K. Aarnisalo, T. Autio, A. M. Sjoberg, J. Lunden, H. Korkeala et al., Typing of Listeria monocytogenes isolates originating from the food processing industry with automated ribotyping and pulsed-field gel electrophoresis, J Food Prot, vol.66, pp.249-255, 2003.

B. Ajouz, A. Berrier, A. Garrigues, M. Besnard, and A. Ghazi, Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells, J Biol Chem, vol.273, pp.26670-26674, 1998.

J. E. Alouf, Cholesterol-binding cytolytic protein toxins, Int J Med Microbiol, vol.290, pp.351-356, 2000.

J. E. Alouf, Molecular features of the cytolytic pore-forming bacterial protein toxins, Folia Microbiol, vol.48, pp.5-16, 2003.

C. Alvarez-dominguez, J. A. Vazquez-boland, E. Carrasco-marin, P. Lopez-mato, and F. Leyva-cobian, Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition, Infect Immun, vol.65, pp.78-88, 1997.

M. A. Andrade, F. D. Ciccarelli, C. Perez-iratxeta, and P. Bork, NEAT: a domain duplicated in genes near the components of a putative Fe3+ siderophore transporter from Gram-positive pathogenic bacteria, 2002.

, Genome Biol, vol.3, p.47

C. Archambaud, E. Gouin, J. Pizarro-cerda, P. Cossart, and O. Dussurget, Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes, Mol Microbiol, vol.56, pp.383-396, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02677207

C. Archambaud, M. A. Nahori, J. Pizarro-cerda, P. Cossart, and O. Dussurget, Control of Listeria superoxide dismutase by phosphorylation, J Biol Chem, vol.281, pp.31812-31822, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02661835

N. Autret, I. Dubail, P. Trieu-cuot, P. Berche, and A. Charbit, Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis, Infect Immun, vol.69, pp.2054-2065, 2001.

T. Bae and O. Schneewind, The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing, J Bacteriol, vol.185, pp.2910-2919, 2003.

M. Baumgärtner, U. Kärst, B. Gerstel, M. Loessner, J. Wehland et al., Inactivation of Lgt allows systematic characterization of lipoproteins from Listeria monocytogenes, J Bacteriol, vol.189, pp.313-324, 2007.

K. W. Bayles, Are the molecular strategies that control apoptosis conserved in bacteria?, Trends Microbiol, vol.11, pp.306-311, 2003.

J. D. Bendtsen, L. Kiemer, A. Fausboll, and S. Brunak, Non-classical protein secretion in bacteria, BMC Microbiol, vol.5, p.58, 2005.

B. Bergmann, D. Raffelsbauer, M. Kuhn, M. Goetz, S. Hom et al., InlA-but not InlBmediated internalization of Listeria monocytogenes by non-phagocytic mammalian cells needs the support of other internalins, Mol Microbiol, vol.43, pp.557-570, 2002.

S. Bergmann, M. Rohde, G. S. Chhatwal, and S. Hammerschmidt, ?-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface, Mol Microbiol, vol.40, pp.1273-1287, 2001.

S. Bergmann, M. Rohde, and S. Hammerschmidt, Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein, Infect Immun, vol.72, pp.2416-2419, 2004.

S. Bhakdi, A. Valeva, I. Walev, A. Zitzer, and M. Palmer, Pore-forming bacterial cytolysins, Symp Ser Soc. Appl Microbiol, vol.27, pp.15-25, 1998.

H. Bierne and P. Cossart, InlB, a surface protein of Listeria monocytogenes that behaves as an invasin and a growth factor, J Cell Sci, vol.115, pp.3357-3367, 2002.

H. Bierne and P. Cossart, Listeria monocytogenes surface proteins: from genome predictions to function, Microbiol Mol Biol Rev, vol.71, pp.377-397, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02658949

H. Bierne, C. Garandeau, M. G. Pucciarelli, C. Sabet, S. Newton et al., Sortase B, a new class of sortase in Listeria monocytogenes, J Bacteriol, vol.186, pp.1972-1982, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682999

H. Bierne, S. K. Mazmanian, M. Trost, M. G. Pucciarelli, G. Liu et al., Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence, Mol Microbiol, vol.43, pp.869-881, 2002.

H. Bierne, C. Sabet, N. Personnic, and P. Cossart, Internalins: complex family of leucine-rich repeat containing proteins in Listeria monocytogenes, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02666058

A. Bigot, H. Pagniez, E. Botton, C. Fréhel, I. Dubail et al., Role of FliF and FliI of Listeria monocytogenes in flagellar assembly and pathogenicity, Infect Immun, vol.73, pp.5530-5539, 2005.

S. J. Billington, B. H. Jost, and J. G. Songer, Thiolactivated cytolysins: structure, function and role in pathogenesis, FEMS Microbiol Lett, vol.182, pp.197-205, 2000.

A. Billion, R. Ghai, T. Chakraborty, and T. Hain, Augur -a computational pipeline for whole genome microbial surface protein prediction and classification, Bioinformatics, vol.22, pp.2819-2820, 2006.

A. L. Bisno and D. L. Stevens, Streptococcal infections of skin and soft tissues, N Engl J Med, vol.334, pp.240-245, 1996.

M. R. Bladergroen, K. Badelt, and H. P. Spaink, Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperaturedependent protein secretion, Mol Plant-Microbe Interact, vol.16, pp.53-64, 2003.

M. A. Blight, C. Chervaux, and I. B. Holland, Protein secretion pathway in Escherichia coli, Curr Opin Biotechnol, vol.5, pp.468-474, 1994.

J. Boekhorst, M. W. De-been, M. Kleerebezem, and R. J. Siezen, Genome-wide detection and analysis of cell wall-bound proteins with LPXTGlike sorting motifs, J Bacteriol, vol.187, pp.4928-4934, 2005.

C. Bonnemain, C. Raynaud, H. Reglier-poupet, I. Dubail, C. Frehel et al., Differential roles of multiple signal peptidases in the virulence of Listeria monocytogenes, Mol Microbiol, vol.51, pp.1251-1266, 2004.

E. Borezee, E. Pellegrini, J. L. Beretti, and P. Berche, SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes, Microbiology, vol.147, pp.2913-2923, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02683435

L. Braun, B. Ghebrehiwet, and P. Cossart, gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes, EMBO J, vol.19, pp.1458-1466, 2000.

M. Braunstein, B. J. Espinosa, J. Chan, J. T. Belisle, and W. R. Jacobs, SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis, Mol Microbiol, vol.48, pp.453-464, 2003.

S. Brinster, S. Furlan, and P. Serror, C-terminal WXL domain mediates cell wall binding in Enterococcus faecalis and other Gram-positive bacteria, J Bacteriol, vol.189, pp.1244-1253, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02658553

D. G. Brockstedt, M. A. Giedlin, M. L. Leong, K. S. Bahjat, Y. Gao et al., , 2004.

, Listeria-based cancer vaccines that segregate immunogenicity from toxicity, Proc Natl Acad Sci, vol.101, pp.13832-13837

P. Brodin, I. Rosenkrands, P. Andersen, S. T. Cole, and R. Brosch, ESAT-6 proteins: protective antigens and virulence factors, Trends Microbiol, vol.12, pp.500-508, 2004.

