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World population growth in recent decades has required the in-
creased and intensified use of agricultural lands to enhance global 
production and productivity (Tilman et al., 2011). This has re-
sulted in the massive use of phytosanitary products, which are used 
to control crop diseases and pests, fight deficiencies through soil 
enrichment, and manage weeds (Matson et al., 1997). Weeds are 
often recognized as the most serious threat to organic agricultural 
production (Bàrberi, 2002), and their management can have a 
huge economic cost at the national level; for example, Pimentel et 

al. (2000) estimated that weeds decrease crop yields by 12% in the 
United States, which represents approximately US$32 billion in lost 
crop production annually. The implementation of efficient weed 
management methods is therefore essential for maintaining eco-
nomically balanced agricultural activities. To better preserve our 
environment and contribute to the development of sustainable agri-
culture, we need to rethink some agricultural practices and change 
current paradigms. The reduction of phytosanitary products is nec-
essary to fight soil depletion and biodiversity loss, and to better meet 
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PREMISE: Weed removal in agriculture is typically achieved using herbicides. The use of 
autonomous robots to reduce weeds is a promising alternative solution, although their 
implementation requires the precise detection and identification of crops and weeds to allow 
an efficient action.

METHODS: We trained and evaluated an instance segmentation convolutional neural network 
aimed at segmenting and identifying each plant specimen visible in images produced by 
agricultural robots. The resulting data set comprised field images on which the outlines of 
2489 specimens from two crop species and four weed species were manually drawn. We 
adjusted the hyperparameters of a mask region-based convolutional neural network (R-CNN) 
to this specific task and evaluated the resulting trained model.

RESULTS: The probability of detection using the model was quite good but varied significantly 
depending on the species and size of the plants. In practice, between 10% and 60% of weeds 
could be removed without too high of a risk of confusion with crop plants. Furthermore, we 
show that the segmentation of each plant enabled the determination of precise action points 
such as the barycenter of the plant surface.

DISCUSSION: Instance segmentation opens many possibilities for optimized weed removal 
actions. Weed electrification, for instance, could benefit from the targeted adjustment of the 
voltage, frequency, and location of the electrode to the plant. The results of this work will 
enable the evaluation of this type of weeding approach in the coming months.

  KEY WORDS   autonomous robot; convolutional neural network; deep learning; digital  
agriculture; plant detection; weed electrification.
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societal expectations and the new regulations 
under development (such as the Eco-Phyto 
Plan in France [https://agric ulture.gouv.fr/ 
encou ragin g-resul ts-ecoph yto-plan-reduc 
tion-pesti cide-use (accessed 2 June 2020)]). 
This will require the replacement of current 
weed control solutions with more environ-
mentally friendly solutions.

Several experimental solutions for robot-
ization in the agricultural world avoid the 
extensive use of non-selective phytosanitary 
products, in particular reducing herbicides 
with more targeted approaches (Bakker et al., 
2006; Steward et al., 2019). These alternative 
approaches mainly use mechanical and ther-
mal methods (Bond et al., 2003; Slaughter  
et al., 2008), although a few experimental 
approaches use electricity to kill weeds, such 
as those proposed by Diprose and Benson 
(1984), Vigneault et al. (1990), and Vigneault 
and Benoît (2001). This type of solution can 
have two advantages: the electricity does not 
affect the soil deeply, which preserves the in-
tegrity of the crop roots, and this technique 
uses less polluting energy than mechanical 
and/or thermal robot approaches.

Regardless of which weeding solution is considered, the accu-
rate detection and identification of weed specimens is a major chal-
lenge to optimizing yield. The electrification approach in particular 
requires great precision; the use of a high-voltage electrical head 
for weed control requires the positioning of the head in the imme-
diate proximity, or in contact with a weed for effective application 
(Nolte et al., 2018). This electrical head must be only a few centime-
ters from the target plant and closer to it than to any surrounding 
plant to allow the appropriate use of an electric arc. This arc passes 
through the target plant from the top of its stem to the end of one 
of its roots. The precise location of its stem is therefore essential to 
ensure efficiency.

