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Abstract

In this work, a design strategy for optimising thin-walled structures based on a global-local finite
element (FE) modelling approach is presented. The preliminary design of thin-walled structures
can be stated in the form of a constrained non-linear programming problem (CNLPP) involving
requirements of different nature intervening at the different scales of the structure. The proposed
multi-scale optimisation (MSO) strategy is characterised by two main features. Firstly, the CNLPP
is formulated in the most general sense by including all design variables involved at each pertinent
scale of the problem. Secondly, two scales (with the related design requirements) are considered:
i) the structure macroscopic scale, where low-fidelity FE models are used; ii) the structure meso-
scopic scale (or component-level), where more accurate FE models are involved. In particular, the
mechanical responses of the structure are evaluated at both global and local scales, avoiding the
use of approximated analytical methods. The MSO is here applied to the least-weight design of an
aluminium fuselage barrel of a wide-body aircraft. Fully parametric global and local FE models
are interfaced with an in-house metaheuristic algorithm. Refined local FE models are created only
for critical regions of the structure, automatically detected during the global analysis, and linked
to the global one thanks to the implementation of a sub-modelling approach. The whole process is
completely automated and, once set, it does not need any further user intervention.

Keywords: Optimisation, Genetic algorithms, Fuselage, Stiffened panels, Finite Element Method,
Global/local modelling approach

This is a pre-print of an article published in Proceedings of the Institution of Mechanical
Engineers, Part G.
The final authenticated version is available online at:
https://doi.org/10.1177/0954410020939338

?This paper presents part of the activities carried out within the research project PARSIFAL (Prandtlplane AR-
chitecture for the Sustainable Improvement of Future AirpLanes), which has been funded by the European Union
under the Horizon 2020 Research and Innovation Program (Grant Agreement n.723149)
∗Corresponding author. Tel.: +33 55 68 45 422, Fax.: +33 54 00 06 964.
Email address: marco.montemurro@ensam.eu, marco.montemurro@u-bordeaux.fr (Marco Montemurro)

Preprint submitted to Proceedings of the Institution of Mechanical Engineers, Part G

https://doi.org/10.1177/0954410020939338


1. Introduction

Mass control is a major concern in the design of airplanes. For this reason, the design of
aircraft structures is often formulated as a constrained non-linear programming problem (CNLPP).
The main objective is the mass minimisation subject to a given number of design requirements
stated as optimisation constraints. “Semi-monocoque” structures have soon became a standard
choice for both the fuselage and the wing thanks to their favourable stiffness-to-weight ratio. Due
to their nature, the design criteria for such structures involve both local phenomena (i.e. at the
scale of the single component such as a stiffened panel) and global ones (i.e. at the scale of the
whole structure). For this reason, a multi-scale modelling approach reveals necessary to properly
describe the interdependency of the different phenomena and, consequently, a suitable multi-scale
optimisation (MSO) strategy, integrating such a modelling approach, shall be defined.

The preliminary phase of aircraft structural design is mostly based on analytical or semi-
empirical methods. Such methods have been developed since 40s especially in USA [1–3] and have
been continuously improved during the years until becoming an established reference for aircraft
designers [4–7]. These methods are based on several simplifying hypotheses. For example, when
dealing with the fuselage design, at the global scale circular cross-sections are considered, whose
geometry and boundary conditions (BCs) are symmetric with respect to the aircraft longitudinal
plane. Stringers are taken into account by considering an homogeneous skin of equivalent thickness
(greater than the true thickness of the skin) or by considering lumped models in which a group
of stringers is merged in one rod element. When pressurisation is taken into account, the classical
equations for axial-symmetrical infinite vessels with regularly spaced frames are used [7]. At the
stiffened panel scale, for the calculation of buckling loads, plane or curved plates with uniformly
loaded edges and perfect BCs (usually in the form of simply supported edges) are considered; the
stringers are considered as isolated elements and the Euler column buckling equations are used
[6, 8].

Preliminary design procedures for thin-walled structures have been developed integrating the
aforementioned methods into sequential [8] or iterative procedures [9–11]. The solution is searched
by means of gradient-based algorithms using an initial guess solution set by means of handbook
methods. In order to properly exploit the effectiveness of the gradient-based algorithm, the number
of design variables is reduced by “slaving” or “linking” them together by enforcing fabrication
requirements or using experience or simplified empirical rules. Of course, this approach extremely
shrinks the design domain.

Several works on improved analytical or numerical methods for predicting the mechanical re-
sponse of stiffened panels, especially regarding the buckling and post-buckling behaviour of such
components [12–14] can be found in literature. However, the aforementioned simplifying hypotheses
are still used.

In 1972, Sobieszczanski and Loendorf [15] proposed a mixed optimisation method in which a
“lumped” global FE model (GFEM) was used instead of analytical formulae to evaluate the stiffness
of the fuselage in order to obtain a better approximation of the loads to be used on local buckling
evaluations performed using classical analytical methods. Similarly, Fischer et al. [16] proposed
a multi-level framework for optimisation of lightweight structures in which a simplified GFEM
evaluates the average membrane and bending loads for the local optimisation of panels performed
using VICONOPT, a program based on analytical solutions for prismatic plane panels with simple
supported edges or periodic BCs. An analogous work is presented by Grihon et al. [9] in which
the tool ASSIST for the buckling and post-buckling analyses based on engineering formulae was
employed. They also considered the possibility of using a surrogate model to speed-up the process.
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A surrogate model is also adopted in [17] for the multi-scale optimisation of a fuselage barrel. In
this case the surrogate model is used for buckling failure evaluations and it is generated by means of
buckling analyses on a parametric high fidelity local FE model (LFEM) of an isolated stiffened panel
with idealised BCs. They showed the poor accuracy of the local buckling analyses by highlighting,
thus, the detrimental effect of the idealised BCs.

In all the aforementioned works the local analysis (and the related optimisation) is performed
by considering fixed internal loads resulting from the GFEM, hence neglecting stress redistribution
due to the change of geometry at the upper scale, i.e. that of the whole structure. Therefore, the
main limitation of such design procedures is related to a poor evaluation of the mechanical response
of the structure, due either to the use of simplified models or to the approximation of the BCs in the
passage from the GFEM to the LFEM. In order to overcome these limitations, the utilisation of a
proper global/local (GL) modelling approach in the framework of the MSO of thin-walled structures
is proposed in this work.