M. L. Burts, W. A. Williams, K. Debord, and D. M. Missiakas, EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections, Proc. Natl Acad. Sci. U.S.A, vol.102, pp.1169-1174, 2005.

D. Cabanes, P. Dehoux, O. Dussurget, L. Frangeul, and P. Cossart, Surface proteins and the pathogenic potential of Listeria monocytogenes, Trends Microbiol, vol.10, pp.238-245, 2002.

D. Cabanes, O. Dussurget, P. Dehoux, and P. Cossart, Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence, Mol Microbiol, vol.51, pp.1601-1614, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02683316

D. Cabanes, S. Sousa, A. Cebria, M. Lecuit, F. Garcia-del-portillo et al., Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein, EMBO J, vol.24, pp.2827-2838, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683320

S. S. Chatterjee, H. Hossain, S. Otten, C. Kuenne, K. Kuchmina et al., Intracellular gene expression profile of Listeria monocytogenes, Infect Immun, vol.74, pp.1323-1338, 2006.

P. Chavant, B. Gaillard-martinie, and M. Hebraud, Antimicrobial effects of sanitizers against planktonic and sessile Listeria monocytogenes cells according to the growth phase, FEMS Microbiol Lett, vol.236, pp.241-248, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02681178

P. Chavant, B. Martinie, T. Meylheuc, M. N. Bellon-fontaine, and M. Hebraud, Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases, Appl. Environ Microbiol, vol.68, pp.728-737, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02683411

I. Chen, R. Provvedi, and D. Dubnau, A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis, J Biol Chem, vol.281, pp.21720-21727, 2006.

Y. Chen, W. Zhang, and S. J. Knabel, Multivirulence-locus sequence typing identifies single nucleotide polymorphisms which differentiate epidemic clones and outbreak strains of Listeria monocytogenes, J. Clin Microbiol, vol.45, pp.835-846, 2007.

J. P. Claverys, A new family of high-affinity ABC manganese and zinc permeases, Res Microbiol, vol.152, pp.231-243, 2001.

M. D. Collins, S. Wallbanks, D. J. Lane, J. Shah, R. Nietupski et al., Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA, Int J. Syst Bacteriol, vol.41, pp.240-246, 1991.

D. Comfort and R. T. Clubb, A comparative genome analysis indentifies disctinct sorting pathways in Gram-positive bacteria, Infect Immun, vol.72, pp.2710-2722, 2004.

S. E. Converse and J. S. Cox, A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis, J. Bacteriol, vol.187, pp.1238-1245, 2005.

P. Cossart, Molecular and cellular basis of the infection by Listeria monocytogenes: an overview, Int J Med Microbiol, vol.291, pp.401-409, 2002.

P. Cossart and J. Mengaud, Listeria monocytogenes: A model system for the molecular study of intracellular parasitism, Mol Biol Med, vol.6, pp.463-474, 1989.

P. Cossart, M. F. Vicente, J. Mengaud, F. Baquero, J. C. Perez-diaz et al., Listeriolysin UNCORRECTED FIRST PROOFS Listeria monocytogenes | 325, 1989.

, O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation, Infect Immun, vol.57, pp.3629-3636

G. A. Dabiri, J. M. Sanger, D. A. Portnoy, and F. S. Southwick, Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly, Proc Natl Acad Sci, vol.87, pp.6068-6072, 1990.

S. Das and K. Chaudhuri, Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis, In Silico Biol, vol.3, pp.287-300, 2003.

M. Desvaux and M. Hébraud, The protein secretion systems in Listeria: inside out bacterial virulence, FEMS Microbiol Rev, vol.30, pp.774-805, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02666448

M. Desvaux, E. Dumas, I. Chafsey, and M. Hébraud, Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure, FEMS Microbiol Lett, vol.256, pp.1-15, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02667211

M. Desvaux, M. Hebraud, I. R. Henderson, and M. J. Pallen, Type III secretion: what' s in a name?, Trends Microbiol, vol.14, pp.157-160, 2006.

M. Desvaux, A. Khan, A. Scott-tucker, R. R. Chaudhuri, M. J. Pallen et al., , 2005.

, Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC824, Biochim Biophys Acta-Mol Cell Res, vol.1745, pp.223-253

M. Desvaux, N. J. Parham, A. Scott-tucker, and I. R. Henderson, The general secretory pathway: a general misnomer, Trends Microbiol, vol.12, pp.306-309, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02910759

K. Dilks, R. W. Rose, E. Hartmann, and M. Pohlschröder, Prokaryotic utilization of the twinarginine translocation pathway: a genomic survey, J Bacteriol, vol.185, pp.1478-1483, 2003.

U. Dobrindt, B. Hochhut, U. Hentschel, and J. Hacker, Genomic islands in pathogenic and environmental microorganisms, Nat Rev Microbiol, vol.2, pp.414-424, 2004.

E. Domann, M. Leimeister-wachter, W. Goebel, and T. Chakraborty, Molecular cloning, sequencing, and identification of a metalloprotease gene from Listeria monocytogenes that is species specific and physically linked to the listeriolysin gene, Infect Immun, vol.59, pp.65-72, 1991.

E. Domann, J. Wehland, M. Rohde, S. Pistor, M. Hartl et al., A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin, EMBO J, vol.11, pp.1981-1990, 1992.

L. Dons, E. Eriksson, Y. Jin, M. E. Rottenberg, K. Kristensson et al., Role of flagellin and the two-component CheA/CheY system of Listeria monocytogenes in host cell invasion and virulence, Infect Immun, vol.72, pp.3237-4324, 2004.

D. W. Dorward and C. F. Garon, DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria, Appl Environ Microbiol, vol.56, pp.1960-1962, 1990.

S. Dramsi, F. Bourdichon, D. Cabanes, M. Lecuit, H. Fsihi et al., FbpA, a novel multifunctional Listeria monocytogenes virulence factor, Mol Microbiol, vol.53, pp.639-649, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682397

S. Dramsi and P. Cossart, Listeriolysin O: a genuine cytolysin optimized for an intracellular parasite, J Cell Biol, vol.156, pp.943-946, 2002.

S. Dramsi, P. Dehoux, M. Lebrun, P. L. Goossens, and P. Cossart, Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD, Infect Immun, vol.65, pp.1615-1625, 1997.

A. J. Driessen, E. H. Manting, and C. Van-der-does, The strucutural basis of protein targeting and translocation in bacteria, Nature, vol.8, pp.492-498, 2001.

D. Dubnau, Binding and transport of transforming DNA by Bacillus subtilis: the role of Type-4 pilinlike proteins -a review, Gene, vol.192, pp.191-198, 1997.

E. G. Dudley, N. R. Thomson, J. Parkhill, N. P. Morin, and J. P. Nataro, Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli, Mol Microbiol, vol.61, pp.1267-1282, 2006.

O. Dussurget, J. Pizarro-cerda, and P. Cossart, Molecular determinants of Listeria monocytogenes virulence, Annu Rev Microbiol, vol.58, pp.587-610, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682020

A. Economou, P. J. Christie, R. C. Fernandez, T. Palmer, G. V. Plano et al., Secretion by numbers: Protein traffic in prokaryotes, Mol Microbiol, vol.62, pp.308-319, 2006.