The state-of-the-art approach for locating crops and/or weeds 
in precision agriculture images (Milioto et al., 2018) is the use of 
semantic segmentation algorithms, i.e., algorithms that classify each 
pixel of the image as belonging either to the crop class or to the 
weed class. Most advanced algorithms make use of convolutional 
neural networks (CNNs) to achieve this task (Potena et al., 2016; 
Mortensen et al., 2017; Sa et al., 2017; Lottes et al., 2018). As dis-
cussed by Milioto et al. (2018), the advantage of semantic segmen-
tation is that it provides a good trade-off between accuracy and the 
speed of detection; however, this approach does not allow the de-
tection of each specimen separately, nor does it allow the species 
identification of each specimen.

In this article, we study more advanced deep learning architec-
tures that allow each specimen to be detected separately and clas-
sified among a potentially large number of crop or weed species. 
A first option would be to use an object detection neural network, 
such as the Fast R-CNN architecture (Girshick, 2015), which has 
been shown to perform very well on a wide variety of tasks while re-
maining rather fast. Its output is in the form of bounding boxes and 
associated class labels surrounding each detected specimen; how-
ever, bounding boxes are not yet sufficiently accurate for some in-
novative weed removal processes such as electrification. The center 

of the bounding box may be used to place the electrode, but it may 
not necessarily correspond to a good action point. For an efficient 
electrification, an appropriate positioning would be the apical bud 
of the plant, which would be better approximated by the barycenter 
(i.e., the center of gravity) of the plant itself (see Fig. 1). This issue 
is especially important during the the plant’s earliest growth stages, 
when there is often a significant disproportion between the sizes 
of the very first and subsequent leaves. This disproportion is visi-
ble until the plant reaches a more advanced stage of development, 
in which all its new leaves are of equivalent size. More generally, 
the precise detection of the shape of the specimens rather than a 
bounding box could make it possible to target very specific action 
points.

In this paper, we explore a new method for the accurate segmen-
tation and identification of individual plants based on the use of 
instance segmentation CNNs. The output of such a network is in 
the form of binary masks, which encode the shape of each detected 
specimen and a class label associated with each mask (see Fig. 2 for 
an example). We used a Mask R-CNN (He et al., 2017) architecture, 
for which we readjusted the hyperparameters to make them more 
adapted to the type of images and shapes encountered in precision 
farming. The model was then trained on a data set of 83 field images 
containing 2489 instances of crop and weed specimens that were 
manually segmented and identified by experts.

The resulting model was tested on a prototype electric weeding 
robot in the field under semi-controlled conditions. The experi-
ments reported in this article concern two crop species that are rep-
resentative of significantly different agricultural contexts in which 
the use of robots is developing. The first one, maize (Zea mays L.), is 
representative of a wide-spaced field crop species with a tall, narrow 
shape. The second, the common bean (Phaseolus vulgaris L.), is rep-
resentative of a shorter-spaced vegetable crop species with a spread-
ing shape. This work aims to answer the following questions: (i) Do 
the most advanced deep learning techniques allow for highly inno-
vative weed control approaches such as the targeted electrification 

FIGURE 1. These images illustrate the importance of detecting the barycenter of the visible 
plant (pink circles) rather than the center of a bounding box around the plant (blue circles). 
The barycenter is usually much closer than the bounding box to the apical bud of the plant.  
(A) Brassica nigra. (B) A weed plant.
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https://agriculture.gouv.fr/encouraging-results-ecophyto-plan-reduction-pesticide-use
https://agriculture.gouv.fr/encouraging-results-ecophyto-plan-reduction-pesticide-use


Applications in Plant Sciences 2020 8(7): e11373 Champ et al.—Automatic weed detection by agricultural robots • 3 of 10

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Champ et al.

of weeds by autonomous robots? (ii) What spatial accuracy can 
be expected with respect to a particular task such as detecting the 
barycenter of each individual plant? (iii) Do the shapes and sizes of 
weeds affect the performance of this approach?