GL modelling approaches allow the assessment of phenomena involved at the-component level
through the use of LFEMs with realistic BCs derived from the GFEM. Both models have affordable
computational costs so that they can be integrated into an optimisation strategy [18]. GL modelling
approaches have been investigated mainly during 80s and 90s [19–25]. During the last two decades,
as a consequence of the improved computational capabilities, GL approaches have been developed
and used also to assess more complex phenomena like local plasticity [26], crack propagation [27],
delamination in composite structures [28] and strong non-linear phenomena as well. Most of these
works are developed for specific applications and their implementation needs the creation of specific
tools not available in commercial FE software. Apart the GL modelling strategies that do not
make use of commercial FE software, the rest of GL approaches can be divided into two categories:
sub-modelling [22–25] and condensation/zooming techniques [19, 20].

In the usual work-flow of sub-modelling GL approaches, firstly a low fidelity linear analysis
on a GFEM with a coarse mesh is run to identify one or more zones of interest (ZOIs). Then a
refined LFEM is created for each ZOI. The refined LFEM can also take into account complex non-
linear phenomena. Then, a second analysis is performed only on the LFEM imposing displacements
provided by the GFEM as BCs. Moreover, iterative stages can be added if the stress redistribution
due to local effects is considered non-negligible. An alternative formulation making use of forces
and stiffness instead of displacements in the information transfer between GFEM and LFEM has
been proposed too [21].

The condensation/zooming technique [19, 20] differs from the sub-modelling approach at the sec-
ond step where the refined LFEM is solved together with a condensed version of the “out-of-interest”
region of the GFEM, introduced in the form of a super-element. From a computational point of
view the procedure is more expensive than the sub-modelling approach but it does not require an
iterative process.

In this work, a MSO of thin-walled aircraft structures making use of the sub-modelling GL
approach is presented. The MSO strategy is characterised by two main features: on the one
hand, the full set of design variables, at each relevant scale of the problem, is considered in the
design process without additional simplifying hypothesis, widening in this way the design space
and, consequently, the possibility to find a true global optimum solution. On the other hand, all the
design criteria and requirements involved into the problem formulation are evaluated by means of
both GFEM and LFEMs through a suitable GL modelling approach. Computational time is kept
low by verifying local responses only on the most critical ZOIs. To this purpose, pertinent design
criteria are introduced into the GFEM to automatically identify the ZOIs and build the related
refined LFEMs.
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The solution search is carried out by means of the special genetic algorithm (GA) ERASMUS
(EvolutionaRy Algorithm for optimiSation of ModUlar Systems) [29] which can deal with CNLPPs
defined over a design space of variable dimension.

The effectiveness of the proposed MSO strategy is proven on a meaningful real-world engineering
problem: the least-weight design of a fuselage barrel belonging to the aft part of a wide-body aircraft
that undergoes multiple loading conditions and subject to constraints of different nature.

The paper is organised as follows. A general description of the design problem, the underlying
hypotheses and the driving design criteria is given in Sec. 2. The mathematical formulation of the
multi-scale design problem and the adopted numerical strategy are discussed in Sec. 3. The details
on the FE models and the implementation of the GL approach are presented in Sec. 4. Numerical
results are shown in Sec. 5. Finally Sec. 6 ends the paper with some conclusions and perspectives.

2. Multi-scale least-weight design of a metallic fuselage section: problem description

The MSO strategy presented in this study is applied to the least-weight design of an aluminium
fuselage barrel of a wide-body aircraft. The fuselage barrel has a circular cross-section and is located
between the wing rear spar and the tail, as shown in Fig. 1. The fuselage barrel is clamped at the
rear spar section (section A) and loads coming from the tail are applied to section B. Payload
weight and pressurisation are also taken into account. More details on the BCs and the load cases
considered in the design process will be given in Secs. 2.1 and 2.2.

(a) (b)

Figure 1: Location of the fuselage barrel [30] (a) and detail of the applied BCs (b).

The main geometrical parameters of the fuselage cross-section, the structural architecture and
loads are taken from [11, 30] where an iterative design procedure integrating several analytical
methods was presented. Their solution is hereafter referred as literature solution (LSol).

The main geometrical parameters of the fuselage barrel are reported in Tab. 1. The remaining
data necessary to define LSol can be found in Tab. 2: the meaning of some of these parameters is
explained in Sec. 3.1. The generic stiffened panel geometry considered in this study is shown in
Fig. 2. It is composed of hat-shaped stringers and floating frames with a Z-shaped cross-section
attached to the skin by means of “shear tie” components; no “stringer tie” or “tear strap” compo-
nents are present. Floor beams with an I-shaped cross-section and tubular struts complete the set
of structural components.
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Component Value

Fuselage diameter [mm] 5640
Number of bays 7
Bay pitch [mm] 500
Upper-deck floor vertical position [mm] † −152
Lower-deck floor vertical position [mm] † −2130
Struts position on upper-deck floor beam ∗ 1/3
Struts position on lower-deck floor beam ∗ 1/4
† Referred to the horizontal axis through the geometrical centre of the
fuselage cross-section.
∗ Normalised with the floor beam length and referred to the aircraft
symmetry plane.

Table 1: Main geometrical parameters of the fuselage barrel.

Component Value

Frame flange width (wFr
3 ) [mm] 35.0

Frame web height (wFr
3 ) [mm] 165.0

Frame thickness (tFr) [mm] 1.5
Cabin floor beams web height [mm] 240.0
Cabin floor beams flange width [mm] 156.0
Cabin floor beams thickness [mm] 2.5
Cargo floor beams web height [mm] 180.0
Cargo floor beams flange width [mm] 60.0
Cargo floor beams thickness [mm] 1.5
Struts external diameter [mm] 21.5
Struts internal diameter [mm] 15.5
Component Top Lateral Bottom

Stringer free flanges width (wSt
1 ) [mm] 7.6 8.5 19.1

Stringer bonded flange width (wSt
3 ) [mm] 12.6 10.9 35.4

Stringer height (wSt
4 ) [mm] 24.2 26.2 61.9

Stringer thickness (tSt) [mm] 1.4 3.2 1.8
Skin thickness (tSk) [mm] 2.0 1.6 2.3
Skin-panels count (n) [-] 28 22 18

Table 2: Geometrical parameters of the literature solution.

All the components of the structure are considered made of 2024-T3 aluminium alloy, whose
mechanical an physical properties have been taken from [31] and are reported in Tab. 3.

Propriety Symbol Value

Young’s modulus [MPa] E 72395
Poisson’s ratio ν 0.33
Tensile yield stress [MPa] σy 290
Tensile ultimate stress [MPa] σu 434
Density [g/cm3] ρ 2.78

Table 3: Material properties of 2024-T3 aluminium alloy.