F. Engelbrecht, S. K. Chun, C. Ochs, J. Hess, F. Lottspeich et al., A new PrfAregulated gene of Listeria monocytogenes encoding a small, secreted protein which belongs to the family of internalins, Mol Microbiol, vol.21, pp.823-837, 1996.

J. Errington, L. Appleby, R. A. Daniel, H. Goodfellow, S. R. Partridge et al., Structure and function of the spoIIIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for sigma G activity at an intermediate stage of sporulation, 1992.

, Gen Microbiol, vol.138, pp.2609-2618

S. Falkow, Molecular Koch' s postulates applied to microbial pathogenicity, Rev Infect Dis, vol.10, pp.274-276, 1988.

S. Falkow, Molecular Koch' s postulates applied to bacterial pathogenicity -a personal recollection 15 years later, Nat Rev Microbiol, vol.2, pp.67-72, 2004.

J. M. Farber and P. I. Peterkin, Listeria monocytogenes, a food-borne pathogen, Microbiol Rev, vol.55, pp.476-511, 1991.

F. Fiedler, J. Seger, A. Schrettenbrunner, and H. P. Seeliger, The biochemistry of murein and cell wall teichoic acids in the genus Listeria, Syst Appl Microbiol, vol.5, pp.360-376, 1983.

B. B. Finlay and S. Falkow, Common themes in microbial pathogenicity revisited, Microbiol Mol Biol Rev, vol.61, pp.136-169, 1997.

W. M. Fitch, Homology a personal view on some of the problems, Trends Genet, vol.16, pp.227-231, 2000.

A. Folkesson, S. Lofdahl, and S. Normark, The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells, Res Microbiol, vol.153, pp.537-545, 2002.

L. Froderberg, E. Houben, J. C. Samuelson, M. Chen, S. K. Park et al., Versatility of inner membrane protein biogenesis in Escherichia coli, Mol Microbiol, vol.47, pp.1015-1027, 2003.

L. Froderberg, E. N. Houben, L. Baars, J. Luirink, and J. W. De-gier, Targeting and translocation of two lipoproteins in Escherichia coli via the SRP/Sec/ YidC pathway, J Biol Chem, vol.279, pp.31026-31032, 2004.

J. L. Gaillard, P. Berche, C. Frehel, E. Gouin, and P. Cossart, Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci, Cell, vol.65, pp.1127-1141, 1991.

J. L. Gaillard, P. Berche, and P. Sansonetti, Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes, Infect Immun, vol.52, pp.50-55, 1986.

S. B. Galsworthy, S. Girdler, and S. F. Koval, Chemotaxis in Listeria monocytogenes, Acta Microbiol Hung, vol.37, pp.81-85, 1990.

G. M. Garrity, Bergey's Manual of Systematic Bacteriology, 2001.

B. G. Gellin and C. V. Broome, Listeriosis. JAMA, vol.261, pp.1313-1320, 1989.

E. Ghelardi, F. Celandroni, S. Salvetti, D. J. Beecher, M. Gominet et al., Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulenceassociated proteins in Bacillus thuringiensis, J Bacteriol, vol.184, pp.6424-6433, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02678866

E. Ghelardi, F. Celandroni, S. Salvetti, M. Ceragioli, D. J. Beecher et al., Swarming behavior of and hemolysin BL secretion by Bacillus cereus, Appl Environ Microbiol, vol.73, pp.4089-4093, 2007.

B. K. Ghosh and K. K. Carroll, Isolation, composition, and structure of membrane of Listeria monocytogenes, J Bacteriol, vol.95, pp.688-699, 1968.

M. S. Gilmore and W. Haas, The selective advantage of microbial fratricide, Proc. Natl Acad. Sci. U.S.A, vol.102, pp.8401-8402, 2005.

P. Glaser, L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend et al., Comparative genomics of Listeria species, Science, vol.294, pp.849-852, 2001.

V. Goder and M. Spiess, Topogenesis of membrane proteins: determinants and dynamics, FEBS Lett, vol.504, pp.87-93, 2001.

H. Goldfine and S. J. Wadsworth, Macrophage intracellular signaling induced by Listeria monocytogenes. Microbes Infect, vol.4, pp.1335-1343, 2002.

V. Goulet, C. Jacquet, P. Martin, V. Vaillant, E. Laurent et al., Surveillance of human listeriosis in France, Euro Surveill, vol.11, pp.79-81, 2001.

M. J. Gray, N. E. Freitag, and K. J. Boor, How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr, Hyde. Infect Immun, vol.74, pp.2505-2512, 2006.

M. L. Gray and A. H. Killinger, Listeria monocytogenes and listeric infections, Bacteriol. Rev, vol.30, pp.309-382, 1966.

A. Grundling, L. S. Burrack, H. G. Bouwer, and D. E. Higgins, Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence, Proc Natl Acad Sci, vol.101, pp.12318-12323, 2004.

A. Gründling, M. D. Manson, Y. , and R. , Holins kill without warning, Proc. Natl Acad. Sci. U.S.A, vol.98, pp.9348-9352, 2001.

S. Guiral, T. J. Mitchell, B. Martin, and J. P. Claverys, Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: Genetic requirements, Proc Natl Acad Sci, vol.102, pp.8710-8715, 2005.

T. Hain, C. Steinweg, and T. Chakraborty, Comparative and functional genomics of Listeria spp, J. Biotechnol, 2006.

T. Hain, C. Steinweg, C. T. Kuenne, A. Billion, R. Ghai et al., Whole-genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes, J Bacteriol, vol.188, pp.7405-7415, 2006.

M. Hamon, H. Bierne, and P. Cossart, Listeria monocytogenes: a multifaceted model, Nat Rev Microbiol, vol.4, pp.423-434, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02667803

M. A. Harris, J. Clark, A. Ireland, J. Lomax, M. Ashburner et al., The Gene Ontology (GO) database and informatics resource, vol.32, pp.258-261, 2004.

F. Hayashi, K. D. Smith, A. Ozinsky, T. R. Hawn, E. C. Yi et al., The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5, Nature, vol.410, pp.1099-1103, 2001.

I. R. Henderson, F. Navarro-garcia, M. Desvaux, R. C. Fernandez, and D. Ala'-aldeen, Type V protein secretion pathway: the autotransporter story, Microbiol Mol Biol Rev, vol.68, pp.692-744, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02910761

J. Henrichsen, Bacterial surface translocation: a survey and a classification, Bacteriol Rev, vol.36, pp.478-503, 1972.

R. A. Hirst, A. Kadioglu, C. O'-callaghan, A. , and P. W. , The role of pneumolysin in pneumococcal pneumonia and meningitis, Clin. Exp. Immunol, vol.138, pp.195-201, 2004.

M. Holden, L. Crossman, A. Cerdeno-tarraga, and J. Parkhill, Pathogenomics of non-pathogens, Nat Rev Microbiol, vol.2, p.91, 2004.

