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12.1 IntroductIon 

From a morphological point of view, the most fundamental dichotomy within prokaryotes (the 
term “prokaryotes” is used here in its primary etymological sense—that is, single-celled organ­
isms without nuclei as opposed to eukaryotes, without any further phylogenetic considerations1) 
is between those bound by a single biological membrane (monoderm prokaryotes)—that is, the 
cytoplasmic membrane, and those bound by two concentric but topologically different membranes 
(diderm prokaryotes)—that is, the inner membrane (cytoplasmic membrane) and the asymmetric 
outer membrane.2 In accordance with holistic and teleonomic concepts, organisms are far more 
than mere collections of genes,3,4 and such difference in membrane organization, and thus cell com­
partmentation, is not trivial but has profound phylogenetic, structural, metabolic, and physiologi­
cal implications. Based on the most recent advances in biological evolution and megaclassification 
of organisms,5–7 monoderm prokaryotes are regrouped under the term Monodermata (also called 
Unibacteria), which essentially includes Archaea together with Posibacteria (formerly called Gram-
positive bacteria). 

It is worth stressing that the term “Gram-positive bacteria” is terminologically ambiguous, espe­
cially for researchers interested in aspects related to bacterial cell envelope (e.g., protein secretion 
or surface proteins).8 From its origin, a positive or negative result given by Gram staining method 
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indicates whether or not bacteria retain the stain respectively. Later on, the difference in staining 
was related to profound divergence in structural organization of the cell envelope, briefly: (1) a cyto­
plasmic membrane surrounded by a thick cell wall in Gram-positive bacteria, and (2) a cytoplasmic 
membrane surrounded by a thin cell wall beneath the outer membrane in Gram-negative bacteria. 
Molecular analyses further revealed that, contrary to Gram-negative bacteria, Gram-positive bacteria 
correspond to a phylogenetically coherent grouping of prokaryotes within the domain Bacteria with 
phylum BXIII Firmicutes (low G+C mole percent) and phylum BXIV Actinobacteria (high G+C 
mole percent).9,10 However, from Gram staining to cell envelope organization to taxonomic grouping, 
each step represents some approximations, which often result in misleading or incoherent statements 
in the literature. For example, some members of Firmicutes and Actinobacteria phyla do not retain 
Gram stain because of (1) the absence of a cell wall (e.g., bacteria from the genus Mycoplasma), (2) a 
too thin cell wall (e.g., some members of the genus Clostridium), or (3) the presence of a waxy outer 
sheath preventing penetration of the stain (e.g., species from the genus Mycobacterium). 

Inversely, some bacteria not taxonomically related to Gram-positive bacteria retain the Gram 
stain (e.g., some members of the phylum BIV Deinococcus-Thermus). More confusingly, some 
bacteria clearly possessing a Gram-negative-like cell envelope architecture are in fact phyloge­
netically related to the taxonomic group of Gram-positive bacteria (e.g., Thermotoga maritima cur­
rently classified in phylum BII Thermotogae,11 or Fusobacterium nucleatum belonging to phylum 
BXXI Fusobacteria).12,13 Some other phyla regroup bacteria exhibiting both cell envelope structures 
(Gram-negative-like or Gram-positive-like cell envelope)—for example, BVI Chloroflexi or BVII 
Thermomicrobia.14 Even in some deep branches of the phylum Firmicutes, some bacteria clearly 
exhibit Gram-negative cell envelope ultrastructure (e.g., in genus Desulfotomaculum, Selenomonas, 
Syntrophomonas, or Coprothermobacter).2 Therefore, it appears in numerous cases that the term 
“Gram-positive bacteria” cannot describe at once a particular Gram staining result, cell envelope 
organization, and taxonomic group; thus, when employing this term it is extremely important to 
specify what it refers to. Because of fewer terminological ambiguities, the terms “Monodermata” or 
“monoderm bacteria” will be preferred to describe prokaryotic cells surrounded by a single biologi­
cal membrane but without any further phylogenetic considerations. For the purpose of the present 
review, the term “Gram-positive bacteria” will be used to describe bacteria with a cell envelope 
composed of (1) a cytoplasmic membrane, and (2) a cell-wall composed at least of peptidoglycan. 

Listeria species are monoderm bacteria possessing a thick cell wall retaining Gram stain and 
belonging to phylum Firmicutes, class Bacilli, order Bacillales, and family Listeriaceae,9 and as 
such are Gram-positive bacteria in all meaning of the term. L. monocytogenes is undoubtedly the 
species that has attracted most attention, considering its frequent occurrence in food coupled with 
a high mortality rate.15 Still, the genus Listeria comprises six species: (1) two pathogenic ones 
(L. monocytogenes, a human pathogen, and L. ivanovii, a ruminant pathogen), and (2) four non­
pathogenic relatives (L. innocua, L. seeligeri, L. welshimeri, and L. grayi.)16,17 Only two completed 
L. monocytogenes genome sequences are currently available—L. monocytogenes 1/2a EGD-e and 
4b F236518,19—but several other strains are being unassembled18 or sequenced (http://www.ncbi. 
nlm.nih.gov/genomes/lproks.cgi). Among other species, L. innocua CLIP1126219 and L. welshimeri 
SLCC533420 are the only genomes available, but L. ivanovii PAM55, L. seeligeri SLCC3954, and 
L. grayi CLIP12515 are currently being sequenced.17 Since the genomes of L. monocytogenes 1/2a 
F6854 and 4b H7858 are unfinished, some genes cannot be properly identified; also, final assembly 
of these genomic sequences may reveal homologues at a later date. Because no clear conclusion can 
be drawn from genomic analysis of unfinished genomes,21 this review will only focus on completed 
genome sequences of L. monocytogenes strains. 

12.2 ProteIn secretIon systems 

Within the cell envelope, Listeria species can exhibit a large variety of proteins; some of them can 
even interact with the cell surroundings and thus constitute the surfaceome (i.e., the subset of pro-
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tein exposed on the bacterial cell surface). It is worth reminding that, on one hand, cell wall is not an 
impermeable barrier and cell envelope proteins can interact with the environment without ever hav­
ing a domain that leaves the confine of the cell wall8 and that the extracellular milieu can penetrate 
the cell wall, so proteins do not necessarily need to poke out into the environment.22 On the other 
hand, protein localization into the cell envelope is no guarantee that it is cell surface exposed stricto 
sensu as proteins can be masked by overlying components such as capsule polymer, for example.8 

Nevertheless, for the purpose of the present review, cell surface proteins will refer to gene products 
that are attached to the cell wall and/or cytoplasmic membrane and interacting with the external 
side, whereas cell envelope proteins will refer to all gene products present within the cell wall and/ 
or the cytoplasmic membrane. 

While cell surface proteins are systematically cell envelope proteins, the opposite is not neces­
sarily true (e.g., proteins attached to the cytoplasmic membrane but interacting only with the cyto­
plasm). Still, all cell surface proteins (and most cell envelope proteins) must be first translocated to 
the cytoplasmic membrane via a protein secretion system before attaching to membrane or cell wall 
components and thus remaining in contact with the external side. Concerning the functions of cell 
envelope proteins, they are extremely diverse, ranging from transporters and enzymes involved in 
various metabolic pathways (such as carbohydrates, proteins, nucleotides, or lipids), signal transduc­
tions, adhesion and colonization determinants, to virulence factors. It is worth stressing that among 
cell surface proteins, some so-called moonlighting proteins can be present.23 Such proteins are 
multifunctional in the sense that they conduct enzymatic and/or nonenzymatic activities, sometimes 
taking part in widely divergent pathways, especially when present at different subcellular locations. 
For example, enolase, a cytoplasmic protein normally involved in glycolytic pathways, was found on 
the listerial cell surface, which can bind to human plasminogen.24 

In Didermata (corresponding to Gram-negative bacteria, also called Negibacteria),5,25 six major 
protein secretion systems (numbered from Type I to Type VI, i.e., T1SS to T6SS) are currently 
recognized and are restricted to these microorganisms.26–29 In fact, protein secretion systems are 
categorized primarily by translocation mechanisms across the outermost lipid bilayer, which cor­
responds to the outer membrane in diderm bacteria but to the cytoplasmic membrane in mono­
derm prokaryotes. To date in monoderm bacteria, six systems are described as allowing protein 
secretion30 –33—that is, protein transport from inside to outside cell cytoplasm—namely, (1) the Sec 
pathway (secretion, TC #3.A.5; TC#: transport classification number),34 (2) the Tat pathway (twin­
arginine translocation, TC #2.A.64), (3) the FEA (flagella export apparatus, TC #3.A.6.1), (4) the 
FPE (fimbrilin-protein exporter, TC #3.A.14), (5) the holins (hole-formers, TC#1.E.), and (6) the 
Wss (WXG100 secretion system, proteins with WXG motif of ~100 residues). To be complete, the 
MscL family (large conductance mechanosensitive ion channel, TC #1.A.22) and the putative Tad 
(tight adherence) apparatus could also be added to the list,35,36 even though experimental evidence is 
not currently available in monoderm bacteria. Once translocated by one of these systems, a protein 
can remain associated to the cell envelope, be released into the extracellular milieu, or be translo­
cated into a host cell. 

As depicted in Figure 12.1, identification of protein secretion systems in Listeria involved 
screening of genome coding sequences (CDS) against various databases as well as bibliographic 
analyses. From there, Sec, Tat, FPE, FEA, holins, and Wss were identified in L. monocytogenes37 

(Figure 12.2). While some components of these secretion systems have been experimentally inves­
tigated, in Listeria, protein translocation per se has never been ascertained in any of them yet. 