2.1. Hypotheses and design criteria
The case study here presented moves in the framework of the preliminary design phase of aircraft

structures. During this phase, tents of load cases (LCs) are assessed to properly design the main
components of the structure in order to comply with certification specifications [32]. Such LCs are
the result of a combination of basic loading conditions (BLCs) of different nature, e.g. flight loads
due to symmetrical manoeuvres, to asymmetrical ones or to gusts, ground loads, pressurisation,
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Figure 2: Architecture of the stiffened panel.

etc. In this work, only a sub-set of LCs, presented in Sec. 2.2, is considered. Moreover, for each LC,
the material behaviour is supposed linear elastic and the FE analyses are carried out by assuming
small displacements and strains.

Concerning the modelling of the structural components, the following simplifications have been
introduced:

1. In agreement with the preliminary design framework, only major components of the structure
are modelled (i.e. skin, frames, stringers, floor beams and struts).

2. Floor beams and struts have a predefined geometry which is kept unchanged during optimi-
sation.

3. Perfect bonding condition applies at the interface of the structural elements.

4. Connection zones (e.g. floor beams to frames or skin to skin) and opening/cut-out in the skin
are not explicitly modelled.

Three main groups of criteria can be identified for the preliminary design phase, i.e. criteria
related to: a) static loads, b) fatigue loads and c) aeroelasticity phenomena.

Regarding static loads, certification specifications [32] identify two types of design loads: limit
loads (LLs) and ultimate loads (ULs). LLs are the maximum loads expected in service that the
structure must be able to support without detrimental permanent deformations. ULs are equal to
limit loads multiplied by a prescribed factor of safety (usually 1.5). The structure must withstand
ULs without failure for at least 3 seconds. For instance, for the wide-body civil aircraft class, LLs in
symmetrical manoeuvres (neglecting gust loads) occur at load factors (the ratio of the aerodynamic
force component normal to the longitudinal axis of the aeroplane to its weight) ng = 2.5 and
ng = −1. This work focuses on this class of design criteria.

As far as fatigue phenomena are concerned, the design of the structure should be performed in
such a way that «catastrophic failure due to fatigue, manufacturing defects, environmental deteri-
oration, or accidental damage, must be avoided throughout the operational life of the aeroplane»
[32]. To achieve this goal two approaches are possible. On the one hand, in the framework of the
safe-life approach, a component should be designed to last the whole operational life. On the other
hand, according to the damage tolerance approach, a potential damage in the structure should not
became critical before the next planned inspection. In this work, only one fatigue design criterion
following the safe-life approach is employed in terms of an equivalent static check (more details are
given in the followings).
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Finally, no aeroelastic criteria are used.
The following set of design criteria (DCs) is integrated in the design process.

DC1 The global stiffness of the structure must be greater than the stiffness of LSol.

DC2 The average equivalent stress in the panels skin must not exceed the yielding stress of the
material, considering a factor of safety FS = 1.5 (in agreement with CS 25.303 in [32]), under
LLs.

DC3 The average equivalent stress in the skin must not exceed the ultimate strength of the material
under ULs.

DC4 No critical fatigue failure must occur caused by the hoop stress in the skin due to pressuri-
sation.

DC5 No buckling must occur in the stiffened panels under ULs (no-buckling design approach).

DC6 Only manufacturable solutions are considered.

DC2 and DC3 are expressed in terms of average stresses in order to neglect the effect of local
stress concentrations that could be strongly affected by the accuracy of the FE model and that
constitute the object of the detailed design phase (performed after the preliminary design phase).

DC4 is a criterion against the nucleation of cracks in the longitudinal joints between the stiffened
panels. It is translated into an equivalent static check according to the methodology reported in
[11, 33]. Such method is based on the definition of the Detail Fatigue Rating (DFR) parameter. It is
defined as the maximum stress of a sinusoidal load with a ratio R = σmin/σmax = 0.06 producing in
105 cycles the same damage of a given fatigue load spectrum. Starting from the knowledge that the
maximum hoop stress due to pressurisation of an ATRr aircraft is σmax

h = 95 MPa for N = 70000
flights [11], it is possible to compute the equivalent DFR as follows:

DFR = σmo σ
max
h (1− R)

0.53 σmax
h (1− R) + S5−logNFRF [0.94 σmo − 0.47 σmax

h (1 + R)] , (1)

where: σmo and S are fatigue material properties that, for a generic aluminium alloy, assume the
values σmo = 310 MPa and S = 2; R = 0 for the pressurisation cyclic load; FRF is the Fatigue
Reliability Factor, i.e. a factor of safety fixed at FRF = 1.5.

Under the hypothesis that the required DFR of a structural detail is independent of the aircraft
class, one can easily invert Eq. (1) to compute the maximum allowable hoop stress σadmh . Supposing
a target of N = 22500 flights, typical for a wide-body aircraft, a value of σadmh = 126 MPa is
obtained.

2.2. Load cases
Eight LCs are defined by linear superposition of two BLCs: a cruise loading condition (load

factor ng = 1) without pressurisation, identified as BLC1g, and a pressurisation loading condition,
identified as BLCp. In both BLCs, fuselage sections A and B are modelled as rigid and BCs are
applied to their centres: section A is always clamped, whilst pertinent tail forces and moments are
applied at section B.

Under BLC1g, payload weight is applied as a distributed load on floor beams. Structural mass
is considered by applying additional loads on the upper-deck floor beams, on the basis of statistical
estimated structural weight. Tail loads are computed in such a way to obtain in the check zone
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(i.e. the middle bay of the fuselage barrel) a maximum bending moment Mx = 5.0 · 106 Nm and
a vertical shear force Fy = −370000 N (in agreement with [30]). A good estimation of the loading
condition at a different value of the load factor is obtained by scaling BLC1g by that value.

When using BLCp, the effect of the maximum operating differential pressure (corresponding to
the maximum relief valve setting) is taken into account as internal pressure on the skin plus an
equivalent longitudinal force applied to section B of the fuselage barrel. By scaling BLCp, the effect
of different values of differential pressure can be assessed.

Data used for defining BLC1g and BLCp are reported in Tab. 4. The eight considered LCs are
defined in Tab. 5 in which, for each LC, the assessed design criterion is also indicated. Aerodynamics
loads on the fuselage have been neglected.

Load BLC1g BLCp

Upper-deck floor beam total load [N] 10000 -
Lower-deck floor beam total load [N] 5000 -
Bending moment Mx at section “B” [Nm] 4.305 · 106 -
Vertical shear force Fy at section “B” [N] −310000 -
Internal pressure [MPa] - 0.068
Longitudinal force Fz [N] † - 1.7 · 106

† Equivalent to internal pressure times fuselage cross-section area.

Table 4: Basic loading conditions data.