C. Jacquet, M. Doumith, J. I. Gordon, P. M. Martin, P. Cossart et al., A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes, J Infect Dis, vol.189, pp.2094-2100, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02683027

C. Jacquet, E. Gouin, D. Jeannel, P. Cossart, and J. Rocourt, Expression of ActA, Ami, InlB, and listeriolysin O in Listeria monocytogenes of human and food origin, Appl Environ Microbiol, vol.68, pp.616-622, 2002.

Z. W. Jaradat, J. W. Wampler, and A. W. Bhunia, A Listeria adhesion protein-deficient Listeria monocytogenes strain shows reduced adhesion primarily to intestinal cell lines, Med. Microbiol Immunol, vol.192, pp.85-91, 2003.

D. Jones, The place of Listeria among Grampositive bacteria, Infection, vol.16, issue.2, pp.85-88, 1988.

S. Jones and D. A. Portnoy, Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O, Infect Immun, vol.62, pp.5608-5613, 1994.

R. Jonquieres, H. Bierne, F. Fiedler, P. Gounon, and P. Cossart, Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria, Mol Microbiol, vol.34, pp.902-914, 1999.

R. Jonquieres, H. Bierne, J. Mengaud, and P. Cossart, The inlA gene of Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of internalin, Infect Immun, vol.66, pp.3420-3422, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02692385

R. Jonquieres, J. Pizarro-cerda, and P. Cossart, Synergy between the N-and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes, Mol Microbiol, vol.42, pp.955-965, 2001.

B. Joseph, K. Przybilla, C. Stuhler, K. Schauer, J. Slaghuis et al., Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening, J Bacteriol, vol.188, pp.556-568, 2006.

S. C. Kachlany, P. J. Planet, R. Desalle, D. H. Fine, and D. H. Figurski, Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum, Trends Microbiol, vol.9, pp.429-437, 2001.

S. Kathariou, P. Metz, H. Hof, and W. Goebel, Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes, J Bacteriol, vol.169, pp.1291-1297, 1987.

S. Kathariou, L. Pine, V. George, G. M. Carlone, and B. P. Holloway, Nonhemolytic Listeria monocytogenes mutants that are also noninvasive for mammalian cells in culture: evidence for coordinate regulation of virulence, Infect Immun, vol.58, pp.3988-3995, 1990.

S. Kayal and A. Charbit, Listeriolysin O: a key protein of Listeria monocytogenes with multiple functions, FEMS Microbiol Rev, vol.30, pp.514-529, 2006.

K. P. Kim, B. Jagadeesan, K. M. Burkholder, Z. W. Jaradat, J. L. Wampler et al., Adhesion characteristics of Listeria adhesion protein (Lap)-expressing Escherichia coli to Caco-2 cells and of recombinant Lap to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor, FEMS Microbiol Lett, vol.256, pp.324-332, 2006.

A. V. Klieve, M. T. Yokoyama, R. J. Forster, D. Ouwerkerk, P. A. Bain et al., Naturally occurring DNA transfer system associated with membrane vesicles in cellulolytic Ruminococcus spp. of ruminal origin, Appl Environ Microbiol, vol.71, pp.4248-4253, 2005.

G. M. Knudsen, J. E. Olsen, and L. Dons, Characterization of DegU, a response regulator in Listeria monocytogenes, involved in regulation of motility and contributes to virulence, FEMS Microbiol Lett, vol.240, pp.171-179, 2004.

J. Koch and K. Stark, Significant increase of listeriosis in Germany -epidemiological patterns, Eurosurveillance, vol.11, pp.85-88, 2001.

C. Kocks and P. Cossart, Directional actin assembly by Listeria monocytogenes at the site of polar surface expression of the actA gene product involving the actin-bundling protein plastin (fimbrin), Infect. Agents Dis, vol.2, pp.207-209, 1993.

C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon et al., L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, pp.521-531, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02703408

M. Kostakioti, C. L. Newman, D. G. Thanassi, and C. Stathopoulos, Mechanisms of protein export across the bacterial outer membrane, J Bacteriol, vol.187, pp.4306-4314, 2005.

M. Koster, W. Bitter, and J. Tommassen, Protein secretion mechanisms in Gram-negative bacteria, Int J Med. Microbiol, vol.290, pp.325-331, 2000.

A. Krawczyk-balska and J. Bielecki, Molecular aspects of Listeria monocytogenes infection, Pol J Microbiol, vol.53, pp.17-22, 2004.

M. J. Kuehn and N. C. Kesty, Bacterial outer membrane vesicles and the host-pathogen interaction, Genes Dev, vol.19, pp.2645-2655, 2005.

M. Kuhn and W. Goebel, Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells, Infect Immun, vol.57, pp.55-61, 1989.

F. Kunst, A. Vassarotti, and A. Danchin, Organization of the European Bacillus subtilis genome sequencing project, Microbiology, vol.141, pp.249-255, 1995.

P. Kussel-andermann, A. El-amraoui, S. Safieddine, S. Nouaille, I. Perfettini et al., Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex, EMBO J, vol.19, pp.6020-6029, 2000.

M. Lebrun, J. Mengaud, H. Ohayon, F. Nato, and P. Cossart, Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells, Mol Microbiol, vol.21, pp.579-592, 1996.

M. Lecuit, S. Dramsi, C. Gottardi, M. Fedor-chaiken, B. Gumbiner et al., A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes, EMBO J, vol.18, pp.3956-3963, 1999.
URL : https://hal.archives-ouvertes.fr/pasteur-02456831

M. Lecuit, H. Ohayon, L. Braun, J. Mengaud, and P. Cossart, Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization, Infect Immun, vol.65, pp.5309-5319, 1997.

V. T. Lee and O. Schneewind, Protein secretion and the pathogenesis of bacterial infections, Genes Dev, vol.15, pp.1725-1752, 2001.

K. P. Lemon, D. E. Higgins, and R. Kolter, Flagellar motility is critical for Listeria monocytogenes biofilm formation, J Bacteriol, 2007.

L. L. Lenz, S. Mohammadi, A. Geissler, and D. A. Portnoy, SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis, Proc Natl Acad Sci, vol.100, pp.12432-12437, 2003.

L. L. Lenz and D. A. Portnoy, Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype, Mol Microbiol, vol.45, pp.1043-1056, 2002.

D. Liu, Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen, J Med Microbiol, vol.55, pp.645-659, 2006.

M. J. Loessner, R. B. Inman, P. Lauer, and R. Calendar, Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution, Mol Microbiol, vol.35, pp.324-340, 2000.

S. Lukinmaa, K. Aarnisalo, M. L. Suihko, and A. Siitonen, Diversity of Listeria monocytogenes isolates of human and food origin studied by serotyping, automated ribotyping and pulsed-field gel electrophoresis, Clin Microbiol Infect, vol.10, pp.562-568, 2004.

S. Machata, T. Hain, M. Rohde, and T. Chakraborty, Simultaneous deficiency of both MurA and p60 proteins generates a rough phenotype in Listeria monocytogenes, J Bacteriol, vol.187, pp.8385-8394, 2005.

