T. Bakker, K. Van-asselt, J. Bontsema, J. Müller, and G. Van-straten, An autonomous weeding robot for organic farming, Field and Service Robotics, pp.579-590, 2006.

P. Bàrberi, Weed management in organic agriculture: Are we addressing the right issues?, Weed Research, vol.42, issue.3, pp.177-193, 2002.

W. Bond, R. J. Turner, and A. C. Grundy, A review of non-chemical weed management, 81. HDRA, the Organic Organisation, 2003.

J. Champ, A. Mora-fallas, H. Goëau, E. Mata-montero, P. Bonnet et al., 2020. An annotated visual dataset for automatic weed detection and identification. Available at Zenodo repository, p.24, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02873670

M. F. Diprose and F. A. Benson, Electrical methods of killing plants, Journal of Agricultural Engineering Research, vol.30, pp.197-209, 1984.

R. ;. Girshick, H. Goëau, A. Mora-fallas, J. Champ, N. Love et al., A new fine-grained method for automated visual analysis of herbarium specimens: A case study for phenological data extraction, Proceedings of the IEEE International Conference on Computer Vision, vol.8, p.11368, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016.

K. He, G. Gkioxari, P. Dollár, and R. Girshick, Mask R-CNN, Proceedings of the IEEE International Conference on Computer Vision, pp.2961-2969, 2017.

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015.

T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona et al., Microsoft COCO: Common objects in context, European Conference on Computer Vision, pp.740-755, 2014.

T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan et al., Feature pyramid networks for object detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2117-2125, 2017.

D. P. Little, M. Tulig, K. C. Tan, Y. Liu, S. Belongie et al., An algorithm competition for automatic species identification from herbarium specimens, Applications in Plant Sciences, vol.8, issue.6, p.11365, 2020.

P. Lottes, J. Behley, A. Milioto, and C. Stachniss, Fully convolutional networks with sequential information for robust crop and weed detection in precision farming, IEEE Robotics and Automation Letters, vol.3, issue.4, pp.2870-2877, 2018.

E. H. Mahood, L. H. Kruse, and G. D. Moghe, Machine learning: A powerful tool for gene function prediction in plants, Applications in Plant Sciences, vol.8, issue.7, p.11376, 2020.

F. Massa and R. Girshick, maskrcnn-benchmark: Fast, modular reference implementation of instance segmentation and object detection algorithms in PyTorch, p.16, 2018.

P. A. Matson, W. J. Parton, A. G. Power, and M. J. Swift, Agricultural intensification and ecosystem properties, Science, vol.277, issue.5325, pp.504-509, 1997.

A. Milioto, P. Lottes, and C. Stachniss, Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs, IEEE International Conference on Robotics and Automation (ICRA), pp.2229-2235, 2018.

A. K. Mortensen, M. Dyrmann, H. Karstoft, R. N. Jorgensen, and R. Gislum, Semantic segmentation of mixed crops using deep convolutional neural network, Proceedings of the International Conference of Agricultural Engineering, 2017.

F. Munoz, G. Fried, L. Armengot, B. Bourgeois, V. Bretagnolle et al., Database of weeds in cultivation fields of France and UK, with ecological and biogeographical information, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01667268

, Available at Zenodo repository, 2017.

R. Nolte, S. Behrendt, M. Magro, and K. Pietras, HERBIE: Guidelines, state of the art and integrated assessment of weed control and management for railways: Assessment and Recommendations, UIC-ETF (Edition Techniques Ferroviaires), 2018.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang et al., Autodiff Workshop: The future of gradient-based machine learning software and techniques, 2017.

D. Pimentel, L. Lach, R. Zuniga, and D. Morrison, Environmental and economic costs of nonindigenous species in the United States, BioScience, vol.50, issue.1, pp.53-66, 2000.

C. Potena, D. Nardi, and A. Pretto, Fast and accurate crop and weed identification with summarized train sets for precision agriculture, International Conference on Intelligent Autonomous Systems, pp.105-121, 2016.

J. F. Ruiz-munoz, A. Zare, J. K. Nimmagadda, S. Cui, and J. E. Baciak, Super resolution for root imaging, Applications in Plant Sciences, vol.8, issue.7, p.11374, 2020.

I. Sa, Z. Chen, M. Popovi?, R. Khanna, F. Liebisch et al., weedNet: Dense semantic weed classification using multispectral images and MAV for smart farming, IEEE Robotics and Automation Letters, vol.3, issue.1, pp.588-595, 2017.

P. Saryan, S. Gupta, and V. Gowda, Species complex delimitations in the genus Hedychium: A machine learning approach for cluster discovery, Applications in Plant Sciences, vol.8, issue.7, p.11377, 2020.

A. K. Singh, B. Ganapathysubramanian, S. Sarkar, and A. Singh, Deep learning for plant stress phenotyping: Trends and future perspectives, Trends in Plant Science, vol.23, issue.10, pp.883-898, 2018.

D. C. Slaughter, D. K. Giles, and D. Downey, Autonomous robotic weed control systems: A review, Computers and Electronics in Agriculture, vol.61, issue.1, pp.63-78, 2008.

B. Steward, G. Jingyao, and T. Lie, The use of agricultural robots in weed management and control, Robotics and automation for improving agriculture, vol.44, 2019.

D. Tilman, C. Balzer, J. Hill, and B. L. Befort, Global food demand and the sustainable intensification of agriculture, Proceedings of the National Academy of Sciences, vol.108, issue.50, pp.20260-20264, 2011.

F. K. Van-evert, S. Fountas, D. Jakovetic, V. Crnojevic, I. Travlos et al., Big data for weed control and crop protection, Weed Research, vol.57, issue.4, pp.218-233, 2017.

C. Vigneault and D. L. Benoît, Electrical weed control: Theory and applications, Physical control methods in plant protection, pp.174-188, 2001.

C. Vigneault, D. L. Benoit, and N. B. Mclaughlin, Energy aspects of weed electrocution, Reviews of Weed Science, vol.5, pp.15-26, 1990.

, APPENDIX 1. Cultivation protocol used in this study

, First ground treatment with an automated spade, 2019.

, Second ground treatment with an automated spade, 2019.

, Heat treatment at 1450°C with a cutilight (PIRO-PTRF model, marketed by MME Environnement, Veuilly-la-Poterie, France) traveling at 1.5 km/h for the first treatment and 600 m/h for the second treatment, pp.26-29, 2019.

, Sowing of Zea mays L. and Phaseolus vulgaris L. in specific rows (200 m long × 1 m wide). Weeds were sown inter-and intra-row at a density of 54 seeds per linear meter (for higher-density zones) and 27 seeds per linear meter, 2019.

, ? Zea mays: two rows per plot, 45,000 plants per hectare, inter-seed spacing of 30 cm, and inter-row spacing of 75 cm

, ? Phaseolus vulgaris: three rows per plot, 190,000 plants per hectare, inter-seed spacing of 14 cm, and inter-row spacing of 37, vol.5

, ? Installation of a plastic film to protect seedlings against birds and insects (Biofilm [Polystar Plastics Ltd

?. 22, Visual training data acquisition. ? 23, 2019.