12.2.1 Sec SyStem 

The presence, remarkable conservation, and essential nature of the Sec translocon in all living cells 
have given rise to the notion of a general secretory pathway (GSP) but also led to confusing state­
ments in the literature.38 As illustrated in Figure 12.3, all components of Sec translocon are encoded 
in L. monocytogenes. In addition to the SecYEG protein conducting channel, the signal recognition 
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CDS L. Monocytogenes EDGe 
L. Monocytogenes F2365 

Blast  PSI-blast 
(ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/) 

Fimbrilin-Protein Exporter (FPE) 
ComGA (GI:142706)
ComGB (GI:142707)
ComC (GI:142704) 

WXG100 Secretion System (Wss) 
TC-DB EsaA (GI:15923273) 
(http://www.tcdb.org/) EssA (GI:15923274)

EsaB (GI:15923275)
TransportDB EssB (GI:15923276)
(http://www.membranetransport.org/) EssC (GI:57634614)

EsaC (GI:15923279) 
Tad Export Apparatus 

TadZ  (GI:15895252)
TadC  (GI:15895249)
TadB        (GI:15895250)
TadA  (GI:15895251) 

Bibliographic Analysis 
PubMed (http://www.ncbi.nlm.nih.gov/) 
HighWire  (http://highwire.stanford.edu/) 
SCOPUS (http://www.scopus.com/scopus/) 
ISI-WoS    (http://portal.isiknowledge.com/) 

FIgure 12.1 Genomic identification of protein secretion systems in Listeria species.37 Prior to bioinfor­
matic analysis, complete genome, coding sequences (CDS), and original annotation data sets were downloaded 
from GenBank. Each CDS was screened for the capacity to encode a component of a protein secretion system 
following BLAST against TCDB146 and TransportDB.248 These analyses revealed the presence of Sec com­
ponents and partners as well as FEA subunits, Tat components and holins. MscL and ABC transporter truly 
implicated in protein secretion could not be identified. The identification of FPE was based on PSI-BLAST 
searches using GenBank amino acid sequences of ComGA, ComGB, and ComC from B. subtilis as queries. 
Similarly, Wss was identified using EsaA, EssA, EsaB, EssB, EssC, and EsaC from S. aureus as amino-acid 
sequence queries. Using protein sequences of Clostridium acetobutylicum as queries,33 Tad system compo­
nents could not be identified. Overall, bibliographic analyses were also performed from various databases. 

particle (SRP) and the SRP receptor are ubiquitous and essential in all domains of life.39 In E. coli, 
SRP interacts with nascent signal peptide for cotranslational translocation and specific integration 
of inner membrane proteins, whereas the targeting factor and chaperone SecB interacts with the 
mature part of the protein and allows post-translational translocation via Sec.40 As in all Gram-
positive bacteria,41 SecB and CsaA (analogous to SecB in B. subtilis30) are absent from L. monocy­
togenes. In E. coli, three auxiliary proteins (SecD, SecF, and YajC) form a transmembrane complex 
loosely associated with SecYEG and increase the overall efficiency of protein translocation through 
the cytoplasmic membrane.42 

Contrary to SecDF-YajC, the cytosolic ATPase SecA is essential to Sec-dependent translocation 
in bacteria as it provides the driving force for stepwise export of the protein.43 A SecA paralogue 
(i.e., SecA2) has been identified in several Gram-positive bacteria including L. monocytogenes.44 

Contrary to Streptococcus gordonii, for example,45 presence of SecA2 in L. monocytogenes is not 
accompanied by duplication of SecY. While SecA2 is not essential and its relationship with SRP/ 
Sec is unknown, it clearly allows the secretion of a subset of proteins in L. monocytogenes (e.g., 
Iap,44 NamA,46 and FbpA47). Interestingly, the membrane protein FbpA lacks a putative N-terminal 
signal peptide. As in B. subtilis,30 two paralogues of YidC could be identified in L. monocytogenes: 
SpoIIIJ and YqjG.37 In E coli, the polytopic membrane protein YidC is necessary for cotranslational 

51407_C012.indd 362 11/21/07 7:43:54 AM 



363 Analysis of Cell Envelope Proteins 

Number of 
Membrane Predicted 
Association Substrates: 

Sec 508 

CW 
+Signal Association Tat 
Peptide 2 

FPE 
Trans-CW 5 
Structure 

FEA 

12 
Flagella

Holins Assembly 

2 
–Signal CW 
Peptide Wss Degradation 

2 

FIgure 12.2 Schematic overview of protein secretion pathways in L. monocytogenes EGD-e.37 Proteins 
to be translocated can exhibit (+) or not (–) an N-terminal signal peptide (with the exception of Sec pathway, 
which can translocate proteins with or without signal peptide by alternative mechanisms). Proteins translocated 
via the Sec pathway remain membrane associated or cell wall associated, are released into the extracellular 
milieu, or would even be injected into an eukaryotic host cell. Proteins exported via Tat would most certainly 
be cell surfaced or released into the extracellular milieu. FPE would be involved in the formation of transcell­
wall structures. FEA is involved in flagella assembly. Proteins exported by holins seem secreted into the extra-
cellular milieu or involved in cell wall degradation. WXG100 proteins would be secreted into the extracellular 
milieu. The number of translocated proteins by each pathway is given from most recent estimations. CW, cell 
wall; Sec, secretion; FPE, fimbrilin-protein exporter; Tat, twin-arginine translocation; FEA, flagella export 
apparatus; Wss, WXG100 (proteins with WXG motif of ~100 amino acyl residues) secretion system. 

insertion of all integral membrane proteins (IMPs).48 YidC is a versatile pathway since it can be 
Sec-, SecA-, and/or SecB independent. In B. subtilis, studies have showed that SpoIIIJ and YqjG 
play a role in the folding of several secreted proteins and can work independently to insert integral 
membrane proteins.49 

Signal peptide of translocated preprotein is cleaved off by a membrane-bound signal peptidase 
(SPase). Different classes of N-terminal signal peptide are recognized and are cleaved by different 
types of SPases. Signal peptides of proteins targeted to Sec are of two classes: class 1 and class 
2. Class 2 signal peptides are present in lipoproteins and are cleaved off by SPase II (for further 
details, see section 12.3.1.2). As depicted in Figure 12.3, precursor proteins exhibiting a class 1 
signal peptide meet different fates; that is, they can (1) insert in cytoplasmic membrane and thus 
become integral membrane proteins (for further details, see section 12.3.1.1), (2) remain attached 
covalently or noncovalently to cell wall components (for further details, see section 12.3.2), (3) be 
released into the extracellular milieu, or (4) be injected into a eukaryotic host cell via pore formed 
by Sec-secreted listeriolysin O in a process called cytolysin-mediated translocation (CMT).50,51 It is 
worth noting that CMT has never been as yet reported in Listeria. 
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FIgure 12.3 Schematic representation of the Sec pathway in L. monocytogenes. 37 N-terminal signal pep­
tide is recognized by SRP before cotranslational translocation of the protein through the Sec translocon in 
a SecA-dependent manner. Some proteins with or without a signal peptide can also be translocated in a 
SecA2-dependent manner. Integral membrane proteins integrate into the CM via YidC homologues in Sec­
dependent or -independent manner; such proteins bear stop-transfer sequence and can exhibit signal peptide 
or not, which can be cleaved or not. Lipoproteins, which bear signal peptide of class 2 cleavable by SPases II, 
are covalently attached to long-chain fatty acids of the CM. Proteins bearing class 1 signal peptide cleavable 
by SPases I are (1) secreted into the extracellular milieu or could even be injected into an eukaryotic host cell 
following CMT thanks to pores formed by oligomerization of listeriolysin O; (2) bound to CW components via 
cell binding motifs (i.e., GW, LysM, or uncharacterized motifs); or (3) covalently attached to CW by sortases 
because of the presence of C-terminal LPXTG motif. C, cytosol; PM, plasmic membrane; CW, cell wall; EM, 
extracellular milieu; CM, cytoplasmic membrane; SP, signal peptide; SPase, signal peptidase; SRP, signal 
recognition particle; CMT, cytolysin mediated translocation. 

In Gram-positive bacteria, some Sec-dependent signal peptides exhibit a YSIRK motif 
(PF04650) present at the beginning of the H-domain. This motif is required for efficient protein 
secretion and is systematically associated with an LPXTG motif, even though the opposite is not 
true. Class 1 signal peptides are not always cleaved as the H-domain can serve of transmembrane 
anchor domain as observed in SPases I. Three SPases I have been uncovered and characterized 
in L. monocytogenes: SipX, SipY, and SipZ.52,53 Deletion of sipY genes had no detectable effect, 
whereas SipX and SipZ had overlapping substrate specificity.52 lsp was demonstrated as encoding a 
genuine SPase II54 and a second SPase II—LspB (Lmo1101)—was recently uncovered by genomic 
analysis but only in L. monocytogenes EGD-e.37 

While some proteins cleaved by SPases I can remain noncovalently bound by various cell 
wall binding domains (for further details, see section 12.3.2.2), covalent attachment of proteins to 
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cell wall requires sortases. Proteins emerging from the Sec apparatus and exhibiting an LPXTG­
like motif C-terminally located (for further details, see section 12.3.2.1) are recognized by mem-
brane-associated sortase.55 Transpeptidase sortase attacks the TG bond of the LPXTG-like motif, 
capturing cleaved polypeptide as a thioester-linked acyl enzyme at its active site cystein residue.56 

Subsequently, this complex is resolved by the nucleophilic attack of the amino group of the cross-
bridge within lipid II precursor. Based on phylogenetic analyses, sortases are now classified into 
four classes, designated A, B, C, and D.57 In L. monocytogenes, two sortases are present (SrtA and 
SrtB; Figure 12.3). 

As observed in other Gram-positive bacteria, sortase of class A (also called SrtA subfamily) in 
L. monocytogenes is encoded only once in the genome, resembles a Type II membrane protein, and 
is necessary for the anchoring of the majority of LPXTG-containing proteins.58 Sortase of class B 
(SrtB subfamily) recognizes a particular type of sorting signal (i.e., an NXZTN motif), which sug­
gests a lower stringency of the recognition motif of SrtB compared to SrtA.59 Captivatingly, from 
investigations in Streptococcus pyogenes and Staphylococcus aureus, glycosylated LPXTGase, an 
enzyme that cleaves the C-terminal LPXTG motif, is the first enzyme found that is produced by 
nonribosomal peptide (NRP) synthesis.60,61 It is known that NRP synthesis (and similarly related 
polyketide synthesis) occurs in Bacilli class, where NRPs are assembled in the cytoplasm by large 
megaproteins called NRP synthetases consisting of a series of active modules carrying out catalysis 
and modification of the tethered growing peptide chain.62 However, investigations in S. aureus sug­
gest that enzymes responsible for cell wall assembly may also be involved in the construction of 
LPXTGase.61 Finally, it cannot be excluded that such a nonribosomally synthesized enzyme be also 
present and involved in LPXTG-like protein anchoring in L. monocytogenes.37 

Substrates of the Sec system are generally considered as exhibiting an N-terminal signal pep­
tide composed of three domains: (1) The N-domain contains positively charged amino terminus, 
(2) the H-domain is a hydrophobic core region, and (3) the C-domain contains the cleavage site.63 

It must be emphasized, however, that it is not the case for all proteins (e.g., some SecA2-dependent 
and/or YidC-dependent proteins). Still, the presence of an N-terminal signal peptide indicates a 
protein is targeted to membrane. Despite lack of amino acid sequence similarity, signal peptides 
can be detected with good accuracy by various documented and publicly available applications 
(Table 12.1). The first methods developed were SigCleave and SPScan, which were implementations 
of a simple weight matrix approach.64 While SigCleave is part of the EMBOSS suite and also avail­
able by an interface on the World Wide Web, SPScan is only available as part of the GCG suite and 
thus requires ability to work under Unix-like environment. Comparing the two programs, SPScan 
has clearly better predictive performance in terms of secretory protein and cleavage site recognition, 
especially for prokaryotic proteins.65 Nearly a decade later, SignalP, a promising method based on a 

table 12.1 
bioinformatic resources for Prediction of bacterial n-terminal signal Peptides 

application method Webserver ref. 

