, vol.8, issue.6, p.11368, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for imagerecognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.770-778, 2016.

K. He, G. Gkioxari, P. Dolla?, and R. Girshick, Mask R-CNN, Proceedings of the IEEE International Conference on Computer Vision, pp.2961-2969, 2017.

B. P. Hedrick, J. M. Heberling, E. K. Meineke, K. G. Turner, C. J. Grassa et al., Digitization and the future of natural history collections, BioScience, vol.70, pp.243-251, 2020.

H. Heike, H. Wickham, and K. Kafadar, Letter-value plots: Boxplots for large data, J. Comput. Graph. Stat, vol.26, pp.469-477, 2017.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar et al., Large-scale video classification with convolutional neural networks, IEEE Conference on Computer Vision and Pattern Recognition, pp.1725-1732, 2014.

T. Lin, P. Dolla?, R. Girshick, K. He, B. Hariharan et al., Feature pyramid networks for object detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2117-2125, 2017.

T. Lorieul, K. D. Pearson, E. R. Ellwood, H. Goëau, J. Molino et al., Toward a large-scale and deep phenological stage annotation of herbarium specimens: Case studies from temperate, tropical, and equatorial floras, Appl. Plant Sci, vol.7, p.1233, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02137748

N. L. Love, I. W. Park, and S. J. Mazer, A new phenological metric for use in pheno-climatic models: A case study using herbarium specimens of streptanthus tortuosus, Appl. Plant Sci, vol.7, p.11276, 2019.

F. Massa and R. Girshick, maskrcnn-benchmark: Fast, modular reference implementation of instance segmentation and object detection algorithms in pytorch, 2018.

E. K. Meineke, C. C. Davis, and T. J. Davies, The unrealized potential of herbaria for global change biology, Ecol. Monogr, vol.88, pp.505-525, 2018.

E. K. Meineke, T. J. Davies, B. H. Daru, and C. C. Davis, Biological collections for understanding biodiversity in the Anthropocene, Philos. Trans. R. Soc. London B, vol.374, 2019.

A. J. Miller-rushing, R. B. Primack, D. Primack, and S. Mukunda, Photographs and herbarium specimens as tools to document phenological changes in response to global warming, Am. J. Bot, vol.93, pp.1667-1674, 2006.

G. Nelson, E. , and S. , The history and impact of digitization and digital data mobilization on biodiversity research, Philos. Trans. R. Soc. B, vol.374, 2019.

N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. man Cybern, vol.9, pp.62-66, 1979.

D. Park, A. Williams, E. Law, A. Ellison, D. et al., Assessing plant phenological patterns in the eastern United States over the last 120 years, 2018.

D. S. Park, I. Breckheimer, A. C. Williams, E. Law, A. M. Ellison et al., Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern united states, Philos. Trans. R. Soc. B, vol.374, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury et al., Pytorch: An imperative style, high-performance deep learning library, Advances in Neural Information Processing System 32, pp.8024-8035, 2019.

K. D. Pearson, G. Nelson, M. F. Aronson, P. Bonnet, L. Brenskelle et al., Machine learning using digitized herbarium specimens to advance phenological research, BioScience, vol.70, issue.7, pp.610-620, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02573627

K. D. Pearson, A new method and insights for estimating phenological events from herbarium specimens, Appl. Plant Sci, vol.7, p.1224, 2019.

D. Primack, C. Imbres, R. B. Primack, A. J. Miller-rushing, D. Tredici et al., Herbarium specimens demonstrate earlier flowering times in response to warming in boston, Am. J. Bot, vol.91, pp.1260-1264, 2004.

O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, Medical Image Computing and Computer-Assisted Intervention -MICCAI 2015. MICCAI 2015, vol.9351, pp.234-241, 2015.

S. Segu?, O. Pujol, and J. Vitria, Learning to count with deep object features, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.90-96, 2015.

P. W. Sweeney, B. Starly, P. J. Morris, Y. Xu, A. Jones et al., Large-scale digitization of herbarium specimens: Development and usage of an automated, high-throughput conveyor system, Taxon, vol.67, pp.165-178, 2018.

, Tesla Autonomy Day 2019 -Full Self-Driving Autopilot -Complete Investor Conference Event, 2019.

B. Thiers, Index Herbariorum: a global directory of public herbaria and associated staff, New York Botanical Garden's Virtual Herbarium, 2017.

S. Tyagi and S. Mittal, Sampling approaches for imbalanced data classification problem in machine learning, Proceedings of ICRIC 2019, vol.597, pp.209-221, 2020.

C. Wang, H. Zhang, L. Yang, S. Liu, and X. Cao, Deep people counting in extremely dense crowds, Proceedings of the 23rd ACM International Conference on Multimedia, pp.1299-1302, 2015.

A. C. Williams, J. Goh, C. G. Willis, A. M. Ellison, J. H. Brusuelas et al., Deja vu: Characterizing worker reliability using task consistency, Proceedings of the Fifth Conference on Human Computation and Crowdsourcing, pp.197-205, 2017.

C. G. Willis, E. R. Ellwood, R. B. Primack, C. C. Davis, K. D. Pearson et al., Old plants, new tricks: phenological research using herbarium specimens, Trends Ecol. Evol, vol.32, pp.531-546, 2017.

E. M. Wolkovich, B. Cook, . Ii, and T. J. Davies, Progress towards an interdisciplinary science of plant phenology: building predictions across space, time and species diversity, New Phytol, vol.201, pp.1156-1162, 2014.

J. M. Yost, P. W. Sweeney, E. Gilbert, G. Nelson, R. Guralnick et al., Digitization protocol for scoring reproductive phenology from herbarium specimens of seed plants, Appl. Plant Sci, vol.6, p.1022, 2018.

C. Zhang, H. Li, X. Wang, Y. , and X. , Cross-scene crowd counting via deep convolutional neural networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.833-841, 2015.