LC BLC1g factor BLCp factor DC

1 1.00 1.00 DC1
2 2.50 1.00 DC2
3 −1.00 1.00 DC2
4 3.75 1.00 DC3
5 −1.50 1.00 DC3
6 0 1.00 DC4
7 3.75 0 DC5
8 −1.50 0 DC5

Table 5: Load cases definition and associated design criterion.

3. Mathematical formulation of the optimisation problem

3.1. Design variables
Only geometrical design variables have been considered in this study. They can be grouped with

respect to the component they are referred to.

Stringers and skin. Three circumferential sectors are identified as in Fig. 3: “top”, “lateral” and
“bottom”. For each sector:

• the stringers section is hat-shaped and four variables, wSt
1 , w

St
3 , w

St
4 and tSt, are needed

to describe its geometry (Fig. 4a);
• the skin is characterised by two variables, i.e. the thickness tSk and the number n of
sub-regions between two consecutive frames and stringers (hereafter skin-panels) within
the sector.
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Frame/shear-tie assembly. Identical frames having a “Z”-shaped cross-section with “L” shear-
tie are considered: three variables, wFr

1 , w
Fr
3 and tFr, are needed to geometrically describe the

assembly (Fig. 4b). The distance between the floating frame and the fuselage skin depends
on the maximum height of the stringers cross-sections according to the formula

cFr = max
i

wSt−i
4 + 2mm with i = Top, Lat, Bot. (2)

Figure 3: Fuselage cross-section.

(a) Stringer cross-section (b) Frame/shear-tie cross-section

Figure 4: Stringers and frame/shear-tie assembly cross-sections variables definition.

All the aforementioned design variables are collected into the vector ξ. It is noteworthy that
frame pitch, floor beams and struts geometry have not been considered among the problem design
variables, rather they have been set equal to the reference values of the LSol as reported in Tabs. 1
and 2.
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3.2. Objective and constraint functions
The goal of the MSO strategy is the minimisation of the total mass of the fuselage barrel which

can be easily expressed as

M (ξ) = V (ξ) · ρ , (3)

where V (ξ) is the total volume of the structure components and ρ is the material density as defined
in Tab. 3. As far as design requirements are concerned, one or more constraint functions are defined
for each DC introduced in Sec. 2.1. In particular, DC1 is formulated as a couple of constraints on the
vertical displacement δy and on the rotation θx of the centre of section B when LC1 is considered.
These constraints read

g1 (ξ) =
(
δy (ξ)− δLSol

y

)
/δLSol

y ≤ 0 ,

g2 (ξ) =
(
θx (ξ)− θLSol

x

)
/θLSol

x ≤ 0 at LC1.
(4)

In Eq. (4), δLSol
y = −5.21mm and θLSol

x = 0.065◦ are the vertical displacement and rotation of
the centre of section B evaluated for LSol.

DC2 is applied as a set of constraints on the maximum von Mises stress 〈σeq〉 averaged on each
skin-panel (ωi) belonging to the check zone (Ω =

∑N
i=1 ωi, see Sec. 4 for more details). Such value

has to be lower than the yield stress of the material under LC2 and LC3 with a factor of safety
FS = 1.5. Therefore, the related constraint inequalities are:

g3 (ξ) =
(

FS ·max
Ω
〈σeq (ξ)〉ωi

− σy

)
/σy ≤ 0 at LC2,

g4 (ξ) =
(

FS ·max
Ω
〈σeq (ξ)〉ωi

− σy

)
/σy ≤ 0 at LC3.

(5)

DC3 is applied in a similar way to DC2, obtaining:

g5 (ξ) =
(

max
Ω
〈σeq (ξ)〉ωi

− σu

)
/σu ≤ 0 at LC4,

g6 (ξ) =
(

max
Ω
〈σeq (ξ)〉ωi

− σu

)
/σu ≤ 0 at LC5.

(6)

As described in Sec. 2.1, DC4 can be formulated as an equivalent constraint on the maximum
hoop stress due to pressurisation. Such a requirement can be expressed as follows:

g7 (ξ) =
(

max
Ω
〈σh (ξ)〉ωi

− σadm
h

)
/σadm

h ≤ 0 at LC6. (7)

The requirement DC5 can be opportunely expressed by means of three optimisation constraints.
For each circumferential sector, ULs are applied and the most critical stiffened panel (composed of
three stringers and two frames, as discussed in Sec. 4) in the check zone is identified. An eigenvalue
buckling analysis is then performed on this panel in order to get a first buckling eigenvalue higher
than 1 with a factor of safety FS = 1.1 (more details on this point are given in Sec. 4). The related
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constraints read

g8 (ξ) = 1.1− λTop (ξ) ≤ 0 at LC8,

g9 (ξ) = 1.1− λLat (ξ) ≤ 0 at LC7,

g10 (ξ) = 1.1− λBot (ξ) ≤ 0 at LC7.

(8)

DC6 is applied by imposing a series of inequalities involving the design variables and representing
different types of manufacturability requirements.

• Minimum thickness of thin-walled elements.

tSt−i ≥ 1 mm , with i = Top, Lat, Bot;

tSk−i ≥ 1 mm , with i = Top, Lat, Bot;

tFr ≥ 1 mm .

• Minimum length of the interface flange of stiffening components for the installation of rivets.

wSt−i
3 ≥ 14 mm , with i = Top, Lat, Bot;

wFr
1 ≥ 14 mm .

• Minimum length to thickness ratio of sheet elements.

wSt−i
1 /tSt−i ≥ 4 , with i = Top, Lat, Bot;

wSt−i
3 /tSt−i ≥ 3 , with i = Top, Lat, Bot;

wSt−i
4 /tSt−i ≥ 5 , with i = Top, Lat, Bot;

wFr
1 /t

Fr ≥ 3 ;

aFr (ξ) /tFr ≥ 3 ;

bFr (ξ) /tFr ≥ 3 .

• Minimum circumferential distance between stringers.

pitchSt−i (ξ) ≥ 2 ·
(
2 · wSt−i

1 + wSt−i
3

)
, with i = Top, Lat, Bot.

These constraints behave more like logic conditions (i.e. True / False values) rather than continuous-
valued functions. Inasmuch as these constraint functions are mainly related to Boolean operations,
it is sufficient that each of them is satisfied regardless of its value, i.e. a value closer to the bounds
would not produce any advantage.