SigCleave Position weight matrix http://bioweb.pasteur.fr/seqanal/interfaces/sigcleave.html 64 

SPScan Position weight matrix none 64 

SignalP Neural network http://www.cbs.dtu.dk/services/SignalP/ 67 
Hidden Markov model 

PrediSi Position weight matrix http://www.predisi.de/ 69 

SOSUIsignal Global physicochemical analysis http://bp.nuap.nagoya-u.ac.jp/sosui/sosuisignal/ 70 

Phobius Hidden Markov model http://phobius.binf.ku.dk/ 71 

PSORTb Support vector machine http://www.psort.org/psortb/ 74 
Hidden Markov model 

SPdb BLAST http://proline.bic.nus.edu.sg/spdb/ 76 
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neural network, was released66 and has undoubtedly become the most popular method for predict­
ing N-terminal signal peptide. Since the first available version 1.1, SignalP has been substantially 
improved up to the latest version 3.0.67 

While version 1.1 is definitively out of date, both versions 2.0 and 3.0 use either a neural network 
(NN) or HMM. When comparing SignalP v2.0-NN, -HMM, and SPScan, it appears that (1) SPScan 
predicts correctly more proteins as secreted than SignalP v2.0-NN or -HMM; (2) SignalP v2.0-NN 
and -HMM are superior in predicting the correct cleavage site; (3) SignalP v2.0-NN lags behind 
SPScan and SignalP v2.0-HMM in classifying correctly the proteins, the latter providing the best 
prediction; and (4) SignalP v2.0-NN is the best for predicting of the correct cleavage site.65 In other 
words, these methods are complementary in predicting an N-terminal signal peptide. The main 
improvement in SignalP v3.0 is increased accuracy in prediction of signal peptidase cleavage sites.67 

In comparative analyses, SignalP3.0 performs significantly better than other machine learning and 
HMM methods. Despite performance improvement in the latest SignalP v3.0, however, it appears 
that SignalP v2.0-NN remains the best signal prediction program.68 

A position weight matrix approach was improved by a frequency correction, which takes into 
consideration the amino acid bias (i.e., PrediSi).69 SOSUIsignal is a global structure analysis based 
on physicochemical features of the three signal peptide domains—N-, H-, and C-domains—and 
discriminates between cleavable and anchoring signal sequences.70 Since a signal peptide contains 
a hydrophobic H-domain, there is a risk of erroneously identifying a transmembrane α-helix as a 
signal peptide or, conversely, classifying a protein with a signal peptide H-domain region as an IMP. 
In order to discriminate between the two, a combined TM topology and signal peptide predictor 
has been developed: Phobius.71 Phobius significantly reduces false classifications of signal peptides 
compared to SignalP. Another machine learning approach used for prediction of signal peptides is 
support vector machine (SVM), which can predict signal peptides with great accuracy.72 Such an 
implementation of an SVM combined with an HMM is part of PSORTb,73 now applicable to both 
Gram-positive and Gram-negative bacteria.74 Finally, SPdb, a repository of experimentally deter­
mined and computationally predicted signal peptides, is also accessible via BLAST (basic local 
alignment search tool) search.75,76 

It can be stressed again that these analyses only predict the presence of signal peptide, meaning 
that the protein is targeted to the cytoplasmic membrane. However, it does not necessarily mean the 
protein is translocated across the cytoplasmic membrane via Sec or released into the extracellular 
milieu. Indeed, proteins translocated via Tat or FPE also possess N-terminal signal peptides with 
additional features, which are not identified by the previous tools (Table 12.1). Thus, final prediction 
of a protein translocated via Sec requires additional inspections (see sections 12.2.2 and 12.2.3). 
Concerning proteins translocated by the Sec system and possessing a signal peptide, they can (1) be 
released into the extracellular medium or injected into a host cell, (2) remain associated to the cell 
wall by covalent or noncovalent interactions, or (3) remain associated to the cytoplasmic membrane 
by transmembrane domains (including H-domain of uncleaved signal peptide) or be lipoproteins 
(see section 12.3). Thus, final localization prediction of Sec substrates requires a combination of 
tools for prediction of function, motifs, and TMDs. It is also recommended to combine these results 
with those from tools dedicated to prediction of protein subcellular localization in Gram-positive 
bacteria (Table 12.2). 

NNPSL was the first tool developed for such prediction and is based on an NN.77 SubLoc,78 

PSORTb,73 CELLO79 (recently extended to prediction in Gram-positive bacteria80), and LOCtree81 

are basically SVM. These tools have their own advantages and weaknesses,82 and some of them, 
like PSORTb, combine a variety of individual predictors. Proteome Analyst is a novel type of 
machine-learning classifier that involves several steps in the prediction process, such as BLAST 
search against Swiss-Prot database and naïve Bayesian classifiers.83 From the most recent studies on 
performance of prediction tools, PSORTb and Proteome Analyst achieve the highest overall preci-
sion.84 Gpos-PLoc, another type of ensemble classifier, was recently developed where several basic 
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table 12.2 
bioinformatic resources for Prediction of subcellular localization of Proteins 
in gram-Positive bacteria 

application method Webserver ref. 

NNPSL Neural network http://www.doe-mbi.ucla.edu/~astrid/astrid.html 77 

SubLoc Support vector machine http://www.bioinfo.tsinghua.edu.cn/SubLoc/ 78 

PSORTb Support vector machine http://www.psort.org/psortb/ 73 
Ensemble classifier 

CELLO Support vector machine http://cello.life.nctu.edu.tw/ 80 

LOCtree Support vector machine http://cubic.bioc.columbia.edu/services/loctree/ 81 

Proteome Analyst Ensemble classifier http://pa.cs.ualberta.ca:8080/pa/ 83 

Gpos-PLoc Ensemble classifier http://202.120.37.186/bioinf/Gpos/ 85 

DBSubLoc BLAST http://www.bioinfo.tsinghua.edu.cn/~guotao/intro.html 86 

PSORTdb BLAST http://db.psort.org/ 87 

PA-GOSUB BLAST http://www.cs.ualberta.ca/~bioinfo/PA/GOSUB/ 88 

Augur Ensemble classifier http://bioinfo.mikrobio.med.uni-giessen.de/augur/ 80 

classifiers were fused and optimized for predicting subcellular localization of Gram-positive bacte­
rial proteins.85 Finally, several databases (derived from previously described prediction tools) are 
available following BLAST search (DBSubLoc,86 PSORTdb,87 and PA-GOSUB88). Augur is another 
database especially dedicated to protein localization on cell surface of Gram-positive bacteria.89 

Once again, final prediction of secreted proteins (and localization) should combine results from 
these various bioinformatic tools.84 

Using SignalP v2.0 to predict signal peptide region and TopPred v2.0 to exclude other trans­
membrane domains, 86 proteins were predicted as secreted into the extracellular medium from 
genomic analysis of L. monocytogenes EGD-e.19 In L. monocytogenes F2365, 420 proteins were 
predicted with a putative N-terminal signal peptide, including 2 with a YSIRK motif.18 Perform­
ing extensive genomic analyses, which combined results from SignalP v2.0, SigCleave, SOSUI, 
PSORT, and TMPinGS, the number of proteins bearing an N-terminal signal peptide was estimated 
at 525 in L. monocytogenes EGD-e, including 255 IMPs and 270 exported proteins where 121 
would be released into the extracellular milieu.90 All 14 virulence factors characterized so far in 
L. monocytogenes are most likely translocated via the Sec translocon.37 Among the 121 proteins 
originally predicted as secreted via Sec and released into the extracellular milieu, a closer look 
revealed that four prepilins—that is, ComGC (Lmo1345), ComGD (Lmo1344), ComGE (Lmo1343), 
and ComGG (Lmo1341)—should be removed from the output since they would form trans-cell-wall 
structure following translocation via FPE.37 Proteomic analysis of supernatant from liquid culture 
of L. monocytogenes EGD-e allowed the identification of 54 out of 117 proteins predicted as extra-
cellular, including virulence factors Hly, PlcA, and PlcB.90 

12.2.2 tat Pathway 

The term twin-arginine translocation (Tat) was coined from the systematic presence of RR motif in 
signal peptide of proteins translocated via this secretion system.91 The [ST]RRXFLK motif strad­
dles the N-domain and H-domain of N-terminal signal peptide.92 Contrary to the Sec translocon, the 
main feature of this pathway is its ability to translocate proteins in a folded state. General knowl­
edge on the precise succession and mechanistic events leading to protein secretion via this pathway 
remains rudimentary.93 The generally accepted translocation model was first proposed by Mori and 
Cline,94 where Tat translocation follows a cycle in which TatBC functions in the specific recogni­
tion of the substrate and TatA functions as the pore-forming unit. An alternative model proposes 
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TatA (Lmo0362) SPase I TatC (Lmo0361) 

FIgure 12.4 Tat translocon in L. monocytogenes.37 During Tat secretion, the general model proposes a 
cyclical assembly of components. (A) In resting state, Tat machinery components are separately present in 
the cytoplasmic membrane (i.e., TatB and TatA). (B) Once Tat substrate protein precursor binds to the TatC 
in an energy-independent step, this complex associates with TatA in a step driven by transmembrane proton 
electrochemical gradient. This association would persist until completion of protein transport across the mem­
brane driven by proton motive force. Tat signal peptide is subsequently cleaved by SPase I and Tat machinery 
components disassembled, as depicted in (A). RR, twin-arginine motif in Tat signal peptide; EM, extracellular 
milieu; CM, cytoplasmic membrane; C, cytoplasm. 

that membrane integration could precede Tat-dependent translocation and the membrane targeting 
process may require ATP-dependent N-terminal unfolding-steps energy.95 

Still, components of Tat translocon differ in number between Gram-negative and Gram-positive 
bacteria.30 The most baffling difference is the absence of TatB from all Gram-positive bacteria 
sequenced so far, although it is an essential components of Tat translocon in E. coli, which is used 
as a paradigm.96 As in most Gram-positive bacteria, Tat translocon in L. monocytogenes is encoded 
in one locus and is composed of only two proteins, TatA and TatC37 (Figure 12.4). TatC is a large 
IMP generally considered as the primary site for signal-peptide recognition.97 TatA is a membrane 
protein that oligomerizes to form a protein-conducting channel where the number of subunits would 
adjust in function of the Tat substrate size.98 In TatA, a cytoplasmic lid region acts as a gate and 
would open following association of TatC–substrate complex with TatA, then inducing conforma­
tion change and protein translocation driven by proton motive force. Translocated protein is finally 
released after cleavage by SPAse I.96 A Tat translocon does not seem to be systematically present in 
L. monocytogenes as no component could be identified in L. monocytogenes F2365. The Tat system 
has never been experimentally investigated in Listeria; thus, its expression, functionality, involve­
ment of one or three SPases I, or proteins secreted via this pathway remain unknown.37 

Three tools are currently available to discern Tat substrates (Table 12.3) and TATFIND was the 
first program especially devoted to such identification.99 In its original available version, TATFIND 
v1.2, prediction was based on two criteria: (1) presence of conserved Tat motif ZRRZZZ within the 
first 35 amino acid residues, where Z represents a defined set of permitted residues; and (2) presence 

table 12.3 
bioinformatic resources for Prediction of tat signal Peptides 

application method Webserver ref. 