R. M. Macnab, How bacteria assemble flagella, Annu Rev Microbiol, vol.57, pp.77-100, 2003.

J. C. Madden, N. Ruiz, C. , and M. , Cytolysin-mediated translocation (CMT): a functional equivalent of Type III secretion in Grampositive bacteria, Cell, vol.104, pp.143-152, 2001.

L. M. Mashburn-warren and M. Whiteley, Special delivery: vesicle trafficking in prokaryotes, Mol Microbiol, vol.61, pp.839-846, 2006.

A. C. Maue, W. R. Waters, M. V. Palmer, B. J. Nonnecke, F. C. Minion et al., An ESAT-6:CFP10 DNA vaccine administered in conjunction with Mycobacterium bovis BCG confers protection to cattle challenged with virulent M. bovis, Vaccine, vol.25, pp.4735-4746, 2007.

R. C. May, M. E. Hall, H. N. Higgs, T. D. Pollard, T. Chakraborty et al., The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes, Curr Biol, vol.9, pp.759-762, 1999.

F. Mayer and G. Gottschalk, The bacterial cytoskeleton and its putative role in membrane vesicle formation observed in a Gram-positive bacterium producing starch-degrading enzymes, J Mol Microbiol Biotechnol, vol.6, pp.127-132, 2003.

A. M. Mclaughlan and S. J. Foster, Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD, Microbiology, vol.144, pp.1359-1367, 1998.

P. S. Mead, L. Slutsker, V. Dietz, L. F. Mccaig, J. S. Bresee et al., Food-related illness and death in the United States, Emerg Infect Dis, vol.5, pp.607-625, 1999.

M. A. Meehl and M. G. Caparon, Specificity of streptolysin O in cytolysin-mediated translocation, Mol Microbiol, vol.52, pp.1665-1676, 2004.

J. Mengaud, C. Geoffroy, and P. Cossart, Identification of a new operon involved in Listeria monocytogenes virulence: its first gene encodes a protein homologous to bacterial metalloproteases, Infect Immun, vol.59, pp.1043-1049, 1991.

J. Mengaud, H. Ohayon, P. Gounon, R. M. Mege, and P. Cossart, E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells, Cell, vol.84, pp.923-955, 1996.

E. Michel, J. Mengaud, S. Galsworthy, and P. Cossart, Characterization of a large motility gene cluster containing the cheR, motAB genes of Listeria monocytogenes and evidence that PrfA down-regulates motility genes, FEMS Microbiol Lett, vol.169, pp.341-347, 1998.

E. Milohanic, R. Jonquieres, P. Cossart, P. Berche, and J. L. Gaillard, The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor, Mol Microbiol, vol.39, pp.1212-1224, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02683252

E. Milohanic, R. Jonquieres, P. Glaser, P. Dehoux, C. Jacquet et al., Sequence and binding activity of the autolysin-adhesin Ami from epidemic Listeria monocytogenes 4b, Infect Immun, vol.72, pp.4401-4409, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682690

M. M. Moore, D. L. Fernandez, and R. L. Thune, Cloning and characterization of Edwardsiella ictaluri proteins expressed and recognized by the channel catfish Ictalurus punctatus immune response during infection, Dis Aquat Organ, vol.52, pp.93-107, 2002.

J. D. Mougous, M. E. Cuff, S. Raunser, A. Shen, M. Zhou et al., A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus, Science, vol.312, pp.1526-1530, 2006.

K. Mukherjee, S. Karlsson, L. G. Burman, A. , and T. , Proteins released during high toxin production in Clostridium difficile, Microbiology, vol.148, pp.2245-2253, 2002.

T. Murakami, K. Haga, M. Takeuchi, and T. Sato, Analysis of the Bacillus subtilis spoIIIJ gene and its Paralogue gene, yqjG, J Bacteriol, vol.184, 1998.

E. G. Murray, R. A. Webb, and M. B. Swann, A disease of rabbits chraracterised by a large mononuclear leukocytosis caused by a hitherto undescribed bacillus Bacterium monocytogenes, 1926.

, J Pathol Bacteriol, vol.29, pp.407-439

C. A. Nadon, D. L. Woodward, C. Young, F. G. Rodgers, and M. Wiedmann, Correlations between molecular subtyping and serotyping of Listeria monocytogenes, J.Clin Microbiol, vol.39, pp.2704-2707, 2001.

W. W. Navarre and O. Schneewind, Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall enveloppe, Microbiol Mol Biol. Rev, vol.63, pp.174-229, 1999.

K. E. Nelson, D. E. Fouts, E. F. Mongodin, J. Ravel, R. T. Deboy et al., Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species, Nucl. Acids Res, vol.32, pp.2386-2395, 2004.

S. M. Newton, P. E. Klebba, C. Raynaud, Y. Shao, X. Jiang et al., The svpA-srtB locus of Listeria monocytogenes: Fur-mediated iron regulation and effect on virulence, Mol Microbiol, vol.55, pp.927-940, 2005.

H. H. Niemann, V. Jager, P. J. Butler, J. Van-den-heuvel, S. Schmidt et al., Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB, Cell, vol.130, pp.235-246, 2007.

A. Nyfelt, Etiologie de la mononucléose infectieuse, C R Soc Biol, vol.10, pp.590-591, 1929.

J. Nölling, G. Breton, M. V. Omelchenko, K. S. Makarova, Q. Zeng et al., , 2001.

, Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum, J Bacteriol, vol.183, pp.4823-4838

H. S. O'neil and H. Marquis, Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion, Infect Immun, vol.74, pp.6675-6681, 2006.

H. Ochman and N. A. Moran, Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis, Science, vol.292, pp.1096-1099, 2001.

M. J. Pallen, The ESAT-6/WXG100 superfamily-and a new Gram-positive secretion system?, Trends Microbiol, vol.10, pp.209-212, 2002.

M. J. Pallen, From sequence to consequence: in silico hypothesis generation and testing, Meth Microbiol, vol.33, pp.27-48, 2002.

M. J. Pallen, A. C. Lam, M. Antonio, and K. Dunbar, An embarrassment of sortase -a richness of substrates?, Trends Microbiol, vol.9, pp.97-101, 2001.

M. Palmer, The family of thiol-activated, cholesterol-binding cytolysins, Toxicon, vol.39, pp.1681-1689, 2001.

M. Palmer, Cholesterol and the activity of bacterial toxins, FEMS Microbiol Lett, vol.238, pp.281-289, 2004.

V. K. Pandiripally, D. G. Westbrook, G. R. Sunki, and A. K. Bhunia, Surface protein p104 is involved in adhesion of Listeria monocytogenes to human intestinal cell line, Caco-2, J Med Microbiol, vol.48, pp.117-124, 1999.

J. M. Park, V. H. Ng, S. Maeda, R. F. Rest, K. et al., Anthrolysin O and other Gram-positive cytolysins are toll-like receptor 4 agonists, J Exp Med, vol.200, pp.1647-1655, 2004.

Y. Paterson and R. S. Johnson, Progress towards the use of Listeria monocytogenes as a live bacterial vaccine vector for the delivery of HIV antigens, Expert Rev. Vaccines, vol.3, pp.119-134, 2004.