Some of these inequalities are directly employed in the definition of the lower and upper bounds
of the design variables for the problem at hand, as listed in Tab. 6, whilst the remaining inequalities
are stated in the form lj (ξ) ≤ 0 and then aggregated into a single constraint using the maximum
operator:

g11 (ξ) = max
j

lj (ξ) ≤ 0 . (9)
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When a completely unfeasible solution is detected (e.g. a solution with an overlap between stringers),
the corresponding FE models are not generated and the solution is penalised by assigning a high
value to the objective function and a unit value to the constraints that cannot be evaluated.

It is noteworthy that the step size of the the thickness of the different components has been fixed
to ∆t = 0.1 mm to be coherent with the thickness of commercially available aluminium sheets.

Finally, the optimisation problem can be formulated as a classical CNLPP as follows:

min
ξ

M (ξ) ,

subject to:
gi (ξ) ≤ 0 , with i = 1, 2, . . . , 11.

(10)

The design space of the problem is detailed in Table 6.

Design variable Unit Lower bound Upper bound Step size

wFr
1 mm 20 50 0.5

wFr
3 mm 80 190 1.0

tFr mm 1 4 0.1
wSt−i

1 mm 5 30 0.5
wSt−i

3 mm 14 40 0.5
wSt−i

4 mm 14 70 0.5
tSt−i mm 1 4 0.1
tSk−i mm 1 4 0.1
nTop - 18 38 2
nLat - 13 31 1
nBot - 12 26 2
With i = Top, Lat, Bot.

Table 6: Lower and upper bounds of the design variables.

3.3. Numerical strategy
Problem (10) is a non-convex CNLPP. The total number of design variables is 21, whilst the

number of optimisation constraints is 11. For the resolution of problem (10) the GA ERASMUS
[29] coupled with both GFEM and LFEMs of the structure has been utilised as optimisation tool
to perform the solution search, as illustrated in Fig. 5. The GA ERASMUS has already been
successfully applied to solve different kinds of engineering problems, see for example [29, 34–41].

As shown in Fig. 5, for each individual, at each generation, the numerical tool performs global
and local FE analyses to calculate the objective function and the optimisation constraints. The FE
models are implemented in the ANSYSr environment and their input data are generated by the
GA ERASMUS (more details are given in Sec. 4). The GA elaborates the results provided by the
GFEM and the LFEMs in order to execute the genetic operations and generate new individuals.
These operations are repeated until the GA meets the user-defined convergence criterion. The
generic individual of the GA ERASMUS represents a potential solution for the problem at hand.
The genotype of the individual for problem (10) is characterised by only one chromosome composed
of 21 genes, each one coding a component of the vector of design variables ξ.
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Figure 5: Flowchart of the optimisation process.

4. The global/local finite element modelling approach

As stated above, the FE models integrated in the optimisation process are based on a GL
modelling approach. In particular, two different models are created: the GFEM for the assessment
of the behaviour of the whole fuselage barrel, and refined LFEMs in order to properly evaluate local
responses. LFEMs are created only at the critical ZOIs identified during the global analysis, thus
suitable criteria must be developed to accomplish this task.

Both GFEM and LFEMs are fully parametric and are built using the commercial FE code
ANSYSr.

4.1. The global finite element model
The global FE model is shown in Fig. 6: it includes the seven bays constituting the fuselage

barrel. The fuselage skin is modelled with 8-node SHELL281 elements, while frames, stringer, floor
beams and struts are modelled with 3-node BEAM189 elements. The beam and shell elements
are connected together by node merging. To take into account the actual position of the beam
cross-section with respect to the skin, a section offset is applied to beam elements. Shear-tie
components are not modelled, but their mechanical effect (the transfer of shear load from the
frames to the skin) is ensured by the direct connection between frame and skin elements.

The element type (linear or quadratic) and mesh size have been chosen after performing a
sensitivity analysis, of which the main details can be found in Appendix A. In particular, the use of
one quadratic element for each skin-panel gives a good compromise between results accuracy and
computational cost, thus the mesh size has been set accordingly.

A master node is created at the centre of sections A and B and linked to the set of “slave” nodes
of the corresponding frame by means of MPC184 (multi-point constraint) elements with “rigid
beam” behaviour (Fig. 6a). These master nodes are used to apply the BCs presented in Sec. 2.2.
In agreement with the hypotheses and the design criteria discussed in Sec. 2.1, only linear static
analyses are performed on this model.
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(a) Shell and MPC elements (b) Beam elements (c) Detailed view with the integral
shape of the elements

Figure 6: Global FE model.

Of course, the first bay (from each side of the fuselage barrel) is strongly influenced by edge
effects because of the proximity to zones where BCs are applied (i.e. at nodes A and B). Accordingly,
only the central bay constitutes the check zone, where the results of the analysis are meaningful.
Moreover, as explained in Sec. 2.1, the elements adjacent to connection zones (e.g. floor beams to
frames connections or the joints between circumferential sectors) are excluded from the check zone,
as illustrated in Fig. 7.

Results provided by the GFEM are used for the evaluation of the objective function and all the
constraint functions except those related to buckling requirements, i.e. g8, g9 and g10.

Figure 7: Check zone of the global FE model.

4.2. The local finite element models
LFEMs are created to evaluate the first buckling load of the most critical fuselage stiffened

panels. This task can be achieved only through a suitably refined FE model able to catch both
global and local buckling modes.

Each LFEM includes the same number of stringers and frames, i.e. three and two, respectively,
as shown in Fig. 8. The local model presents a suitable extinction zone to mitigate edge effects
due to the application of BCs. This extinction zone is half a skin-panel wide and surrounds the
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check zone, as illustrated in Fig 8. The local FE model is entirely built by using 8-node SHELL281
elements.

Figure 8: Typical local FE model.

Both shear-ties and stringers are tied to the skin by creating constraint equations between their
interface nodes by using ANSYSr CEINTF command [42]. This allows having an independent mesh
size on the different components. Also for the LFEM, the mesh size is the result of a compromise
between the accuracy in evaluating the first buckling load of the stiffened panel, which can occur
either in the skin or in the flanges of stringers and frames, and the computational time. A sensitivity
analysis has been conducted also in this case: the main results are reported in Appendix A.

Displacement BCs extracted from the results of the global analysis are imposed to all the bound-
ary nodes belonging to the skin of the local FE model.

To transfer the BCs to the stringers and frames, for each ending cross-section, a master node is
extracted from the skin boundary nodes located at the interface between the beam reference axis
and the skin in the GFEM. The coordinates of this set of master nodes are recorded and passed to
the LFEM (for each region of the fuselage barrel). Then these nodes are selected and connected
to those belonging to the corresponding stringer/frame ending cross-section by means of MPC184
elements with “rigid beam” behaviour, ensuring in this way the kinematic compatibility between
global and local models, see Fig. 9.