METHODS

Experimental site and species selection

This work was carried out at the Montoldre experimental site in 
central France (46°20′07″N, 3°26′50″E). This site, managed by the 
Institut national de recherche en sciences et technologies pour 
l’environnement et l’agriculture (IRSTEA), is located in a vast ag-
ricultural basin that offers many advantages for the experimenta-
tion of robotic solutions in agriculture such as: (i) large non-rocky 
flat agricultural surfaces, (ii) substantial annual rainfall requiring 
only a small amount of irrigation, (iii) low exposure to intense me-
teorological events such as storms or hurricanes, (iv) a continental 
climate with smaller variations in temperature and humidity than 
other French regions (particularly in the south). Aerial and ground-
level views of this site are shown in Appendix S1.

In order to test our approach on differ-
ent combinations of crops and weeds and 
their associated differences in morphological 
characteristics and management constraints, 
two crop species and four weed species 
were selected and seeded in combination, 
as shown in the plan on Fig. 3 (see also ex-
ample plot in Appendix S1). The two crops 
used were maize, a large crop with wide plant 
spacings, and the common bean, a garden 
crop with a spreading shape and narrower 
spacings. We used two weed species with 
spreading shapes: the model species Brassica 
nigra (L.) W. D. J. Koch and the natural weed 
Matricaria chamomilla L. We also used two 
species with elongated shapes: the model 
species Lolium perenne L. and the natural 
weed Chenopodium album L.

These plants were grown following the experimental protocol 
presented in Appendix 1. The cultivation protocol was conducted 
from February 2019 to May 2019. Ground treatments (i.e., working 
the soil) with an automated spade were conducted from February 
to April, followed by a heat treatment designed to kill ungerminated 
seeds using localized high temperatures at the end of April. Sowings 
were conducted from the end of April to the middle of May, fol-
lowed by the installation of a plastic film to protect the seedlings 
against birds and/or insects. Visual data were acquired in May 2019.

Autonomous electrifier robot

Our experiment is based on the use of an agricultural robot, re-
cently developed by ecoRobotix (https://ecoro botix.com). This ro-
bot, equipped with two large solar panels, is fully autonomous. In 
its initial configuration, the robot works without being controlled 
by a human operator, as its progression through the crop field is 
based on the use of its camera and real-time kinematic global po-
sitioning system (RTK GPS). Two robotic arms apply a microdose 
of herbicide on detected weeds, based on a non-crop detector that 
was centered on inter-crop rows only. The machine can be fully 
controlled with a smartphone app. The technical information for 

FIGURE 2. Example of a binary mask output from the instance segmentation convolutional neural network. (A) Illustration of the individual masks 
manually produced for one image of the training set. Each mask is annotated with the species name of the plant in the database management system. 
(B) Magnification of one individual mask of a Brassica nigra plant, showing all of the points (in blue) used to produce the outline of the mask.

A B

FIGURE 3. Map of the experimental field, showing the different combinations of crops and 
weed species.

https://ecorobotix.com
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this robot is provided in Table 1. In the context of the WeedElec 
(http://chall enge-rose.fr/en/proje t/weede lec20 17-2/) initiative, the 
two sprayers on the robotic arms were removed and replaced by a 
high-voltage electrical head. Two complementary cameras (Canon 
EOS 60D [Canon, Tokyo, Japan] equipped with a Canon EFS 24-
mm lens [Macro 0.16 m/0.52 ft], and a Canon EOS 1300D equipped 
with a Canon EF 40-mm lens [Macro 0.3 m/0.98 ft]) were installed 
in the front of the robot below the solar panels. As illustrated in 
Appendix S2, the cameras were mounted 87 cm from the ground, 
just in front of the right robotic arm, in order to detect and identify 
weeds to be electrified.