M. Peel, W. Donachie, and A. Shaw, Physical and antigenic heterogeneity in the flagellins of Listeria monocytogenes and L. ivanovii, J. Gen. Microbiol, vol.134, pp.2593-2598, 1988.

M. Peel, W. Donachie, and A. Shaw, Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting, J Gen Microbiol, vol.134, pp.2171-2178, 1988.

W. J. Philipp, S. Nair, G. Guglielmi, M. Lagranderie, B. Gicquel et al., Physical mapping of Mycobacterium bovis BCG pasteur reveals differences from the genome map of Mycobacterium tuberculosis H37Rv and from M. bovis. Microbiology, vol.142, pp.3135-3145, 1996.

S. Pilgrim, A. Kolb-maurer, I. Gentschev, W. Goebel, and M. Kuhn, Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility, Infect Immun, vol.71, pp.3473-3484, 2003.

P. J. Planet, S. C. Kachlany, D. H. Fine, R. Desalle, and D. H. Figurski, The widespread colonization island of Actinobacillus actinomycetemcomitans, Nature Genet, vol.34, pp.193-198, 2003.

D. A. Portnoy, P. S. Jacks, and D. J. Hinrichs, Role of hemolysin for the intracellular growth of Listeria monocytogenes, J Exp Med, vol.167, pp.1459-1471, 1988.

M. G. Pucciarelli, E. Calvo, C. Sabet, H. Bierne, P. Cossart et al., Identification of substrates of the Listeria monocytogenes sortases A and B by a non-gel proteomic analysis, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683410

S. Pukatzki, A. T. Ma, D. Sturtevant, B. Krastins, D. Sarracino et al., Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system, Proc Natl Acad Sci, vol.103, pp.1528-1533, 2006.

A. S. Pym, P. Brodin, R. Brosch, M. Huerre, C. et al., Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti, Mol Microbiol, vol.46, pp.709-717, 2002.

A. S. Pym, P. Brodin, L. Majlessi, R. Brosch, C. Demangel et al., Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis, Nat Med, vol.9, pp.533-539, 2003.

S. M. Rafelski and J. A. Theriot, Bacterial shape and ActA distribution affect initiation of Listeria monocytogenes actin-based motility, BiophysJ, vol.89, pp.2146-2158, 2005.

S. M. Rafelski and J. A. Theriot, Mechanism of polarization of Listeria monocytogenes surface protein ActA, Mol Microbiol, vol.59, pp.1262-1279, 2006.

V. Ramaswamy, V. M. Cresence, J. S. Rejitha, M. U. Lekshmi, K. S. Dharsana et al., Listeria -review of epidemiology and pathogenesis, J Microbiol Immunol Infect, vol.40, pp.4-13, 2007.

O. F. Rasmussen, P. Skouboe, L. Dons, L. Rossen, and J. E. Olsen, Listeria monocytogenes exists in at least three evolutionary lines: evidence from flagellin, invasive associated protein and listeriolysin O genes, Microbiology, vol.141, pp.2053-2061, 1995.

C. Ratledge and L. G. Dover, Iron metabolism in pathogenic bacteria, Annu Rev Microbiol, vol.54, pp.881-941, 2000.

C. Raynaud and A. Charbit, Regulation of expression of type I signal peptidases in Listeria monocytogenes, Microbiology, vol.151, pp.3769-3776, 2005.

H. Reglier-poupet, C. Frehel, I. Dubail, J. L. Beretti, P. Berche et al., , 2003.

, Maturation of lipoproteins by type II signal peptidase is required for phagosomal escape of Listeria monocytogenes, J Biol Chem, vol.278, pp.49469-49477

H. Reglier-poupet, E. Pellegrini, A. Charbit, and P. Berche, Identification of LpeA, a PsaAlike membrane protein that promotes cell entry by Listeria monocytogenes, Infect Immun, vol.71, pp.474-482, 2003.

H. Repp, Z. Pamukci, A. Koschinski, E. Domann, A. Darji et al., Listeriolysin of Listeria monocytogenes forms Ca 2+ -permeable pores leading to intracellular Ca 2+ oscillations, Cell Microbiol, vol.4, pp.483-491, 2002.

A. J. Roberts and M. Wiedmann, Pathogen, host and environmental factors contributing to the pathogenesis of listeriosis, Cell Mol Life Sci, vol.60, pp.904-918, 2003.

J. Rocourt, P. Boerlin, F. Grimont, C. Jacquet, and J. C. Piffaretti, Assignment of Listeria grayi and Listeria murrayi to a single species, Listeria grayi, with a revised description of Listeria grayi, Int J Syst Bacteriol, vol.42, pp.171-174, 1992.

J. I. Rood, Virulence genes of Clostridium perfringens, Annu Rev Microbiol, vol.52, pp.333-360, 1998.

H. Russmann, Inverted pathogenicity: the use of pathogen-specific molecular mechanisms for prevention or therapy of disease, Int J Med Microbiol, vol.293, pp.565-569, 2004.

C. Sabet, M. Lecuit, D. Cabanes, P. Cossart, and H. Bierne, LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence, Infect Immun, vol.73, pp.6912-6922, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02679754

B. Sallen, A. Rajoharison, S. Desvarenne, F. Quinn, and C. Mabilat, Comparative analysis of 16S and 23S rRNA sequences of Listeria species, Int J Syst Bacteriol, vol.46, pp.669-674, 1996.

G. Salmond and P. J. Reeves, The general secretory pathway in bacteria: response, Trends Microbiol, vol.1, pp.250-251, 1993.

J. S. Sampson, S. P. O'connor, A. R. Stinson, J. A. Tharpe, R. et al., Cloning and nucleotide sequence analysis of psaA, the Streptococcus pneumoniae gene encoding a 37-kilodalton protein homologous to previously reported Streptococcus sp. adhesins, Infect Immun, vol.62, pp.319-324, 1994.

M. Sanchez-campillo, S. Dramsi, J. M. Gomez-gomez, E. Michel, P. Dehoux et al., Modulation of DNA topology by flaR, a new gene from Listeria monocytogenes, Mol Microbiol, vol.18, pp.801-811, 1995.

F. Sargent, B. C. Berks, and T. Palmer, Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins, FEMS Microbiol Lett, vol.254, pp.198-207, 2006.

J. Schaumburg, O. Diekmann, P. Hagendorff, S. Bergmann, M. Rohde et al., The cell wall subproteome of Listeria monocytogenes, Proteomics, vol.4, pp.2991-3006, 2004.

M. A. Schell, R. L. Ulrich, W. J. Ribot, E. E. Brueggemann, H. B. Hines et al., , 2007.

, Type VI secretion is a major virulence determinant in Burkholderia mallei, Mol Microbiol, vol.64, pp.1466-1485

M. Schirm, M. Kalmokoff, A. Aubry, P. Thibault, M. Sandoz et al., Flagellin from Listeria monocytogenes is glycosylated with ?-O-linked N-acetylglucosamine, J Bacteriol, vol.186, pp.6721-6727, 2004.

M. W. Schmid, E. Y. Ng, R. Lampidis, M. Emmerth, M. Walcher et al., Evolutionary history of the genus Listeria and its virulence genes, Syst Appl Microbiol, vol.28, pp.1-18, 2005.