TATFIND Physicochemical analysis and regular http://signalfind.org/tatfind.html 100 
expression 

TatP Neural network and regular expression http://www.cbs.dtu.dk/services/TatP/ 101 

TATPred Naïve Bayesian network http://www.jenner.ac.uk/logP/JennerlogPcalc.htm 102 
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of an uncharged stretch of at least 13 amino acids downstream of the twin arginine. In the latest 
version, TATFIND v1.4, search for a single charged residue in positions +2 and +5 relative to the 
RR was included.100 TatP v1.0 incorporates signal peptide and cleavage site prediction based on a 
combination of two artificial neural networks followed by a postfiltering of the output based on reg­
ular expression RR[FGAVML][LITMVF].101 Compared to TATFIND v1.2, TatP generates far fewer 
false positive but slightly more false negative predictions. TATPred is the latest algorithm based on 
naïve Bayesian network developed for prediction of Tat substrates.102 Compared to TatP, TATPred 
appears as the most robust and reliable predictor with higher sensitivity of prediction. 

According to TATFIND search, only two Tat substrates could be identified in L. monocyto­
genes EGD-e.99 One of these putative Tat substrates, however, is also present in L. monocytogenes 
F2365, where the Tat system is not encoded.37 These substrates have never been reported as pres­
ent in the extracellular milieu of L. monocytogenes. While it has been long assumed that the RR 
motif was highly specific and conserved in Tat substrates, it must be stressed that substitutions of 
one arginine, or in some cases both arginines, by lysine103 or that natural proteins harboring very 
distantly related RR motifs104 could still permit targeting and translocation via the Tat pathway.105 

This indicates that Tat system specificity is more flexible than originally thought and thus presence 
of Tat substrate cannot be systematically identified by bioinformatic analysis. 

12.2.3 FPe 

Components of fimbrilin-protein exporter (FPE) of Gram-positive bacteria are homologous to pro-
teins required for secretion of substrate proteins in Gram-negative bacteria, namely, some ATPase 
and IMP components of the Type II protein secretion system (T2SS), Type 4 piliation sytem (Tfp), 
and Type IV protein secretion system (T4SS), as well as archaeal flagella.106 As in all Gram-positive 
bacteria where it has been reported so far,33,107,108 components of FPE in L. monocytogenes are 
encoded in a comG operon, except for ComC located elsewhere on the chromosome. Protein export­
ers of the FPE family consist of two constituents—ComGA and ComGB—that would function 
together in an ATP-hydrolysis-dependent export of proteins across the cytoplasmic membrane109,110 

(Figure 12.5). ComGA is an ATPase localized to the cytoplasmic side of the membrane that could 
participate in modeling of pilus-like structure.109 As a homologue to PilC of Tfp and PulF of T2SS,109 

ComGB is an IMP having three putative TMDs that could play the role of a protein-conducting 
channel.111 ComC is a Type 4 prepilin peptidase involved in cleavage of N-terminal signal peptide 
of class 3;112 this signal peptidase belongs to the aspartic acid protease family.113 

While ComC is required for maturation, translocation, and assembly of prepilins, an initial trans­
location event across the cytoplasmic membrane has not been clearly elucidated. As prepilin signal 
peptide is cleaved at the cytoplasmic side between the N- and H-domains, prepilins are certainly 
not translocated by the Sec or Tat pathways and the hypothesis of ComGAB involvement is favored. 
However, YidC contribution cannot be excluded30; prepilins were originally thought to insert sponta­
neously in the membrane bilayer but with the current knowledge of membrane protein insertion this 
hypothesis should not be privileged (see section 12.3). Four Type 4 prepilins are encoded in comG 
locus by the comGC, comGD, comGE, and comGG genes110; ComGF is presumably an IMP. Once 
maturated and translocated, pilins form a trans-cell-wall macromolecular complex where monomers 
are covalently linked by disulphide bonds.114 Since this structure is involved in bacterial competence 
and does not form a proper Type 4 pilus, it was named competence pseudopilus. 

In B. subtilis, Type 4 prepilins exhibit N-terminal signal peptides with a conserved motif 
[KR]G▼F[TSI][LTY][VLIP][EA] located between the N- and H-domains where ▼ indicates the 
predicted cleavage site.110 In Listeria, the motif is slightly different—that is, [NPRS][GA]▼F[TS] 
L[VLP][EF]—and is found in five putative prepilins (i.e., ComGC, ComGD, ComGE, ComGF, and 
ComGG).37 In B. subtilis, the highly conserved phenylalanine at position +1 is aminomethylated 
by ComC, which thus appears bifunctional as it is also involved in prepilin processing.30 Using 
ScanProsite syntax,115 search for consensus motif [GA]F[TS]LX[EF] located between the N- and 
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FIgure 12.5 FPE in L. monocytogenes.37 The prepilins initially float in the CM; initial insertion into the 
membrane is certainly Sec or Tat independent but the involvement of ComGAB remains to be ascertained. 
After processing by ComC signal peptidase, ComGA and ComGB would be involved in assembly of pseudo­
pilins to form a trans-cell-wall pilus-like structure. GFTLXE, conserved [GA]F[TS]LX[EF] motif in Type 4 
prepilin signal peptide from Listeria; CW, cell wall; EM, extracellular milieu; CM, cytoplasmic membrane; 
C, cytoplasm. 

H-domains of predicted signal peptide can thus be performed in order to identify putative FPE sub­
strates in Listeria. The FPE system has never been experimentally investigated in Listeria; thus, its 
expression, functionality, and involvement in bacterial competence remain to be established.108 

12.2.4 Fea 

L. monocytogenes produces up to six peritricheous flagella, which are down-regulated at 37°C, 
although variation from one strain to another was reported.116,117 Regulation of listerial flagella is 
not entirely understood and appears rather complex since at least five regulators involved in its 
expression have been identified so far: FlaR,118 PrfA,119 DegU,120 MogR,121 and GmaR (Lmo0688 
also called WcaA).122 Interestingly, the antirepressor GmaR is bifunctional since it also functions as 
a glycosyltransferase for flagellin FlaA122 and glycosylation with β-O-linked N-acetylglucosamine 
was indeed established for FlaA.123 This investigation constituted the first description of β-O-
GlcNac post-translational modification on a prokaryotic protein, though flagella glycosylation is 
not essential for motility in L. monocytogenes.124 As motility mediators, flagella are important in 
colonization of abiotic surfaces and host cell invasion but do not function as adhesins.124,125 

Interestingly, FlaA was also demonstrated as exhibiting a peptidoglycan-hydrolyzing activity that 
might play a role during flagella assembly.126,127 Indeed, some flagellar components are assembled 
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on the bacterial cell surface where local digestion of cell wall sacculus might be required—namely, 
for (1) the rod proteins (i.e., FlgB, FlgC, FliE, and FlgG), (2) the hook/junction proteins (i.e., FliK, 
FlgD, FlgE, FlgK, and FlgL), and (3) the filaments proteins FlaA and FliD. As in Gram-negative 
bacteria,128–132 these proteins lack a cleavable N-terminal signal peptide and are presumably translo­
cated by the flagella export apparatus (FEA) composed of FlhA, FlhB, FliH, FliL, FliP, FliO, and 
FliH. In Listeria, all flagella components are encoded in a single flagellar–motility–chemotaxis 
cluster of 41 genes,37 where FEA and its potential substrates could be identified by homology search. 
In Didermata, T3SS refers to a secretion system where translocation apparatus is homologous to 
injectisomes (T3aSS) and flagella (T3bSS),51,133 both of which are involved in secretion of extracel­
lular proteins.134,135 As already stressed, however, this terminology is restricted to Gram-negative 
bacteria. In monoderm bacteria, involvement of FEA in secretion of extracellular protein has only 
been suggested in Bacillus thuringensis.136 

12.2.5 holinS 

Holins (hole-formers) are small membrane proteins of phage origin that essentially control endolysin 
function in a process leading to bacterial apoptosis.137–139 A current model for the holin-endolysin 
system proposes that holins accumulate in the cytoplasmic membrane, whereas endolysins accumu­
late in the cytoplasm140,141 (Figure 12.6). At a programmed time, holins oligomerized to form pores 
in the cytoplasmic membrane, allowing release of endolysins into the extracytoplasmic space lead­
ing to cell lysis following cell wall degradation and membrane disruption. Homo-oligomeric pore 
complexes formed by holins would provide a passive but specific translocation system.142 Generally, 
holin and its specific endolysin are genetically encoded in tandem. Some holin genes possess a 
dual start motif, which results in the expression of two distinct proteins with dramatically opposed 
function since one would promote autolysis (holin) and the other would inhibit it (antiholin).143 Such 
regulation can also occur between proteins encoded at different loci (e.g., lrgAB/cidAB operons in 
Staphylococcus aureus).144,145 Holins are an extremely diverse group of proteins with 23 distinct 
families recognized in TC-DB (transport classification database),146 although they can be grouped 
into three classes based on membrane topologies.147 Class 1 holins exhibit three helical TMDs, 
whereas class 2 holins have two TMDs. Besides classes 1 and 2, which cover most holins, a third 
class was identified on the basis of T protein of phage T4 where only a single TMD is present.148 

(a) 

HolA118 (Lmo2279) 

(b) 

CM 

C 

EM 

PlyA118 (Lmo2278) 

FIgure 12.6 ϕA118 holin-endolysin system in L. monocytogenes EGD-e.37 (A) HolA118 is a class 1 holin 
(i.e., with 3 TMDs). (B) HolA118 oligomerizes in the CM to form a pore allowing translocation and activation 
of endolysin Ply118. EM, extracellular milieu; CM, cytoplasmic membrane; C, cytoplasm. 

51407_C012.indd 371 11/21/07 7:44:01 AM 



372 Handbook of Listeria monocytogenes 

The number of holins encoded in Listeria varies between strains and species37; only one holin 
could be identified in L. monocytogenes F2365, whereas five holins were found encoded in non­
pathogenic strain L. innocua CLIP11262. However, only three distinct families of holins were iden­
tified in L. monocytogenes (i.e., as belonging to bacteriophage 118, TcdE, and bacteriophage 11 
families). Holins of ϕA118 family (HolA118) were first identified and investigated in L. monocyto­
genes although a homologue is at least also encoded in L. innocua.37,149 HolA118 is not encoded by 
all L. monocytogenes species as it is absent from L. monocytogenes F2365. Native holin HolA118 is 
a 93-amino-acid-long protein belonging to class 1, but its encoding gene is subjected to dual trans­
lational initiation, which leads to a second 83-amino-acid-long protein called HolA118(83) acting 
as an antiholin.150 Gene encoding phage lysin of ϕA118 (PlyA118) systematically clusters with gene 
encoding HolA118.18,151The endolysin PlyA118 is an L-alanoyl-D-glutamate peptidase hydrolyzing 
the cross-linking bridges of cell wall peptidoglycan and thus responsible for bacterial lysis in a 
programmed cell death. 