Data set

To realistically evaluate our approach, the training samples and test 
samples that compose our data set were collected from separate 
crop rows of the experimental site (see Fig. 3). Eight plots (illus-
trated in Fig. 3, Appendix S1D) were reserved for the acquisition of 
training data, with each containing specimens of a single crop and 
a particular weed species. Naturally occurring weeds were not man-
ually controlled, but prior heat treatment drastically limited their 
development. Each plot was composed of two parallel rows of crop 
(Appendix S1D). Two plots (at the top of Fig. 3), each divided into 
four sections containing a particular combination of crop and weed 
species, were reserved for the acquisition of test data. The training 
and test samples were acquired on two different days with a marked 
difference in the ambient brightness levels. The robot followed a lin-
ear and continuous path above a plot, and the images were acquired 
every 45 cm. The receptive field of each image is approximately 
equal to 80 cm width × 52 cm length.

A set of 2956 images was obtained from the training plots, from 
which a subset of 83 images were manually selected and fully an-
notated using a customized version of COCO Annotator (https://
github.com/jsbro ks/coco-annot ator), an online web tool aimed at 
recording manually drawn masks and related labels. For the test set, 
the same tool was used on a random selection of 21 images acquired 
from the test plots. Masks were produced at the individual plant 
level and annotated with one of the six targeted species, plus an ad-
ditional category containing five additional weed species that grew 
naturally in the field and appeared in the images. It is important to 
emphasize that all visible crop and weed specimens were annotated 

in each image. Overall, this resulted in a data set of 2489 annotated 
plant specimens, each associated with a species name and a unique 
segmentation mask. Using this methodology, we obtained an aver-
age of 23.9 specimens per image. Details of the composition of the 
resulting training and test sets are provided in Table 2 (in particular, 
the number of annotated masks per crop and weed species).

Deep learning detection and identification model

As discussed in the introduction, our fine-grained detection 
method is based on the Mask R-CNN architecture (He et al., 2017), 
which was selected for its robustness and demonstrated efficiency 
in instance segmentation tasks and challenges such as MS COCO 
(Microsoft Common Objects in Context; Lin et al., 2014). We used 
the Facebook Mask R-CNN benchmark (Massa and Girshick, 2018) 
implemented with PyTorch (Paszke et al., 2017). This implementa-
tion offers different configurations for the backbone CNN and for 
instance segmentation. We chose ResNet-50 (He et al., 2016) as the 
backbone CNN and Feature Pyramid Networks (Lin et al., 2017) for 
instance segmentation.

To adjust the hyperparameters of this architecture, we calculated 
some statistics on the size of the masks in the training set (see Fig. 
4). Based on this and hardware constraints, we used the following 
hyperparameter values: (i) Input image size: Images were resized 
so that their shorter edge was 1200 pixels and the longest one 2048 
pixels. This allowed the model to be run in a reasonable time (about 
4 h) on a standard graphics processing unit (with 8 Gb memory). 
(ii) Anchor size and stride: Anchors are the raw regions of interest 
used by the region proposal network to select the candidate bound-
ing boxes for object detection. We chose their size to guarantee that 
99% of the targeted objects were sized within the range between 
the minimal and the maximal anchor sizes. The anchor size values 
were therefore set to [32;64;128;256;512], the anchor stride values to 
[4;8;16;32;64], and the anchor ratios to [0.5;1;2]. This was done with 
the aim of selecting them in the most generalizable way and to avoid 
consuming important computational resources to tune them auto-
matically. (iii) Non-maximal suppression (NMS), which quantifies 
the degree of overlap tolerated between two distinct objects, was set 
to 0.1, making it possible to have a slight overlap between detected 
objects. (iv) Maximum number of objects per image: During the 
training process, 512 objects among the ones with the best object-
ness were used to train the segmentation component.

The training of the model was run on a GeForce RTX 2070 
(NVIDIA, Santa Clara, California, USA) using stochastic gradient 
descent with the following parameters: a batch size of 2, the total 

TABLE 1. ecoRobotix robot specifications.