P. Schnupf and D. A. Portnoy, Listeriolysin O: a phagosome-specific lysin, 2007.

P. Schnupf, J. Zhou, A. Varshavsky, and D. A. Portnoy, Listeriolysin O secreted by Listeria monocytogenes into the host cell cytosol is degraded by the N-end rule pathway, Infect Immun, 2007.

C. Schoen, A. Kolb-maurer, G. Geginat, D. Loffler, B. Bergmann et al., Bacterial delivery of functional messenger RNA to mammalian cells, Cell Microbiol, vol.7, pp.709-724, 2005.

C. Schoen, J. Stritzker, W. Goebel, and S. Pilgrim, Bacteria as DNA vaccine carriers for genetic immunization, Int J Med Microbiol, vol.294, pp.319-335, 2004.

S. R. Schooling and T. J. Beveridge, Membrane vesicles: an overlooked component of the matrices of biofilms, J Bacteriol, vol.188, pp.5945-5957, 2006.

W. D. Schubert, G. Gobel, M. Diepholz, A. Darji, D. Kloer et al., Internalins from the human pathogen Listeria monocytogenes combine three distinct folds into a contiguous internalin domain, J Mol Biol, vol.312, pp.783-794, 2001.

W. D. Schubert, C. Urbanke, T. Ziehm, V. Beier, M. P. Machner et al., Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin, Cell, vol.111, pp.825-836, 2002.

A. Schuchat, B. Swaminathan, and C. V. Broome, Epidemiology of human listeriosis, Clin. Microbiol Rev, vol.4, pp.169-183, 1991.

D. W. Schuerch, E. M. Wilson-kubalek, and R. K. Tweten, Molecular basis of listeriolysin O pH dependence, Proc Natl Acad. Sci. USA, vol.102, pp.12537-12552, 2005.

M. Scortti, H. J. Monzo, L. Lacharme-lora, D. A. Lewis, and J. A. Vazquez-boland, The PrfA virulence regulon, 2007.

J. R. Scott and T. C. Barnett, Surface proteins of Gram-positive bacteria and how they get there, Annu Rev Microbiol, vol.60, pp.397-423, 2006.

H. P. Seeliger and K. Hohne, Serotyping of Listeria monocytogenes and related species, Methods Microbiol, vol.13, pp.31-49, 1979.

H. P. Seeliger and D. Jones, Listeria. In Bergey' s Manual of Systematic Bacteriology, Williams & Wilkins), pp.1235-1245, 1986.

M. R. Sharipova, Late stages of protein secretion in bacilli, Biochemistry (Mosc), vol.67, pp.1207-1216, 2002.

A. Shen, H. D. Kamp, A. Grundling, and D. E. Higgins, A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression, Genes Dev, vol.20, pp.3283-3295, 2006.

Y. Shen, M. Naujokas, M. Park, and K. Ireton, InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase, Cell, vol.103, pp.501-510, 2000.

R. Siezen, J. Boekhorst, L. Muscariello, D. Molenaar, B. Renckens et al., , 2006.

, Lactobacillus plantarum gene clusters encoding putative cell surface protein complexes for carbohydrate utilization are conserved in specific Gram-positive bacteria, BMC Genomics, vol.7, p.126

S. M. Simon and G. Blobel, A protein-conducting channel in the endoplasmic reticulum, Cell, vol.65, pp.371-380, 1991.

M. Simonen and I. Palva, Protein secretion in Bacillus species, Microbiol Rev, vol.57, pp.109-137, 1993.

R. D. Sleator and C. Hill, Patho-biotechnology: using bad bugs to do good things, Curr Opin Biotechnol, vol.17, pp.211-216, 2006.

R. D. Sleator and C. Hill, Patho-biotechnology; using bad bugs to make good bugs better, Sci Prog, vol.90, pp.1-14, 2007.

G. A. Smith, D. A. Portnoy, and J. A. Theriot, Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actinbased motility, Mol Microbiol, vol.17, pp.945-951, 1995.

S. Sousa, D. Cabanes, C. Archambaud, F. Colland, E. Lemichez et al., ARHGAP10 is necessary for ?-catenin recruitment at adherens junctions and for Listeria invasion, Nat. Cell Biol, vol.7, pp.954-960, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00000093

S. Sousa, D. Cabanes, A. El-amraoui, C. Petit, M. Lecuit et al., Unconventional myosin VIIa and vezatin, two proteins crucial for Listeria entry into epithelial cells, J Cell Sci, vol.117, pp.2121-2130, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02676456

A. Srivastava, P. Henneke, A. Visintin, S. C. Morse, V. Martin et al., The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease, Infect Immun, vol.73, pp.6479-6487, 2005.

H. Starks, K. W. Bruhn, H. Shen, R. A. Barry, T. W. Dubensky et al., Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy, J. Immunol, vol.173, pp.420-427, 2004.

C. Stathopoulos, D. R. Hendrixson, D. G. Thanassi, S. J. Hultgren, and . St-geme, Secretion of virulence determinants by the general secretory pathway in Gram-negative pathogens: an evolving story, Microbes Infect, vol.2, pp.1061-1072, 2000.

A. Steen, G. Buist, K. J. Leenhouts, M. El-khattabi, F. Grijpstra et al., Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents, J Biol Che, vol.278, pp.23874-23881, 2003.

M. Suarez, B. Gonzalez-zorn, Y. Vega, I. Chico-calero, and J. A. Vazquez-boland, A role for ActA in epithelial cell invasion by Listeria monocytogenes, Cell Microbiol, vol.3, pp.853-864, 2001.

B. Swaminathan and P. Gerner-smidt, The epidemiology of human listeriosis. Microbes Infect, 2007.

K. S. Tan, B. Y. Wee, and K. P. Song, Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile, J. Med. Microbiol, vol.50, pp.613-619, 2001.

P. Tang, I. Rosenshine, and B. B. Finlay, Listeria monocytogenes, an invasive bacterium, stimulates MAP kinase upon attachment to epithelial cells, Mol Biol Cell, vol.5, pp.455-464, 1994.

D. G. Thanassi and S. J. Hultgren, Multiple pathways allow protein secretion across the bacterial outer membrane, Curr. Opin. Cell Biol, vol.12, pp.420-430, 2000.

D. Thevenot, M. L. Delignette-muller, S. Christieans, and C. Vernozy-rozand, Prevalence of Listeria monocytogenes in 13 dried sausage processing plants and their products, Int J Food Microbiol, vol.102, pp.85-94, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00427852

S. J. Tilley, E. V. Orlova, R. J. Gilbert, P. W. Andrew, and H. R. Saibil, Structural basis of pore formation by the bacterial toxin pneumolysin, Cell, vol.121, pp.247-256, 2005.

L. G. Tilney and D. A. Portnoy, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, J. Cell Biol, vol.109, pp.1597-1608, 1989.

H. Tjalsma, H. Antelmann, J. D. Jongbloed, P. G. Braun, E. Darmon et al., Proteomics of protein secretion by Bacillus subtilis: separating the ' secrets' of the secretome, Microbiol Mol Biol Rev, vol.68, pp.207-233, 2004.