Holins belonging to TcdE family are encoded in all sequenced Listeria but as ϕ11 holins they 
have never been experimentally investigated. TcdE holin was investigated in Clostridium difficile, 
where toxigenic strains produce two large toxins, TcdA and TcdB, of major importance in bacte­
rial virulence, which would be translocated across the cytoplasmic membrane by TcdE.152,153 While 
in C. difficile all these genes are encoded within a pathogenicity locus, no genes coding for tox­
ins or virulence factors could be identified in Listeria.37 However, a putative autolysin lacking a 
signal peptide was systematically present (i.e., genes encoding Lmo0129 and LMOf2365_0147 in 
L. monocytogenes EGD-e and F2365, respectively). Although this particular holin family has never 
been investigated per se in Listeria, proteomic analysis in L. monocytogenes EGD-e disclosed 
the presence of Lmo0129 in supernatant of bacterial cultures, suggesting this secretion pathway 
is active in this species.90 In Listeria, ϕ11 holins were only identified in unassembled genome of 
L. monocytogenes F6854 and nonpathogenic L. innocua CLIP11262, where they systematically 
clustered with genes encoding amidases presumably involved in cell wall degradation.37 

12.2.6 wSS 

Wss stands for proteins with WXG motif of ~100 residues (WXG100) secretion system.154 WXG100 
is a new superfamily of proteins around 100 amino acids long, possessing a coil–coil domain and 
bearing a conserved WXG motif located in the middle region. First identified members of this 
superfamily were paralogues ESAT-6 (early secreted antigen target of 6 kDa) and CFP-10 (cul­
ture filtrate protein 10) from Mycobacterium tuberculosis. While ESAT-6 and CFP-10 are specific 
and experimentally investigated proteins, WXG100 (PF06013) is an established and generic ter­
minology more appropriate to describe protein members of this family, especially those that have 
not been experimentally investigated yet. No generic terminology for the different components of 
Wss apparatus has been established yet. Presence of a novel protein secretion system was clearly 
suggested by bioinformatic analysis.154 In B. subtilis, genes encoding WXG100 proteins appeared 
to cluster systematically with yukab, which are predicted to encode membrane bound ATPases 
with FtsK/SpoIIIE domains. Similar genetic organization was observed in some Corynebacterium, 
Mycobacterium, Streptomyces, Bacillus, Clostridium, Listeria, and Staphylococcus species.31,154 

YukAB homologues appear encoded as single or two CDS. To date, Wss seems phylogenetically 
restricted to Gram-positive bacteria and has been experimentally investigated only in M. tuberculo­
sis, M. smegmatis, and S. aureus. 

In Mycobacterium, two WXG100 proteins are secreted: ESAT-6 and CFP-10.155 Recently, a 
C-terminal signal sequence required for secretion via Wss was unraveled in CFP-10.156 Mycobacte­
rium Wss apparatus was named Snm (secretion in mycobacteria) and is composed at least of155,157: 
(1) Snm1, Snm2, and Snm6 containing NTP-binding motifs (where Snm1 and Snm2 are homolo­
gous to YukAB); (2) Snm4, which is an IMP; (3) Snm5 and Snm7 with uncharacterized functions, 
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and Snm8 (i.e., a membrane anchored serine protease). Snm permits translocation of ESAT-6 and 
CFP-10 as well as their heterodimerization.158,159 In S. aureus, the Wss was named Ess (ESAT-6 
secretion system) and is encoded in a locus composed of eight CDS including two WXG100 par-
alogues—EsxA (Ess extracellular protein A) and EsxB—as well as:160 (1) EssC (Ess protein C) 
homologous to YukAB; (2) EssA, EssB, and EsaA (ESAT-6 secretion accessory protein A), which 
are IMPs; and (3) EsaB and EsaC, which predict cytoplasmic chaperones. Compared to B. subtilis, 
where a putative Wss was primarily uncovered, EssB and EsaB appear homologous to YukC and 
YukD, respectively. In S. aureus, no homologue to Snm4, Snm5, Snm6, Snm7, or Snm8 was found, 
whereas in mycobacteria, no homologue to EssA, YukC, EsaA, and YukD could be identified. In 
both M. tuberculosis and S. aureus,160,161 Wss is important and critical for bacterial pathogenicity, 
though the function of WXG100 proteins in virulence remains obscure.162 

Synteny is highly conserved between Wss encoding loci of S. aureus and L. monocytogenes.160 

However, compared to Mycobacterium species or S. aureus, only a single copy of Wss locus is pres­
ent in each sequenced Listeria genome.37 Following homology with S. aureus and Mycobacterium, 
Wss in L. monocytogenes is represented in Figure 12.7. From one report,163 it seems that WXG100 
protein is not required for virulence of L. monocytogenes. Still, protein expression, system function­
ality, and involvement in bacterial virulence of Wss remain to be established. 
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FIgure 12.7 Wss in L. monocytogenes.37 WXG100 proteins would interact with putative cytoplasmic chap­
erones YukD and EsaC before being translocated by the Wss apparatus constituted of EssA, EsaA, YukC, 
and YukAB; in the course of translocation the two WXG100 proteins would finally form a heterodimer. EM, 
extracellular milieu; CM, cytoplasmic membrane; C, cytoplasm. 
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12.3 cell enveloPe-assocIated ProteIns 

Cell envelope of Gram-positive bacteria is primarily composed of a single biological membrane 
(i.e., the cytoplasmic membrane) and a cell wall made up of peptidoglycan (which in turn con­
sists of linear polysaccharide chains cross-linked by short peptides).164 Besides peptidoglycan, the 
rigid cell-wall of Gram-positive bacteria contains large amounts of wall-associated polymers, also 
called “secondary” cell wall polymers (SCWPs), which can be classified into three distinct groups: 
(1) teichoic acids (i.e., polyol phosphate polymers, including lipoteichoic acids), (2) teichuronic acids, 
and (3) other neutral or acidic polysaccharides that cannot be assigned to the two former groups 
(e.g., lipoglycans).55,165,166 The SCWPs, present in various proportions, are either covalently linked 
to the peptidoglycan backbone (i.e., teichoic acids) or tethered to a lipid anchor moiety. Except for 
teichoic and teichuronic acids, the structure and biosynthesis of other SCWPs are largely unknown. 
It must be stressed that in almost all phylogenetic branches of Archaea and Bacteria, the cell enve­
lope is also constituted of a proteinaceous S-layer (regular crystalline surface layer), which forms 
the outermost cell-wall layer.167 The S-layer entirely coats the bacterial cell surface and is composed 
of (glyco)proteins, which bind by noncovalent interactions to cell wall components and are arrayed 
in a two-dimensional lattice.167 S-layer, however, is not present in all Gram-positive bacteria as it 
is absent from all members of Listeria genus. Within the cell envelope, proteins can associate with 
cytoplasmic membrane or cell wall components.8 

12.3.1 membrane-aSSociated ProteinS 

Membrane-associated proteins include membrane integrated proteins as well as peripheral membrane 
proteins. Being different from membrane integrated proteins, peripheral membrane proteins do not 
possess membrane spanning domains. Membrane integrated proteins are anchored within the lipid 
bilayer and thus systematically exhibit hydrophobic transmembrane domains (TMDs), which are 
normally α-helices for proteins found in the cytoplasmic membrane. Peripheral membrane proteins 
include (1) lipoproteins, (2) subunits of membrane-associated complexes, and (3) proteins interacting 
with membrane components due to electrostatic and/or hydrophobic/steric properties.168 Following 
recommendations of the Gene Ontology (GO) Consortium for describing location of cellular com­
ponents (one of the three organizing principles of GO with biological process and molecular func-
tion),169 two classes of membrane-related location are distinguished (Figure 12.8). First, intrinsic to 
plasma membrane (GO:0031226) refers to proteins with covalently attached moiety embedded in 
the cytoplasmic membrane, which splits into (1) integral to plasma membrane (GO:0005887) corre­
sponding to membrane integrated proteins, where some part of the peptide sequence spans all or part 
of the cytoplasmic membrane; and (2) anchored to plasma membrane (GO:0046658) correspond­
ing to proteins tethered to the cytoplasmic membrane by a nonpolypeptidic covalently attached 
anchor: lipoproteins. Second, extrinsic to plasma membrane (GO:0019897) refers to proteins neither 
anchored by covalent bonds to any moiety nor directly embedded in the cytoplasmic membrane; 
some of these proteins can be (1) primarily present in the cytoplasm (GO:0005737) but interact with 
membrane components, or (2) subcomponents localized within protein complex (GO:0043234). 

12.3.1.1 Integral membrane Proteins 

As already mentioned, all bacterial IMPs are presumably inserted into the cytoplasmic membrane 
via YidC homologues48,170,171 (i.e., SpoIIIJ and YqjG in Gram-positive bacteria30; see section 12.2.1). 
The Sec-independent function of YidC homologues is conserved and essential for bacterial cell 
growth as it works like a membrane protein insertase.172 YidC plays a major role in the folding 
step of transmembrane-spanning domains but the exact mechanism of functioning is not fully 
understood.173 YidC would facilitate the insertion of membrane proteins by providing a special 
amphiphilic surface, which would overcome the repulsion of the hydrophobic protein segments by 
polar head groups. In addition, polar residues seem to be protected against the hydrocarbon core of 

51407_C012.indd 374 11/21/07 7:44:02 AM 



375 Analysis of Cell Envelope Proteins 

Extracellular Milieu 
GO:0005887 

Cell Wall 
GO:0005618 

Integral to CM Anchored to CM Extrinsic to CM 
GO:0005887 GO:0046658 External Side 

GO:0031232 

Cytoplasmic 
Membrane 

GO:0005886 

Cytoplasm 
GO:0005737 

Protein Complex 
GO:0043234 

Extrinsic to CM Internal Side 
GO:0031234 

Intrinsic to CM Extrisic to CM

GO:0031226 GO:0019897


Associated to CM 

FIgure 12.8 Description of protein localization following GO in Gram-positive bacteria.179 In monoderm 
bacteria four subcellular compartments can be distinguished: (1) cytoplasm, (2) cytoplasmic membrane, (3) cell 
wall, and (4) extracellular milieu. A membrane-associated protein can be intrinsic or extrinsic. Proteins intrin­
sic to CM are either integral to membrane (i.e., integral membrane proteins) or anchored to CM, essentially 
lipoproteins with the restriction of lipoproteins having TMDs. Proteins extrinsic to CM can be located on the 
external or internal side of the CM (i.e., in exoplasmic or cytoplasmic compartment, respectively). They can 
interact more or less temporarily with membrane components or be part of membrane protein complex (e.g., 
F1F0ATP synthetase δ subunit) as indicated on the schema. A protein can also have multiple final localiza­
tion. Importantly, because cell wall of Gram-positive bacteria is permeable, extracellular milieu penetrates it. 
CM, cytoplasmic membrane; GO, gene ontology. 

the membrane by YidC. In the case of Sec-dependent translocation, the protein would be stabilized 
and then folded by contact with YidC after leaving the Sec YEG channel. It is quite possible that 
the transmembrane segments could fold and interact with each other even within SecYEG-YidC 
machinery. It has been suggest that YidC functions as an assembly site for hydrophobic domains, 
so it may be necessary for its attaching to the individual subunits of multisubunit membrane com-
plex.174 It is worth noting that, in E. coli, targeting, translocation, and insertion of IMPs are consid­
ered cotranslational and thus SRP dependent.175 