Characteristics Details

Dimensions 2.20 m × 1.70 m × 1.30 m (width × length × 
height, camera folded down)

Weight 130 kg
Width of area covered 2 m
Speed 0.4 m/s (mean)
Space between crops 35–70 cm (adjustable)
Maximum height of crop 25 cm
Robotic arms Executing 4000 movements per hour
Precision <2 cm
Energy Two photovoltaic panels, with 380-W solar cells
Initial sensors Megapixel camera, real-time kinematic global 

positioning system (RTK GPS), compass
Communication Short (WiFi) or long distance (mobile phone 

networks)
Soil humidity/wind 

requirements
Soil must not be too wet or viscous. Maximum 

wind 60 km/h at ground level

TABLE 2. Number of object instances per species in the training and the test 
data sets.

Species name Species type Training data set Test data set

Zea mays L. Crops 98 28
Phaseolus vulgaris L. Crops 405 49
Brassica nigra (L.) W. 

D. J. Koch
Cultivated weed 238 26

Matricaria 
chamomilla L.

Cultivated weed 362 333

Lolium perenne L. Cultivated weed 290 46
Chenopodium 

album L.
Cultivated weed 228 34

Other weeds Natural weed 868 502

http://challenge-rose.fr/en/projet/weedelec2017-2/
https://github.com/jsbroks/coco-annotator
https://github.com/jsbroks/coco-annotator
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number of epochs set to 40, and a learning rate of 0.001. The evalu-
ation of the most appropriate epoch number was performed on the 
validation set during the training phase. We use a warmup strat-
egy, where the learning rate increases linearly from 0.0005 to 0.001 
during the first epoch. To improve the invariance and robustness of 
the model, we applied a large set of data augmentation techniques 
including random horizontal and vertical flips, random rotations, 
and random variations in color contrast, saturation, brightness, 
and hue color values. To prevent overfitting and underfitting by the 
model, we made extensive use of batch normalization (Ioffe and 
Szegedy, 2015), which is currently the most effective and popular 
regularization technique in deep learning.

Description of experiments

Based on the predicted and expected object instances of the test set, 
we computed the following evaluation measurements:

• Average precision at a fixed intersection over union value: This 
is a common metric used to evaluate instance segmentation 
tasks, in particular in the context of the popular MS COCO 
challenge (http://cocod ataset.org/#detec tion-eval [accessed 2 
June 2020]) (Lin et al., 2014) which is the most authoritative 
benchmark in the field of object recognition and detection. 
The first step consists of determining, for each object of the 
ground truth (i.e., the desired output prediction of an algo-
rithm on a specific input), all the candidate detections that 
have sufficient overlap with it. This is done by computing the 
union and intersection of the object’s masks and keeping only 
the predicted masks that have an intersection over union (IoU) 
value above a fixed threshold (in our case, IoU > 50%). Then, 
for a given class (i.e., a given species in our case), all the re-
maining matches are sorted by decreasing confidence in the 
prediction (i.e., by the maximum probability of the softmax 
output of the classifier). Finally, the average precision (AP) is 
computed from that sorted list according to:

where Ngt is the number of object instances in the ground truth, 
�(. ) is an indicator function equaling 1 if the predicted label of 
the detected object is equal to the ground truth label, and P(k) is 

the precision measured over the top-k results (i.e., the number of 
correct matches in the top-k first detections divided by k).

• Size-wise AP: The AP regarding the size of objects is defined as 
follows: small—an area between 0 and 3.5 cm2; medium—an 
area between 3.5 and 9.5 cm2; and large—an area higher than 9.5 
cm2.

• Detection and confusion probability matrix: This is a matrix that 
gives the probability of detecting a specimen of a particular spe-
cies and the probability of misclassifying it as another species. It 
was computed based on the best match of each specimen regard-
ing the prediction score (i.e., softmax output).

• Error of the barycenter position: As discussed earlier, the bary-
center of the plant may be considered as a good positioning 
point for precise weed removal processes such as electrification. 
We therefore computed the average spatial distance between the 
barycenter of the masks in the ground truth and the predicted 
masks, and considered the predicted masks that had the best 
IoU with the ground truth to contain a correct label. Moreover, 
to fairly evaluate the benefit of considering masks rather than 
bounding boxes, we also computed this error by using the cen-
ter of the bounding box of the predicted mask rather than the 
barycenter. Distances were first computed in pixels and then 
converted to millimeters using a calibration of the image size 
with regard to the real respective field.