Figure 9: Detail of the ending cross-section of the stiffening components in the local FE model.

The LFEM is built for each sector of the fuselage barrel (bottom, top and lateral). An eigenvalue

15



buckling analysis is performed on the local models, and the lowest positive eigenvalue, λ (ξ), is
retrieved as output.

4.3. ZOIs identification criteria and information transfer between global and local models
In the presented MSO strategy, the fewest number of local models is checked in order to keep

the computational time as low as possible. To this purpose, specific criteria have been introduced
and applied to the post-processing of results coming from the GFEM in order to identify the most
critical ZOIs around which LFEMs are automatically generated. For each circular sector belonging
to the check zone, only one ZOI is identified and analysed.

As discussed in Secs. 2.2 and 3.2, the buckling-related constraints are evaluated for LC7 and
LC8 (see Tab. 5). These LCs are obtained by scaling BLC1g by means of a suitable load factor.
Under BLC1g, the stiffened panels in the top and bottom sectors are mostly subject to stress in
the longitudinal direction, as shown in Fig. 10. Therefore, top and bottom ZOIs are identified by

(a) Longitudinal stress (b) Shear stress (c) Hoop stress (d) Legend [MPa]

Figure 10: Stress distribution in the skin-panels in the check zone at BLC1g.

looking for the basic-panel (BP), i.e. the assembly composed of a stringer plus half of the adjacent
skin-panels, that withstands the highest compressive average longitudinal force per unit width, NBP

l ,
computed , for the generic LC, as

NBP
l =

Fst +
∫ wsp/2
−wsp/2

∫ tsk

0 σsk
l dz dy

wsp , (11)

where: Fst is the axial tensile force in the stringer, wsp is the width, in the hoop direction, of the
skin panel and σsk

l is the longitudinal stress in the skin.
On the other hand, the panels in the lateral sector are subject to biaxial loads corresponding to a

combination of mainly shear and longitudinal stress; the latter varying from tensile to compression
depending on the position of the considered stiffened panel (see Fig. 10). Accordingly, a different
criterion is used for the lateral sector: the ZOI is identified by looking for the most critical skin-
panel with respect to the buckling strength. An estimation of the buckling load is computed for
each skin-panel in the check zone using analytical formulae for a simply supported “shadow” plate
with the same dimensions of the analysed skin-panel, i.e. a in the longitudinal direction and b in the
hoop one,the same thickness tsk and subject to the same bi-axial stress field given by the membrane
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forces per unit length Nx, Ny, and Nxy. The buckling factor due to bi-axial compression forces and
that due to shear forces are computed independently and an interaction equation is then used to
compute the buckling factor due to the combined load. Under the hypothesis that the plate buckles
with an out-of-plane displacement field described by

w(x, y) =
∞∑
m=1

∞∑
n=1

amn sin mπx
a

sin nπy
b

, (12)

the buckling eigenvalue due to the solely compressive membrane forces per unit length Nx and Ny,
can be computed as [43]

λc = min
m,n

π2 D
[
(m/a)2 + (n/b)2]2

Nx(m/a)2 + Ny(n/b)2 , (13)

where x and y directions correspond to longitudinal and hoop ones and D is the flexural rigidity
of the plate. The buckling eigenvalue due to the solely shear forces per unit width Nxy can be
approximated as [43]

λs ≈
(
5.35 + 4 r2)π2D

Nxy c2 , (14)

where: r = min(a/b, b/a) and c = min(a, b). An interaction equation can be used to define the
critical condition in presence of the two loading conditions [44]( 1

λs
cr

)2
+ 1
λc

cr
= 1 . (15)

If the critical buckling factor, for the combined loading conditions, is defined as

λcr := λs

λs
cr

= λc

λc
cr
, (16)

one can calculate its value according to the following formula:

λcr =
−λ

s2

λc +

√√√√(λs2

λc

)2

+ 4λs2

2 . (17)

Therefore, the skin-panel showing the minimum λcr identifies the lateral ZOI.
As already stated, the displacement field resulting from the GFEM is used to define the BCs for

the LFEMs. To this purpose, for each LC, the nodal displacements of the GFEM are interpolated
using the shape functions of the elements in the GFEM at the location of the boundary nodes of
the LFEM. The logical flow of the process that goes from the global FE analysis to the local one is
given in Fig. 11.

5. Numerical results

The parameters of the GA ERASMUS used to perform the solution search for problem (10)
are listed in Tab. 7. As far as the optimisation constraints are concerned, they have been han-
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Figure 11: Interaction scheme between global and local finite element models.

dled through the Automatic Dynamic Penalisation (ADP) method [45]. Further details on the
optimisation tool and its parameters can be found in [29].

Property Value

N. of populations 1
N. of individuals per population 210
N. of chromosomes 1
N. of genes 21
Stop criterion Fixed generations (150)
Crossover probability 0.85
Mutation probability 0.01
Selection operator Roulette wheel
Fitness pressure 1
Elitism operator Active

Table 7: Parameters of the GA ERASMUS used for the solution search.

The whole optimisation process requires a computational time of approximately 14 days (i.e.
around 40 s for global and local FE analyses for the generic point in the design space) when four
cores of a machine with an Intel Xeon E5-2697v2 processor (2.70-3.50 GHz) are dedicated to the
ANSYSr solver. However, computational time could be easily reduced by performing in parallel
the FE calculations of the different individuals.

The evolution of the objective function of the best individual for each generation of the optimi-
sation process is shown in Fig. 12. It can be noticed that the convergence is achieved after about
100 generations because no improvement in the objective function is observed in the subsequent
iterations of the evolutionary process. From Fig. 12 three stages can be identified corresponding to
first, intermediate and last generations, i.e. stages A, B and C, respectively. The complete set of
performances, in terms of constraint and objective functions, for the best individual at each stage,
i.e. individuals A-1, B-1 and C-1, is reported in Tab. 8. Concerning stage C, two other individuals
(C-2 and C-3) are reported together with the optimum solution C-1 (recall that the CNLPP is
strongly non-convex). Indeed, a significant number of pseudo-optimal solutions exists at stage C
that are nearly identical to solution C-1 and that are not reported here for the sake of brevity. The
values of the design variables identifying the individuals C-1, C-2 and C-3 are listed in Tab. 9.

A quick glance to the results provided in Tabs. 8 and 9 suffices to infer that, due the non-convex
nature of problem (10), the GA finds almost equivalent optimal solutions, e.g. C-1, C-2 and C-3,
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Figure 12: Best individual vs. iterations.