H. Tjalsma, A. Bolhuis, J. D. Jongbloed, S. Bron, and J. M. Van-dijl, Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome, Microbiol Mol Biol. Rev, vol.64, pp.515-547, 2000.

H. Tjalsma, V. P. Kontinen, Z. Pragai, H. Wu, R. Meima et al., The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium Bacillus subtilis. Signal peptidase II is required for the efficient secretion of ?-amylase, a non-lipoprotein, J Biol Chem, vol.274, pp.1698-1707, 1999.

M. Tomich, P. J. Planet, and D. H. Figurski, The tad locus: postcards from the widespread colonization island, Nat Rev Microbiol, vol.5, pp.363-375, 2007.

H. Ton-that, L. A. Marraffini, and O. Schneewind, Protein sorting to the cell wall envelope of Gram-positive bacteria, Biochim Biophys Acta-Mol Cell Res, vol.1694, pp.269-278, 2004.

M. Trost, D. Wehmhoner, U. Karst, G. Dieterich, J. Wehland et al., Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species, Proteomics, vol.5, pp.1544-1557, 2005.

R. K. Tweeten and M. G. Caparon, Injectosomes in Gram-positive bacteria, pp.223-240, 2005.

K. Uchikawa, I. Sekikawa, A. , and I. , Structural studies on teichoic acids in cell walls of several serotypes of Listeria monocytogenes, J Biochem, vol.99, pp.315-327, 1986.

V. Vaillant, H. De-valk, E. Baron, T. Ancelle, P. Colin et al., Foodborne infections in France, Foodborne Pathog Dis, vol.2, pp.221-232, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-02047871

E. Van-bloois, G. J. Haan, J. W. De-gier, B. Oudega, and J. Luirink, Distinct requirements for translocation of the N-tail and C-tail of the Escherichia coli inner membrane protein CyoA, J Biol Chem, vol.281, pp.10002-10009, 2006.

K. H. Van-wely, J. Swaving, R. Freudl, and A. J. Driessen, Translocation of proteins across the cell envelope of Gram-positive bacteria, FEMS Microbiol Rev, vol.25, pp.437-454, 2001.

M. Vaneechoutte, P. Boerlin, H. V. Tichy, E. Bannerman, B. Jager et al., Comparison of PCRbased DNA fingerprinting techniques for the identification of Listeria species and their use for atypical Listeria isolates, Int J Syst Bacteriol, vol.48, pp.127-139, 1998.

S. Vatanyoopaisarn, A. Nazli, C. E. Dodd, C. E. Rees, and W. M. Waites, Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel, Appl Environ Microbiol, vol.66, pp.860-863, 2000.

J. A. Vazquez-boland, G. Dominguez-bernal, B. Gonzalez-zorn, J. Kreft, and W. Goebel, Pathogenicity islands and virulence evolution in Listeria, Microbes Infect, vol.3, pp.571-584, 2001.

J. A. Vazquez-boland, A. Kuhn, P. Berche, T. Chakraborty, G. Dominguez-bernal et al., Listeria pathogenesis and molecular virulence determinants, Clin Microbiol Rev, vol.14, pp.584-640, 2001.

E. Veiga and P. Cossart, Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells, Nat Cell Biol, vol.7, pp.894-900, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683019

E. Veiga and P. Cossart, Listeria InlB takes a different route to met, Cell, vol.130, pp.218-219, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02657071

T. Verch, Z. K. Pan, and Y. Paterson, Listeria monocytogenes-based antibiotic resistance gene-free antigen delivery system applicable to other bacterial vectors and DNA vaccines, Infect Immun, vol.72, pp.6418-6425, 2004.

G. Von-heijne, Membrane-protein topology, Nat Rev Mol Cell Biol, vol.7, pp.909-918, 2006.

I. Walev, S. C. Bhakdi, F. Hofmann, N. Djonder, A. Valeva et al., Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O, Proc Natl Acad Sci, vol.98, pp.3185-3190, 2001.

J. L. Wampler, K. P. Kim, Z. Jaradat, and A. K. Bhunia, Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells, Infect Immun, vol.72, pp.931-936, 2004.

C. Wandersman, The general secretory pathway in bacteria, Trends Microbiol, vol.1, pp.249-250, 1993.

I. N. Wang, D. L. Smith, Y. , and R. , Holins: the protein clocks of bacteriophage infections, Annu Rev Microbiol, vol.54, pp.799-825, 2000.

T. J. Ward, L. Gorski, M. K. Borucki, R. E. Mandrell, J. Hutchins et al., Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes, J Bacteriol, vol.186, pp.4994-5002, 2004.

T. M. Wassenaar and W. Gaastra, Bacterial virulence: can we draw the line?, FEMS Microbiol Lett, vol.201, pp.1-7, 2001.

S. S. Way, L. J. Thompson, J. E. Lopes, A. M. Hajjar, T. R. Kollmann et al., Characterization of flagellin expression and its role in Listeria monocytogenes infection and immunity, Cell Microbiol, vol.6, pp.235-242, 2004.

S. S. Way and C. B. Wilson, The Mycobacterium tuberculosis ESAT-6 homologue in Listeria monocytogenes is dispensable for growth in vitro and in vivo, Infect Immun, vol.73, pp.6151-6153, 2005.

M. Wiedmann, J. L. Bruce, C. Keating, A. E. Johnson, P. L. Mcdonough et al., Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential, Infect Immun, vol.65, pp.2707-2716, 1997.

A. Williams, G. J. Hatch, S. O. Clark, K. E. Gooch, K. A. Hatch et al., Tuberculosis, vol.85, pp.29-38, 2005.

J. Wisniewski, A. Krawczyk-balska, and J. Bielecki, Associated roles of hemolysin and p60 protein for the intracellular growth of Bacillus subtilis, FEMS Immunol Med. Microbiol, vol.46, pp.330-339, 2006.

M. D. Wuenscher, S. Kohler, A. Bubert, U. Gerike, and W. Goebel, The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity, J Bacteriol, vol.175, pp.3491-3501, 1993.

K. Yamane, K. Bunai, and H. Kakeshita, Protein traffic for secretion and related machinery of Bacillus subtilis, Biosci Biotechnol. Biochem, vol.68, pp.2007-2023, 2004.

M. R. Yen, Y. H. Tseng, E. H. Nguyen, L. F. Wu, and M. H. Saier, Sequence and phylogenetic analyses of the Twin-arginine targeting (Tat) protein export system, Arch Microbiol, vol.177, pp.441-450, 2002.

G. M. Young, D. H. Schmiel, and V. L. Miller, A new pathway for the secretion of virulence factors by bacteria, the flagellar export apparatus functions as a protein-secretion system, Proc. Natl Acad. Sci. U.S.A, vol.96, pp.6456-6461, 1999.

L. Zhou, R. Srisatjaluk, D. E. Justus, and R. J. Doyle, On the origin of membrane vesicles in Gram-negative bacteria, FEMS Microbiol Lett, vol.163, pp.223-228, 1998.

G. Ziedaite, R. Daugelavicius, J. K. Bamford, and D. H. Bamford, The holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation, J Bacteriol, vol.187, pp.5397-5405, 2005.