RESULTS

Heterogeneity of performance across species

Figure 5 displays the AP of the model predictions for the two tar-
geted crops, the four targeted weeds, and the additional weeds cat-
egory referred as other weeds. A high variability of performance 
can be observed across the different categories of plants. The best 
AP was obtained for Zea mays (AP = 0.85), demonstrating the very 
good detection, segmentation, and identification of most specimens 
of that crop. Among the remaining species, Phaseolus vulgaris and 
Brassica nigra were also well detected, with APs equal to 0.59 and 
0.73, respectively. The other three targeted classes were more diffi-
cult to detect; the resulting AP was 0.45 for Chenopodium album, 
0.36 for other weeds, and 0.27 for Matricaria chamomilla. The low-
est score was obtained for Lolium perenne, which had an AP of 0.15. 
The mean AP across all categories was 0.49.

Impact of plant size

To better understand the variability of performance, Fig. 6 displays 
the AP values broken down by plant size category rather than by 
plant type. As we can see, plant size had a significant impact on per-
formance. Plants annotated with a mask larger than 9.5 cm2 were 
detected with an AP of 0.51, while the smallest plants (less than 3.5 
cm2) were detected with an AP of 0.22. It is important to remember 
here that the hyperparameters of our model were chosen in such 
a way as to cover all sizes of objects present. The higher probabil-
ity of misdetection for the small objects is thus likely to be due to 
a bias rather than a problem of resolution. This was confirmed by 
the statistics presented in Fig. 7, which show the percentages of 
objects of each size in the training set, the ground truth, and the 

AP =

∑n

k=1
P(k)�(ŷk= yk)

Ngt

FIGURE 4. Statistics of the size of the bounding boxes for the plant in-
stances in the training set.

http://cocodataset.org/#detection-eval


Applications in Plant Sciences 2020 8(7): e11373 Champ et al.—Automatic weed detection by agricultural robots • 6 of 10

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Champ et al.

predictions. As we can see, at equivalent numbers of plant instances, 
the proportion of small predicted objects is much lower than in the 
ground truth (whereas the training and test sets have similar statis-
tics). In future work, we will investigate this problem more deeply 

to determine the provenance of the bias (e.g., a bias in the anchor 
sampling step or in the objectness measure) leading to detection/
segmentation issues such as a single large object being detected in-
stead of two small ones.

Applicability of the method

To measure the applicability of this method for weed removal, 
Fig. 8 provides the matrix of the probabilities of detection and 
misclassification for two different operating points. (Operating 
points can be seen as specific points within the operation charac-
teristic of the robot.) The first operating point corresponds to the 
case in which the system returns, on average, as many detections 
per image as in the training set. This point is based on a probabil-
ity threshold of 0.1. The second operating point corresponds to a 
stricter thresholding promoting precision rather than recall. This 
point is based on a probability threshold of 0.6. The most critical 
values in these matrices are the diagonal values of weed species 
and the intersections of crop rows and weed columns. The former 
give the probability of detecting specimens of a particular weed 
species and, consequently, a max-bound estimate of the probabil-
ity of eliminating them. The intersections of crop rows and weed 
columns give the probability of misclassifying a particular crop as 
a particular weed and, consequently, a max-bound estimate of the 
risk of removing a crop during the weeding operation.

The matrix in Fig. 8A (corresponding to the first operating point) 
shows that 45% to 73% of the weeds may be removed if one toler-
ates that 6% to 29% of the crops may also be erroneously eliminated. 
Such a loss rate may initially seem too high, but this conclusion can 
be moderated if we look more closely at the crop specimens that 
have been misclassified. Indeed, most of them usually correspond 
to outliers such as deteriorated, unhealthy, or degenerated individ-
uals (see Fig. 9 for a few examples), the removal of which may not 
necessarily lead to a decrease in yield. The bottom matrix shows that 
9% to 62% of the weeds may be removed if we use a more secure 
operating point at which only 0% to 2% of crops may be eliminated 
by error.