Function A-1 B-1 C-3 C-2 C-1∗ LSol

g1 (stiffness) −0.467 −0.331 −0.227 −0.238 −0.262 −0.000
g2 (stiffness) −0.426 −0.115 −0.190 −0.179 −0.053 −0.000
g3 (strength) −0.446 −0.076 −0.163 −0.179 −0.013 +0.020
g4 (strength) −0.683 −0.479 −0.573 −0.573 −0.426 −0.487
g5 (strength) −0.642 −0.420 −0.466 −0.477 −0.378 −0.350
g6 (strength) −0.822 −0.718 −0.759 −0.760 −0.689 −0.726
g7 (fatigue) −0.578 −0.239 −0.357 −0.387 −0.197 −0.213
g8 (buckling) −1.845 −0.155 −0.133 −0.110 −0.070 +0.535
g9 (buckling) −0.513 −0.034 −0.191 −0.087 −0.029 +0.811
g10 (buckling) −0.484 −0.234 −0.001 −0.213 −0.027 +0.570
g11 (manufacturability) −0.024 −0.030 −0.560 −0.033 −0.545 +1.344

M [kg] 1158 966 886 871 847 837
∗ Retained optimal solution

Table 8: Comparison of the values of the constraint and objective functions relative to different individuals.

quite different in term of design variables, that still respect all the constraints and that have com-
parable values of the objective function.

Concerning the retained optimal solution, i.e. C-1, from Tab. 9 one can notice that some of the
variables are located at the bounds of the respective intervals, see Tab. 6.

By observing the buckling mode of each one of the three optimised sectors for solution C-1,
as illustrated in Fig. 13, it can be noticed that the stringers and the skin buckle simultaneously,
in agreement with the well-established aeronautical design criterion that the maximum structural
efficiency (in terms of best compromise between minimum weight and maximum buckling load) for
stiffened structures is reached when their components buckle at the same load [46].

Finally, for comparison purposes, the performances of LSol and some of its geometrical param-
eters, previously shown in Tab. 2, are also added in Tabs. 8 and 9, respectively. From the analysis
of the results, it is clear that LSol has been obtained with different requirements than those used
in this work; in particular, constraints g3, g8, g9 and g10 are too restrictive for LSol, which results
clearly infeasible. Also the geometrical requirement g11 is not respected by LSol which is charac-
terised by too close stringers in the bottom sector. Moreover, it is noteworthy that, despite of the
big differences in performances, the difference in mass between C-1 and LSol is lower than 1.2%.
Therefore, the proposed approach allows finding an optimal configuration of the fuselage barrel
satisfying the full set of design requirements. This result constitutes a sort of “numerical proof”
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C-3 C-2 C-1∗ LSol
Variable Top Lat. Bot. Top Lat. Bot. Top Lat. Bot. Top Lat. Bot.

wFr
1 [mm] 28.5 29.0 20.0† 35.0

wFr
3 [mm] 116.5 120.0 81.0 165.0

tFr [mm] 1.2 1.2 1.0† 1.5

wSt
1 [mm] 6.0 8.0 17.5 6.5 7.5 18.5 5.0† 5.0† 21.0 7.6 8.5 19.1

wSt
3 [mm] 23.0 27.5 26.0 25.5 27.0 28.0 40.0† 24.5 31.0 12.6 10.9 35.4

wSt
4 [mm] 23.5 33.0 64.5 27.5 21.5 61.5 19.0 38.0 45.5 24.2 26.2 61.9

tSt [mm] 1.3 1.2 2.5 1.6 1.4 1.6 1.1 1.0† 1.4 1.4 3.2 1.8
tSk [mm] 2.5 2.2 2.5 2.5 2.3 2.4 1.8 3.0 3.6 2.0 1.6 2.3
n [-] 30 30 22 28 30 26† 36 24 18 28 22 18
∗ Retained optimal solution
† Values at the bounds of the design space (see Tab. 6)

Table 9: Design variables values for optimal individuals at the last generation.

about the limitations related to the use of simplifying hypotheses and analytical formulae/models
in the framework of the preliminary design phase of aircraft structures.

6. Conclusions

A multi-scale optimisation strategy for designing thin-walled structures integrating a dedicated
global-local modelling approach has been presented in this work.

As usual for this type of structures, the design problem is formulated as a CNLPP involving con-
straints of different nature. The formulation of such requirements involves the structure response, at
each pertinent scale, under various loading conditions. To deal with these aspects, fully parametric
FE models are created at different scales for the evaluation of the most relevant phenomena. A
coherent information transfer between these models is ensured by implementing a sub-modelling
GL approach: BCs of the local models are directly extracted, in terms of displacements, from the
results of the global analysis and properly transferred to the local FE model. Local FE models are
automatically created only for critical ZOIs which are identified, by means of opportune criteria,
during the global analysis. The solution search for the multi-scale CNLPP is performed by inter-
facing the GFEM and the LFEMs of the structure with the GA ERASMUS developed at the I2M
laboratory in Bordeaux.

The proposed strategy is general and allows dealing with design variables and constraints of
different nature. Every variable at each relevant scale is considered in the design process, avoiding
the introduction of simplifying hypotheses in the definition of the design space, which have the
main effect of shrinking it, thus preventing the possibility to find a true global optimum solution.
Moreover, by employing a GL modelling approach, more accurate results are obtained than those
found by means of well-established strategies that use simplified analytical models for the assessment
of the mechanical response of the structure, as proven by the numerical results of this study. Finally,
the whole process, once set, is fully automated and does not need the user intervention.

The effectiveness of the proposed MSO strategy is proven on a meaningful design case: the
least-weight design of an aluminium fuselage barrel of a wide-body aircraft. In the considered test
case, a limited, yet representative, set of loading conditions and design criteria are considered.
Nevertheless, further criteria and load cases could be easily introduced in the general framework of
the presented design strategy.
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(a) Lateral sector panel (b) Top sector panel

(c) Bottom sector panel

Figure 13: Normalised displacement field of the first buckling mode of the local models for the optimum solution.

The obtained results for the presented design case seem realistic and coherent: at the compo-
nent scale, the elements composing the stiffened panel (of the most critical ZOIs of the fuselage
barrel) buckle simultaneously in agreement with well-established design procedures used in both
academic and industrial communities [46]. Moreover, difference between the mass of the optimised
configuration provided by the MSO and that of the reference solution (taken from the literature and
obtained by using simplifying hypotheses and simple models and rules) is lower than 1.2%. However,
the reference solution taken from the literature is infeasible and does not meet some of the design
criteria employed in this work which result too restrictive. This constitutes a sort of “numerical
proof” about the unsuitability of some simplifying hypotheses and low-fidelity analytical/numerical
models often used in the preliminary design phase of aircraft structures.