Translocation of polypeptide chain is promoted by signal peptides and interrupted by another 
type of topogenic element called stop-transfer sequence176,177; both types of topogenic sequences act 
as α-helical transmembrane domains. Multiple uncleaved signal peptides can be found all along 
the amino acid sequences; when located N-terminally, they can be cleaved or not. These types of 
topogenic elements have a Cout-Nin topology and when uncleaved are also called signal-anchors or 
Type II signals.178 Similarly, one or more stop-transfer sequences with an Nout-Cin topology can be 
present in polypeptide chain and are also called Type II signals. Single-spanning membrane pro-
teins are discriminated on the basis of Type I or Type II signal (Figure 12.9). Polytopic membrane 
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FIgure 12.9 Classification and topology of IMP in cytoplasmic membrane.179 (A) Three types of single­
spanning membrane proteins can be discriminated: (1) Type I proteins possess a cleavable N-terminal signal 
peptide and thus have a Type I signal or stop-transfer sequence with Nout-Cin topology; (2) Type II proteins 
have a Type II signal or signal-anchor sequence with a Cout-Nin topology, which can correspond to an uncleav­
able N-terminal signal peptide; and (3) Type III proteins have reverse signal-anchor sequence (i.e., with a 

out-Cin topology) and are sometimes described as Type I proteins without a cleavable signal peptide since the 
reverse signal-anchor sequence is a Type I signal. (B) Three types of multispanning-membrane proteins (i.e., 
with a number of TMDs higher than 1) can be distinguished based on whether the most N-terminal TMD is 
either (1) cleaved by a SPase (i.e., Type I); (2) spans the membrane with an Nout-Cin orientation (i.e., Type II); 
or (3) have a Cout-Nin orientation. Various numbers of TMDs are present in multispanning-membrane proteins 

“where Type I 
and II signals 
alternate”? 

HOOC 
COOH 

COOH 

H 2N
 

H 2N
 

H 2NH 2NH 2N
 

NH2 

NH2 

EM 

CM 

C 

where alternates Type I and II signals. EM, extracellular milieu; CM, cytoplasmic membrane; C, cytoplasm. AU: do you mean 

proteins are built up of a series of Types I and II modules that initiate and halt the translocation of 
the polypeptide chain. Such IMPs are classified on the basis of the orientation of the most N-termi-
nal TMD spanning the lipid bilayer179 (Figure 12.9). 

dues).

Numerous tools are available to predict IMPs and their topology. Table 12.4 is an attempt to 
review all of them. These tools are based on various approaches, such as (1) statistical analyses 
(e.g., TMpred or TMSTAT; (2) hydrophobicity analyses (e.g., SOSUI or TopPred); (3) NNs (e.g., 
PREDTMR or PHDhtm); (4) SVMs (e.g., SVMtm); or (5) HMMs (e.g., HMMTOP or THUMBUP). 
Some of them—for example, ConPred or TUPS—combine results of several models. Readers are 
invited to study related publications listed in Table 12.4 in order to get further insight into the 
methods used. The total number of IMPs encoded in L. monocytogenes genomes is estimated to 
be 1204 and 733 in L. monocytogenes EGD-e and F2365, respectively.18 Virulence factors ActA 
and SvpA are cell surface exposed IMPs of L. monocytogenes exhibiting a hydrophobic tail (i.e., 
a carboxyl terminal region containing a hydrophobic domain followed by positively charged resi-

180,181 Following genomic analysis, a total of 11 surface proteins with hydrophobic tails have 
been predicted in L. monocytogenes EGD-e.19 Contrary to what is sometimes assumed, cell surface 
IMPs should not be restricted only to proteins with a hydrophobic tail182; indeed, depending on the 
number and organization of Type I and Type II signals in IMPs, final protein topology can result 
in the cell surface exposure of functional domains located not only N- or C-terminally but also in 
loops. With FbpA as an example,47 it can be noticed that from experimental investigations, some 
proteins appear located within the cytoplasmic membrane despite the absence of predicted signal 
peptide and TMD. 
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table 12.4 
bioinformatic resources for Prediction of tmds 

application method Webserver ref. 

TMpred Statistical analysis http://www.ch.embnet.org/software/TMPRED_form.html 249


npsa_htm.html


thumbup.htm


umdhmm.htm


tups.htm


TopPred Hydrophobicity analysis http://bioweb.pasteur.fr/seqanal/interfaces/toppred.html 250


PHDhtm Neural network http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/ 251


DAS Hydrophobicity analysis http://www.sbc.su.se/~miklos/DAS/ 252


TMAP Statistical analysis http://bioweb.pasteur.fr/seqanal/interfaces/tmap.html 253


TSEG Hydrophobicity analysis http://www.genome.jp/SIT/tsegdir/tseg_exe.html 254


TMHMM Hidden Markov model http://www.cbs.dtu.dk/services/TMHMM-2.0/ 255


SOSUI Hydrophobicity analysis http://bp.nuap.nagoya-u.ac.jp/sosui/ 256


PREDTMR Neural network http://athina.biol.uoa.gr/PRED-TMR2/ 257


kPROT Statistical analysis http://bioinfo.weizmann.ac.il/kPROT/ 258


TMSTAT Statistical analysis http://bioinfo.mbb.yale.edu/tmstat/ 259


HMMTOP Hidden Markov model http://www.enzim.hu/hmmtop/ 260


TMFinder Hydrophobicity analysis http://www.bioinformatics-canada.org/TM/ 261


DAS-TMfilter Hydrophobicity analysis http://www.enzim.hu/DAS/DAS.html 262


SPLIT Statistical analysis http://split.pmfst.hr/split/ 263


THUMBUP Hidden Markov model http://sparks.informatics.iupui.edu/Softwares-Services_files/ 264


UMDHMMTMHP Hidden Markov model http://sparks.informatics.iupui.edu/Softwares-Services_files/ 264


TUPS Combination http://sparks.informatics.iupui.edu/Softwares-Services_files/ 264


BPROMPT Bayesian belief network http://www.jenner.ac.uk/BPROMPT/ 265


SVMtm Support vector machine http://ccb.imb.uq.edu.au/svmtm/svmtm_predictor.shtml 266


ConPred Combination http://bioinfo.si.hirosaki-u.ac.jp/~ConPred2/ 267


HMMTM Hidden Markov model http://biophysics.biol.uoa.gr/HMM-TM/ 268


MINNOU Hydrophobicity analysis http://minnou.cchmc.org/ 269


MEMSAT Statistical analysis http://bioinf.cs.ucl.ac.uk/psipred/ 270


12.3.1.2 lipoproteins 

In monoderm bacteria, lipoproteins are attached to the outer surface of the cytoplasmic membrane 
via a covalently bound lipid anchor.32 Systematically, these proteins are first translocated in a Sec­
dependent manner and thus possess N-terminal signal sequences. Such signal peptides, however, 
belong to class 2 as it exhibits a conserved lipobox motif in the C-domain.30 It can be noticed, 
however, that in E. coli YidC plays an important role in targeting and translocation of some lipo-
proteins.183 Lipobox includes invariably a cysteine residue located just after the cleavage site of 
signal peptide. After translocation of the prolipoprotein, a common post-translational modification 
involves a prolipoprotein diacylglyceryl transferase (Lgt), which adds an N-acyl diglyceride group 
from a glycerophospholipid to the SH-group of the lipobox cysteine.184 This thioether linkage allows 
protein anchoring to the membrane thanks to the insertion of the diacylglyceryl group into the lipid 

signal peptide and the cysteine becomes the N-terminal residue.185 In contrast to E. coli, however, 
lipidation by Lgt (Lmo2482) in Listeria is neither essential for bacterial growth nor a prerequisite 
for activity of Lsp.186 Once signal peptide is cleaved off, the amino-terminal cysteine residue is usu­
ally acylated at the free amino group by a phospholipid/apolipoprotein transacylase (Lnt), resulting 

bilayer. Subsequently, SPase II (also called Lsp for lipoprotein signal peptidase) cleaves off the 
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table 12.5 
bioinformatic resources for Prediction of lipoproteins 

application method Webserver ref. 

ScanProsite Profile (PS51257) search http://www.expasy.org/tools/scanprosite/ 189, 190 
Pattern (G+LPP) search 

DOLOP Pattern search http://www.mrc-lmb.cam.ac.uk/genomes/dolop/ 191 

LipoP Hidden Markov model http://www.cbs.dtu.dk/services/LipoP/ 192 

SPEPlip Neural network http://gpcr.biocomp.unibo.it/predictors/ 193 

LipPred Naïve Bayesian network http://www.jenner.ac.uk/LipPred/ 194 

in protein anchoring to membrane long chain fatty acid.187 This additional post-translational modi­
fication step, however, does not seem to be conserved in all bacteria,184 as an lnt gene is apparently 
lacking from all sequenced members of Firmicutes phylum, and Listeria species is no exception.188 

It can be further noticed that some lipoproteins are IMPs integrated to the cytoplasmic membrane 
by TMDs in a YidC-dependent manner.173 

As summarized in Table 12.5, several resources can be applied for genomic identification of 
lipoproteins. In PROSITE,189 lipobox motif was previously referred to as PS00013 and defined 
by the regular expression {DERK}(6)-[LIVMFWSTAG](2)-[LIVMFYSTAGCQ]-[AGS]-C, where 
{DERK}(6) means that none of the four amino acids are allowed in the first six positions relative 
to the cleavage site. The pattern had two additional rules: (1) The cysteine must be between posi­
tions 15 and 35, and (2) at least one positively charged residue (K or R) must be within one of the 
first seven N-terminal residues. This pattern (i.e., a qualitative motif description based on a regular 
expression-like syntax) is now replaced by a profile (i.e., a quantitative motif description based on 
the generalized profile syntax), referred to as PS51257 and defined as prokaryotic membrane lipo­
protein lipid attachment site profile. Originally, lipobox search using PS00013 was known to gener­
ate a significant proportion of false-positives, which prompted the need to improve the syntax of 
this regular expression. Thus, a refined pattern named G+LPP (for Gram-positive lipoprotein) and 
using PROSITE syntax—that is, [MV]-X(0,13)-[RK]-{DERKQ}(6,20)-[LIVMFESTAG]-[LVIAM] 
[IVMSTAFG][AG]-C—was developed.190 This pattern appears more specific for the identification 
of Gram-positive bacterial lipobox and allows greater discrimination against false-positives com­
pared with PS00013. Thus, lipobox can be predicted by scanning polypeptidic sequences for the 
presence of PS51257 profile or G+LPP pattern using ScanProsite.115 

However, correct sequence assignment as putative lipoprotein also requests that the lipobox is 
localized within an N-terminal Sec-dependent signal peptide where it covers H- and C-domains; 
signal peptide can be predicted following analysis with previously described tools (Table 12.1). 
DOLOP compiles similar criteria by scanning query sequences for presence of (1) a lipobox within 
the first 40 residues from the N-terminus with the consensus as [LVI][ASTVI][ASG][C], (2) posi­
tively charged amino acid in n-domain of signal peptide, and (3) at least 7–22 residues between the 
predicted lipobox and the charged residue.191 LipoP is based on an HMM and discriminates among 
lipoprotein signal peptides (cleaved by SPase II), other signal peptides (cleaved by SPase I), 
n-terminal membrane helices, and cytoplasmic protein following attribution of scores.192 Despite 
having been primarily developed for Gram-negative bacteria, LipoP can also efficiently identify 
lipoproteins in Gram-positive bacteria. The only feeble point may be that when handling lipopro­
teins with transmembrane regions, the HMM misses, in some cases, the lipoprotein signal peptide. 
SPEPlip is an NN-based method for prediction of signal peptide and integrating a regular expres­
sion search based on PROSITE pattern.193 LipPred is based on test against a naïve Bayesian network 
allowing the identification of lipoprotein with a calculated index for prediction confidence.194 When 
compared to other available methods, LipPred can be considered as the most accurate for detection 
of lipoprotein signal sequence and SPase II cleavage site. Finally, lipoprotein-associated domains 
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can be searched using HMMs from Pfam or Tigrfam: namely, in Firmicutes, PF00938, PF01347, 
PF01540, PF02030, PF03180, PF03202, PF03260, PF03304, PF03305, PF03330, PF03640, PF04200, 
PF05481, TIGR00363, TIGR00413, TIGR01742, TIGR01533, and TIGR02898. Proteins identified 
following this approach should, however, be considered with great care and ideally confirmed by 
methods listed previously for lipoprotein modification/processing motif. 