Spatial accuracy of detection

We computed that the average error is 6.1 mm using the bound-
ing box center and 2.2 mm using the predicted mask barycenter. 

FIGURE 5. Average precision per species for an intersection over union 
(IOU) value of 50%. Crops are in red, weeds in green, and the mean aver-
age precision over all classes in blue.

FIGURE 6. Average precision by plant size: Small plants—area between 
0 and 3.5 cm2; medium plants—area between 3.5 and 9.5 cm2; large 
plants—area higher than 9.5 cm2.

FIGURE 7. Percentage of objects of each size in the training set, the ground truth, and the test set. For the test set, we considered the 101,018  
instances with the best prediction score (in order to have the same number of instances as in the test set).
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This shows that using instance segmentation instead of a classi-
cal bounding box detection approach enables the much more ac-
curate prediction of the true barycenter position (i.e., the “mean 
centroid”). In the context of weed electrification, an error of 2 mm 
instead of 6 mm could lead to a much more precise positioning of 
the electrode and, consequently, a much more efficient elimination 
of the weed.

DISCUSSION

The purpose of this work was to develop and test an instance seg-
mentation method for the fine detection of weeds and crops in 

precision agriculture. In particular, our aim 
was to evaluate the possibility of imple-
menting electrification-type weeding, which 
requires high detection and identification 
accuracy. The main outcome of our study is 
that deep learning technologies such as mask 
R-CNN could be beneficial in automatic weed 
removal but there is still a margin for im-
provement regarding detection performance. 
To further answer the question of the current 
benefit of this technology, it will be necessary 
to set up weed removal experiments in the 
field.

We showed that the smaller the weeds, 
the higher the probability of misdetection; 
however, this may not necessarily be an issue 
for setting up innovative weeding practices. 
Autonomous robots in particular could have a 
higher passage frequency, meaning that weeds 
missed in the first pass could be eliminated in 
subsequent passes. Moreover, a partial elim-
ination of the weeds could be sufficient to 
achieve high yield returns. This highlights the 
necessity of measuring the performance of an 
end-to-end weed removal process, with quan-
titative indicators such as the produced crop 
biomass.

The precise segmentation and identi-
fication of weeds at the specimen level is 
possible thanks to recent advances in deep 
learning, such as instance segmentation 
CNNs. This opens many opportunities for 
adapting and optimizing the treatment of 
each specimen. As shown in our study, it 
is possible to detect the barycenter of each 
specimen with a precision of 2 mm, enabling 
the use of innovative weeding approaches 
such as the electrification of the plant. Given 
that we observed that a distance of less than 
1.5 cm between the weed and the electric 
head triggered an electric arc, the precision 
of these results allows this approach to be 
considered as a significant tool for weed 
control in the future.

Increasing the diversity and quantity of 
training data will be a necessity. It is important 
to remember that the performance obtained 

in this research was based on a rather small training data set of 83 
images acquired in a single year using a small number of devices, 
and with specific agricultural practices. The performance could be 
considerably enhanced by enriching the data set. Diversifying the 
acquisition conditions (e.g., different sites, dates, agricultural prac-
tices), in particular, will be necessary to improve the robustness 
and genericity of the approach. A collaborative approach involving 
a more diverse group of farmers seems to be the most promising 
solution. Furthermore, increasing the taxonomic coverage will be 
essential for wide acceptance, considering that, in Western Europe 
alone, several hundred weed species exist (Munoz et al., 2017). The 
scalability of our approach will only be possible with the substantial 
involvement of all the key actors in weed science, who are able to 

FIGURE 8. Detection and confusion probability matrix for two different operating points. (A) 
Top matrix: threshold = 0.1. (B) Bottom matrix: threshold = 0.6. Each row gives the probability of 
classifying a plant of a given species into the set of all possible species.
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detect and recognize a large number of weed species at their 
early stages.