These results encourage research activity in this direction. As far as perspectives of this work
are concerned, the formulation of the CNLPP will be enhanced by adding requirements on the post-
buckling behaviour of the most critical stiffened panel in each sector of the fuselage barrel. Moreover,
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research is ongoing in order to extend the MSO approach to the case of thin-walled structures made
of composite materials. Of course, in this case the design problem formulation must integrate
requirements and specificities of composite solutions, e.g. suitable failure criteria at each scale
(lamina-level and constitutive phases-level), delamination criteria, manufacturing requirements, etc.

Appendix A. Mesh sensitivity analysis

The sensitivity analysis to the mesh parameters has been conducted by looking at the various
mechanical responses of both the GFEM and the LFEM when LSol is evaluated. The mesh param-
eters considered are the element class, i.e. linear (L) or quadratic (Q), and the mesh size for both
GFEM and LFEM. Because of the way the GL modelling approach is implemented, both global
and local mesh parameters affect the local responses, while global ones only depend upon global
mesh parameters. All the various combinations of the parameters have been evaluated, but, for the
sake of brevity, only the most important results are reported here.

Concerning the GFEM, the mesh has been parametrised in terms of a single sizing parameter,
i.e. the number of elements between two adjacent stringers (indicated with a number following the
letter L/Q in the results). An automatic check has been implemented to prevent the generation
of highly distorted shell elements with a threshold aspect ratio equal to two. The effect of the
GFEM mesh parameters on one of the global scale responses (the rotation θX of section B under
LC1) and on a local scale one (the value λTop of the buckling factor of most critical stiffened
panel of the top sector under LC8) is reported in Tab. A.1. To obtain these results, the mesh of
the LFEM is fixed to the mesh parameters set LFEM-Q1 reported in Tab. A.2 (more details on
the sensitivity analysis of the LFEM responses are given in the following of this section). Derived
informations are reported in Figs. A.1 and A.2. For these analyses, the total execution time has been
normalised with respect to the smallest one (obtained using one linear element between stringers,
i.e. mesh parameters set GFEM-L1), while the mechanical responses have been normalised with
respect to fully converged ones (obtained with mesh parameters set GFEM-Q4). As it can be seen,

Mesh par. DOFs † Exec. time ∗ [s] θx [rad] λTop [-]

GFEM-L1 10476 36 1.1301 · 10−3 0.5675
GFEM-L2 28428 40 1.1305 · 10−3 0.5658
GFEM-L3 53760 44 1.1326 · 10−3 0.5640
GFEM-L4 100752 51 1.1333 · 10−3 0.5632
GFEM-L5 144498 60 1.1339 · 10−3 0.5628
GFEM-Q1 28140 38 1.1307 · 10−3 0.5651
GFEM-Q2 78336 42 1.1342 · 10−3 0.5630
GFEM-Q3 150546 46 1.1338 · 10−3 0.5629
GFEM-Q4 287988 63 1.1341 · 10−3 0.5627
† Active degrees of freedom of the GFEM.
∗ Total execution time including LFEM analyses.

Table A.1: Mesh sensitivity of the GFEM, main results. Local mesh set at LFEM-Q1.

the improvement obtainable by using more accurate meshes than GFEM-L1 in the evaluation of
mechanical responses is rather small.
In this case, the choice of the mesh parameters set GFEM-Q1 is motivated by its ability to perfectly
model the curved shape of the fuselage barrel components, with a small increase in computational
time.

Also in the case of LFEM, the mesh has been parametrised in terms of a single sizing parameter.
Each of the edges of the geometry describing the components has been divided in a given amount
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Figure A.1: Sensitivity to the GFEM mesh parameters of the percentage difference of the rotation of section B with
respect to the one obtained with mesh GFEM-Q4.

of mesh units. The assumption is that the buckling could occur in any one of the plate-regions
composing the structure. Therefore, the numbers of mesh units must be chosen to ensure a ho-
mogeneous level of accuracy in the estimation of the buckling load in accordance with the first
expected buckling mode of each plate. For example, when looking at the stringers cross section,
the free flanges have been divided in one mesh unit, the webs in three mesh unit and the bonded
flanges in two mesh unit. Finally, automatic checks have been implemented to ensure that the final
elements have nearly unitary aspect ratios. With this parametrisation set, the number of element in
each mesh unit and their element class (linear, L, or quadratic, Q) constitute the mesh parameters
of the sensibility analysis. The results of such analysis are reported in Tab. A.2 and Figs. A.3,
A.4 and A.5. To obtain these results, the mesh of the GFEM is fixed to the mesh parameters set
GFEM-Q1. In this case, the use of a light mesh composed of few linear shape functions elements,

Mesh par. DOFs † Exec. time ∗ [s] λTop [-] λLat [-] λBot [-]

LFEM-L1 39396 23 0.6243 0.3435 0.6122
LFEM-L2 131268 40 0.5783 0.2976 0.5502
LFEM-L3 294048 75 0.5691 0.2864 0.5327
LFEM-L4 498192 133 0.5646 0.2822 0.5278
LFEM-L5 784056 222 0.5626 0.2801 0.5247
LFEM-Q1 113880 38 0.5651 0.2886 0.5297
LFEM-Q2 385608 104 0.5555 0.2764 0.5186
LFEM-Q3 870000 261 0.5556 0.2760 0.5188
† Active degrees of freedom of the LFEM.
∗ Total execution time including GFEM analysis.

Table A.2: Mesh sensitivity of the LFEM. Global mesh set at GFEM-Q1.

like LFEM-L1, shows all its limitations. For LFEM-L1 the percentage difference in the computed
buckling factor reaches 25% with respect to the results obtained by a fully converged mesh like
LFEM-Q3.
By considering a threshold percentage difference of 5%, the best compromise between accuracy and
computational time is obtained by adopting the mesh parameters set LFEM-Q1.
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Figure A.2: Sensitivity to the GFEM mesh parameters of the percentage difference of the buckling factor the most
critical stiffened panel in the top sector with respect to the one obtained with mesh GFEM-Q4.

Figure A.3: Sensitivity to the LFEM mesh parameters of the buckling factor of the most critical stiffened panel of
the top sector (normalised with respect to that obtained with mesh LFEM-Q4).
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Figure A.4: Sensitivity to the LFEM mesh parameters of the buckling factor of the most critical stiffened panel of
the lateral sector (normalised with respect to that obtained with mesh LFEM-Q4).

Figure A.5: Sensitivity to the LFEM mesh parameters of the buckling factor of the most critical stiffened panel of
the bottom sector (normalised with respect to that obtained with mesh LFEM-Q4).
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