Following search for presence of PS00013 pattern and signal peptide using SignalP v2.0, 68 
lipoproteins were originally identified in the genome of L. monocytogenes EGD-e.19 Pfam and Tigr­
fam searches allowed the identification of 70 lipoproteins in L. monocytogenes F2365, whereas 
the number of lipoproteins was estimated at 63 in L. monocytogenes EGD-e.18 Using the compu­
tational pipeline Augur,89 where lipoproteins are identified on the basis of G+LPP pattern match, 
65 lipoproteins were identified in L. monocytogenes EGD-e.18 Generating a new HMM from 26 
verified lipoproteins by proteomic analysis in L. monocytogenes EGD-e, the number of lipoproteins 
was reestimated down to 62 in L. monocytogenes EGD-e and 56 in L. monocytogenes F2365.186 

Despite discrepancy in predicted number, lipoproteins constitute the largest family of putative 
surface proteins in Listeria (68 out of 133 originally predicted in L. monocytogenes EGD-e).19 

These lipoproteins are putatively involved in various metabolic pathways (e.g., as substrate-binding 
components of ABC transport systems); remarkably, no biological function could be assigned for 
a large proportion. In spite of their predominance as surface proteins of Gram-positive bacteria, 
very few lipoproteins have been biochemically characterized.195 In Listeria, only five have been 
more specifically investigated and thus confirmed, at least partially, in term of biological function: 
(1) TcsA (Lmo1388), a CD4+ T cell-stimulating antigen presented by major histocompatibility com­
plex class II molecules196; (2) GbuC (Lmo1016), a glycine betaine binding-protein part of an ABC 
transport system197; (3) the substrate binding protein OpuCC (Lmo1426) part of an ABC L-carnitine 
transporte198; (4) OppA (Lmo2196), another ABC substrate binding protein mediating the transport 
of oligopeptides199; and (5) the virulence factor LpeA (Lmo1847) involved in bacterial entry into 
eukaryotic infected cells.200 

12.3.1.3 extrinsic membrane Proteins 

No bioinfomartic tool is currently available to identify such proteins, which are most of the time 
primarily predicted as extracellular or cytoplasmic depending on their presence on the external or 
internal side of the cytoplasmic membrane (Figure 12.8). Thus, their identification requires a deep 
understanding of bacterial physiology and excellent general literature survey. Some of these pro-
teins, which are not intrinsic to the cytoplasmic membrane, can be subunits of membrane protein 
complexes such as F1F0ATP synthetase (GO:0045260), fumarate reductase complex (GO:0045284), 
or ABC (ATP binding cassette) transporters (GO: 0043190). Some other extrinsic membrane pro-
teins can interact more or less temporarily with other membrane components, including other mem-
brane-associated proteins. For example, in the SRP-dependent pathway, ribosomal proteins interact 
with Sec translocon in the course of cotranslational translocation,201 or in two-component systems, 
response regulators interact with membrane bound sensors.202 It should also be noticed that some 
cytoplasmic proteins can associate with the lipid bilayer by weak interactions and by no means be 
functionally associated with membrane components. To date, the number of extrinsic membrane 
proteins has never been estimated in L. monocytogenes. 

12.3.2 cell wall-aSSociated ProteinS 

Cell wall-associated proteins are either covalently linked to peptidoglycan when possessing a 
C-terminal LPXTG motif or noncovalently linked to cell wall components by a cell wall-binding 
domain (CBD).8 In Gram-positive bacteria, six CWBDs are currently characterized: CWBD of 
Type 1 (CWBD1), CWBD of Type 2 (CWBD2), Lysin motif domain (LysM), GW modules, S-layer 
homology domain (SLHD), and WXL domain (WXL).8,203 In Listeria, however, only proteins with 
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LPXTG, LysM, GW, and WXL motifs have been identified so far.182,203,204 In L. monocytogenes, pro-
teins exhibiting such motifs systematically possess Sec-dependent N-terminal signal peptide. These 
motifs can be found using RPS-BLAST (reverse position-specific BLAST)205 or HMM206 from dif­
ferent databases—namely, InterPRO,207 Pfam,208 SMART,209 TIGRfam,210 and SuperFamily.211 

12.3.2.1 lPXtg motif 

LPXTG motif (IPR001899, PF00746, TIGR01167) is found in proteins covalently attached to cell 
wall by sortases55 (see section 12.2.1). This motif consists of a pattern varying around LPXTG, a 
hydrophobic domain, and a positively charged tail.212 Cross-bridging of the protein to cell wall by 
sortase would occur in four steps.213,214 Following translocation across the Sec apparatus, membrane­
associated sortase recognizes the LPXTG motif and cleaves it before linking proteins to cell wall 
precursor lipid II.215 The proteins thus linked to lipid II are further incorporated into the cell wall by 
transglycosylation and transpeptidation reactions that generate peptidoglycan. Forty-one proteins 
with LPXTG motif substrates of StrA have been identified in L. monocytogenes EGD-e,19 whereas 
two proteins with an NXZTN motif are recognized by StrB.181,216 In L. monocytogenes F2365, a 
total of 44 LPXTG-like proteins have been identified.18 StrA is required for bacterial virulence as 
among its protein substrates several virulence factors have been identified, such as InlA.59,217 Com­
pared to StrA, StrB plays a minor role both in terms of number of proteins anchored to cell wall and 
involvement in bacterial virulence, although virulence factor SvpA is substrate to StrB.216 

12.3.2.2 noncovalently attached cell Wall Proteins 

WXL.

Even though most cell-associated proteins contain an LPXTG motif in Listeria, several proteins 
bear domains involved in noncovalent attachment to the components of cell wall. Three motifs 
are clearly established as involved in noncovalent cell wall attachment in Listeria: LysM, GW, and 

182,203,204 Besides these known attachment domains, other proteins found in the cell wall are 
retained by putative CWBDs, alternative or unknown mechanisms. 

12.3.2.2.1 LysM 
LysM (IPR002482, PF01476, SM00257, SSF54106) is a motif about 40 residues long and com­
posed of three α-helices with a general peptidoglycan binding function.218 It is found in a variety 
of enzymes mostly involved in bacterial cell wall degradation. When present, this motif is often 
repeated several times in the protein sequence. Interestingly, proteins bearing this motif can attach 
to surface of Gram-positive bacteria other than the ones that synthesized it.218 In L. monocytogenes, 
several proteins bear LysM domains; among others, P60 (also called Iap or CwhA) can be cited 
as it is also considered as a virulence factor.219 It is worth stressing here that contrary to previous 
assumption,19,182 NlpC/P60 domain should not be considered as the motif involved in cell wall bind­
ing stricto sensu (see section 12.3.2.2.4). In L. monocytogenes EGD-e and F2365 genomes, six 
LysM proteins, including P60 orthologue, were identified following bioinformatic analysis (Des­
vaux and Hébraud, unpublished data). 

12.3.2.2.2 GW 
GW (SSF82057) module was originally identified in L. monocytogenes within internalin InlB.220 

This module is about 80 amino acids, contains a highly conserved dipeptide Gly-Trp, and interacts 
with lipoteichoic acids allowing cell surface attachment.182 GW modules are found in multicopy, as 
in InlB, where three copies are present in the C-terminal region, or in Ami, where eight modules 
are present. It also appears that the higher the number of GW modules is, the stronger is the attach­
ment to the bacterial cell wall221,222; proteins exhibiting only one GW module would not be surface 
attached at all. It is interesting to note that GW modules are related to Src homology-3 (SH3) clan 
(CL0010) and more specifically prokaryotic SH3 of Type 3, or SH3b (IPR013247, PF08239), but 
are unlikely to act as functional mimics of SH3 domains since proline-binding sites are blocked or 
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destroyed in GW domains.223 In L. monocytogenes EGD-e, nine GW proteins were identified, most 
of which (including Ami) exhibit an amidase domain.19,204 This indicates that this class of protein 
would be mainly involved in cell wall degradation in L. monocytogenes, although Ami is also con­
sidered as a virulence factor involved in bacterial adhesion to infected cells.182,224 

12.3.2.2.3 WXL 
Following genomic analysis of Enterococcus faecalis, a novel C-terminal cell wall binding motif 
was uncovered and named WXL domain.203 This conserved domain is characterized by a first WXL 
motif and an additional YXXX[LIV]TWXLXXXP motif found further downstream; the two WXL 
domains are separated by between 66 and 247 residues. WXL domain was found in CDS of sev­
eral genomes of low G+C Gram-positive bacteria, including L. monocytogenes where four proteins 
bearing such domain were identified.203 In E. faecalis, it was demonstrated that WXL domain is a 
determinant of bacterial subcellular protein. Indeed, its presence conferred cell surface display of 
the protein, whereas specific deletions into the domains prevented its display. Moreover, neither 
proteins nor carbohydrates were necessary for cell wall attachment but peptidoglycan was a binding 
ligand for WXL domain. As LysM, WXL can attach to cell wall of a variety of Gram-positive bacte­
ria. From genome-wide analysis of Gram-positive bacteria,225 it appeared that genes encoding WXL 
proteins seem to cluster and that some N-terminal regions of these proteins are involved in utiliza­
tion of plant complex polysaccharides. It was also suggested that some WXL proteins might mediate 
interactions between different bacteria species.203 In Listeria, physiological function of such proteins 
awaits to be established and their presence on bacterial cell surface remains to be demonstrated. 