There is still significant room for improvement in de-
tection. In addition to future progress in terms of deep 
learning architectures, many additional improvements 
could be implemented and tested. In particular, a priori 
knowledge such as the size of the target species could 
greatly improve their detection (and correct biases such 
as the one observed in the framework we used, which is 
illustrated in Fig. 7, i.e., the fact that a proportion of small 
plants are much more important in the training set than in 
our test set). The fact that crops are planted in rows could 
also be used as a priori knowledge and greatly improve 
the detection and preservation of the crops. Possible im-
provements could also be achieved in a variety of ways, 
including setting up stronger acquisition conditions (e.g., 
artificial lighting, use of a vision chamber [i.e., a work 
space providing controlled conditions for image acquisi-
tion]), obtaining higher-resolution images, or using a wa-
terproof camera closer to the ground.

More generally, it could be beneficial to regulate the 
weeding action of the robot based on criteria other than the 
detection of weeds alone. A better understanding of the in-
teractions between crops and weeds could, for instance, al-
low the determination of which species should be removed 
at which growth stages, and what intensity of electrification 
should be used based on parameters such as weed size or 
time of year. The growth stage and health status of the crop 
could also be automatically determined in order to adapt the 
treatment. Our work could then contribute to and benefit 
from the wide range of research activities conducted on the 
evaluation and development of machine learning techniques 
in plant phenotyping (Singh et al., 2018; Ruiz-Munoz et al., 
2020), crop protection (Van Evert et al., 2017), plant biology 
(Goëau et al., 2020; Mahood et al., 2020), and taxonomic 
studies (Little et al., 2020; Saryan et al., 2020).
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FIGURE 9. Illustration of the detection results. (A) Input image acquired by the 
robot. (B) Ground truth (specimens annotated manually). (C) Automatic detec-
tion results showing four sample cases: (1) an example of a correctly detected 
bean (Phaseolus vulgaris), (2) an example of a misclassified bean (Phaseolus vul-
garis), (3) an example of a correctly detected weed, (4) an example of two weeds 
detected as a single weed.
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Additional Supporting Information may be found online in the 
supporting information tab for this article.

APPENDIX S1. Location and overview of the experimental site. 
(A) Location of the Montoldre experimental site in central France. 
(B) Aerial view of the IRSTEA research center at Montoldre, with 
the 4-ha experimental field highlighted in red. (C) Photograph of 
the experimental field with the robot in action. (D) Two rows of 
young maize plants (Zea mays), seeded with Chenopodium album 
in the same rows.

APPENDIX S2. Sketch of the modified ecoRobotix agricultural ro-
bot used in this study, showing the position of the cameras for weed 
detection and the location of the electric head.
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APPENDIX 1.  Cultivation protocol used in this study.

• 20 February 2019: First ground treatment with an automated 
spade.

• 4 April 2019: Second ground treatment with an automated  
spade.

• 26–29 April 2019: Heat treatment at 1450°C with a cutilight 
(PIRO-PTRF model, marketed by MME Environnement, 

Veuilly-la-Poterie, France) traveling at 1.5 km/h for the first 
treatment and 600 m/h for the second treatment.

• 30 April to 13 May 2019: Sowing of Zea mays L. and Phaseolus 
vulgaris L. in specific rows (200 m long × 1 m wide). Weeds were 
sown inter- and intra-row at a density of 54 seeds per linear 
meter (for higher-density zones) and 27 seeds per linear meter  
(for lower-density zones).
◦ Zea mays: two rows per plot, 45,000 plants per hectare,  

inter-seed spacing of 30 cm, and inter-row spacing of 75 cm.
◦ Phaseolus vulgaris: three rows per plot, 190,000 plants per 

hectare, inter-seed spacing of 14 cm, and inter-row spacing of 
37.5 cm.

• Installation of a plastic film to protect seedlings against birds 
and insects (Biofilm [Polystar Plastics Ltd., Northam, UK], 1.5 m 
wide × 250 m long).

• 22 May 2019: Visual training data acquisition.
• 23 May 2019: Visual test data acquisition.