12.3.2.2.4 Other Noncovalently Attached Cell Wall Proteins 
ChW motif (IPR006637, SM00728, PF07538) stands for clostridial hydrophobic domain with a 
conserved W residue and was first uncovered from bioinformatic analysis of Clostridium acetobu­
tylicum genome.226 As GW, ChW contains a highly conserved Gly-Trp dipeptide motif and was sug­
gested to be involved in cell surface attachment.33 This repetitive domain can be found several times 
along the protein sequence (up to nine copies). ChW proteins were speculated to be part of a molecu­
lar complex on bacterial cell surface dedicated to degradation of polymer and surface adhesion.226 

One putative serine protease bearing three copies of ChW motif is encoded in genome of L. mono­
cytogenes F2365 (Desvaux and Hébraud, unpublished data); its expression, secretion, cell surface 
display, and function remain to be established. Similarly, function of SH3b is as yet unknown, but 
Staphylococcus simulans lysostaphin contains such a domain in its C-terminal region.227 Since this 
region mediates protein binding to bacterial cell wall, SH3b may have this function. 

It is important to note that despite the absence of cell wall binding motifs in some enzymes 
involved in cell wall degradation, such proteins have affinity for cell wall components via their 
enzymatic active site. Thus, secreted proteins with cell wall degradation domains, such as NlpC/ 
P600 (IPR000064, PF00877)228 or N-acetylmuramoyl-L-alanine (IPR002508, PF01520), can be 
localized in cell wall. However, such domains should not be considered as cell wall binding motifs 
per se since primary function of these enzymes is to cleave cell wall components following when 
they find a new cleavage site or are released into the extracellular milieu. In L. monocytogenes, 
these enzymes are involved in numerous cellular processes.126 

It is now well known that many metabolic enzymes can be surface localized in Gram-positive 
bacteria.229 Such proteins lack N-terminal signal peptide and are supposedly secreted by pathways 
alternative to the known ones. SecretomeP is a bioinformatic tool dedicated to the prediction of such 
proteins.230 However, instead of secretion through the cytoplasmic membrane, these proteins could 
be released from the bacterial cell following autolysis and then attached to cell surface of nonlysed 
cells. In Streptococcus pneumoniae, release of cytoplasmic proteins is triggered by competent cells 
and originates from lysis of noncompetent cells.231 This tightly controlled phenomenon was named 
allolysis and involves several cell wall hydrolases. Once released and associated with bacterial cell 
surface, such proteins generally moonlight.23 For example, in S. pneumoniae, the glycolytic enzyme 
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compatible with classical 2-DE separation. Altogether, this considerably hampers proteomic analy-
sis in classical 2-DE gel-based technology.

Different strategies are now developed to tackle the difficulties to analyze these cell envelope 
subproteomes. These strategies can associate different protocols of protein extraction with differ-
ent techniques of separation and mass spectrometry.239 Several studies have attempted to extract 
membrane associated proteins of Gram-positive bacteria by combining protocols described for 
Gram-negative or eukaryotes organisms.240 Thus, the extraction procedures could include enzy-
matic treatment, fractionation of broken cell by centrifugation, use of chemical agents such as 
zwitterionic detergents for solubilization of hydrophobic proteins,241 solvents for delipidation,242 or 
protein extraction and separation.243 For example, such a combinational approach has been used to 
efficiently characterize by 2-DE the cell-wall and membrane-associated subproteomes of the Gram-
positive bacterium Staphylococcus xylosus.244

A different protocol originally developed for Bacillus cereus245 has been applied for the global 
extraction of L. monocytogenes cell-surface proteins combining the protein solubilization by SDS 
with a classical SDS-PAGE separation.246 The 1-DE and 2-DE separations were both used to char-
acterize the cell wall subproteome of L. monocytogenes.24 In this case, proteins were extracted 
by the sequential action of two salts at high concentration and their identification was performed 
by N-terminal sequencing and peptide mass fingerprint obtained with matrix assisted laser desorp-
tion ionization time of flight mass spectrometer (MALDI-TOF MS). It is interesting to note that 
among the 55 identified proteins, only 27 possessed a peptide signal, including 4 proteins with cell 
wall-binding motifs (2 GW proteins and 2 LysM proteins), 20 lipoproteins, and 3 proteins with no 
predictable surface association motif. The 28 remaining proteins without peptide signal were pri-
marily predicted with cytoplasmic functions and nothing could explain how they managed to cross 
the cytoplasmic membrane or how they associated with bacterial cell wall. Such unusual localiza-
tion of cytoplasmic proteins leads to the suggestion that they could moonlight on the bacterial cell 
surface, although no experimental evidence could back up such a hypothesis.

More recent strategies and technologies consist in analyzing peptide mixture obtained by tryptic 
digestion of cell envelope protein samples issued from stringent protocols extraction (e.g., combin-
ing cell mechanic broken) fractionation by centrifugation, and treatment with high concentration of 
SDS at 100°C, then at 80°C.58,247 An alternative approach consists in “shaving” the bacterial surface 
with a specific protease (such as trypsin) to cleave surface-exposed proteins.239 After lyophilization 
to remove SDS, the peptide hydrolysate is then separated by two-dimensional liquid chromatog-
raphy coupled to tandem mass spectrometer (2-D LC MS/MS). This separation technique, termed 
“shotgun proteomic” or multidimensional protein identification technology (MudPIT), uses a two-
dimensional liquid chromatography to separate a tryptic peptide mixture where a strong cation 
exchange is applied in the first dimension and a reverse phase is applied in the second dimension. 
The separated peptides are subjected online to analysis by fragmentation (MS/MS) in an electro-
spray ionization MS. Peptide fragmentation spectrum is further used to identify the original protein 
via query against databases.

Besides a significant gain of time, the use of 2-D LC MS/MS overcomes all limitations of gel-
based 2-DE previously cited. Even hydrophobic proteins can be identified thanks to amino acid 
cleavage sites accessible to tryptic digestion in exposed regions of the protein. These new approaches 
allowed extraction of proteins following treatments that are not always compatible with classical 
2-DE. Consequently, the set of proteins identified with high number of transmembrane spanning 
regions or LPXTG motif (i.e., covalently anchored to cell wall) has been significantly enlarged. The 
other development of 2-D LC MS/MS concerns the possibility to perform quantitative proteomics 
for comparative analysis of samples pretreated with amino acid tags or labels such as the ICAT™ 
(isotope-coded affinity tags), iTRAQ™, or SILAC technologies.239

The years to come will undoubtedly see the development and improvement of these new explor-
ing methods of subproteomes. Everyone will have the possibility to map protein expression and to 
compare several biological samples with high throughput, sensibility, and resolution. In spite of 
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glyceraldehyde 3-phosphate dehydrogenase genolase exhibits plasmin(ogen)-binding activity on the 
bacterial cell surface and thus significantly enhances bacterial virulence.232 In L. monocytogenes, 
several proteins primarily predicted as cytoplasmic were also identified in the cell wall fraction, 
including enolase, which was demonstrated to bind human plasminogen.24 Functions of other cyto­
plasmic proteins found at this subcellular location (e.g., chaperone DnaK, elongation factor TU, 
or glyceraldehyde-3-phosphate dehydrogenase) remain to be elucidated as well as protein motifs 
involved in cell wall attachment. 

12.4 conclusIons and PersPectIves 

1975,

The proteomic technologies are certainly the most powerful and appropriate to provide global and 
accurate information on the expression, structure, and function of proteins. Since the first descrip­
tion of protein extraction and separation using two-dimensional gel electrophoresis (2-DE) in 

233–235 many advances (use of new detergents, immobilized pH gradient, new apparatus for 
IsoElectroFocalization [first dimension], and SDS-PAGE [second dimension]) have been brought to 
improve protein solubilization and resolution as well as reproducibility and implementation of the 
techniques. Over the past two decades, 2-DE progressively became the classical method of choice 
to separate and compare complex mixtures of proteins and was mainly applied for soluble intracel­
lular proteins. In the field of bacteriology, an increasing number of investigations using compara­
tive proteomic approaches was devoted to the characterization of adaptive responses—namely, to 
various physicochemical stresses or to the effect of a gene mutation. At this time, however, protein 
identification was difficult and time consuming as it essentially involved Edman degradation and 
sequence alignment from short and on limited numbers of amino acid sequences. Consequently, 
these early studies generally remained quite descriptive and phenomenological. 

However, two occurrences gave a considerable impetus to proteomic analyses: (1) the avail­
ability of ever growing amounts of genomic sequence data, and (2) important advances in mass 
spectrometry technology for ionization and detection of large molecules such as peptides and pro-
teins. Indeed, data obtained with mass spectrometry analysis—namely, peptide mass fingerprinting 
or fragmentation—could from then be matched against databases of all known gene products and 
thus greatly facilitated protein identification. The use of 2-DE and MS tools to separate and identify 
proteins is now widespread in all domains of life science. One of the consequences of this remark­
able progress was the possibility to establish 2-DE databases containing several hundreds of iden­
tified protein spots available on proteome reference maps. Thus, the first bacterial 2-DE database 
was established on E. coli cytosoluble proteins separated into different pH gradients and regularly 
brought up to date.236,237 Similar but generally more limited 2-DE databases are available for other 
bacterial species, including L. monocytogenes EGD-e238 (http://www.clermont.inra.fr/proteome). 

Another consequence was the possibility and need to investigate further the different cell 
compartments and thus following cell fractionation to explore thoroughly the different subcellular 
proteomes that, in Gram-positive bacteria, include (1) cytoplasmic proteins, (2) membrane associ­
ated proteins, (3) cell-wall associated proteins, and (4) proteins secreted in the extracellular milieu. 
While extracting and separating cytoplasmic and extracellular proteins could be achieved rather 
easily and efficiently, classical 2-DE procedures failed to give a good overview of proteins present 
in the cell envelope—that is, proteins associated to cytoplasmic membrane or cell wall. Beyond 
the well-known limitations of 2-DE gel-based technology (the inability to separate or to reveal 
low-abundance proteins, high molecular mass and extreme pI [isoelectric point] proteins), other 
limitations appeared much more problematic for the cell surface subproteomes due to the intrinsic 
properties of cell envelope associated proteins. Indeed, multitransmembrane proteins are generally 
highly hydrophobic and are either almost impossible to solubilize during the extraction procedure or 
not recovered in the second dimension of 2-DE due to self-aggregation and irreversible precipitation 
in IEF. On the other hand, proteins noncovalently or a fortiori covalently attached to the cell wall 
peptidoglycan are very difficult to extract and require specific and laborious treatments not directly 
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compatible with classical 2-DE separation. Altogether, this considerably hampers proteomic analy­
sis in classical 2-DE gel-based technology. 

Different strategies are now developed to tackle the difficulties to analyze these cell envelope 
subproteomes. These strategies can associate different protocols of protein extraction with differ­
ent techniques of separation and mass spectrometry.239 Several studies have attempted to extract 
membrane associated proteins of Gram-positive bacteria by combining protocols described for 
Gram-negative or eukaryotes organisms.240 Thus, the extraction procedures could include enzy­
matic treatment, fractionation of broken cell by centrifugation, use of chemical agents such as 
zwitterionic detergents for solubilization of hydrophobic proteins,241 solvents for delipidation,242 or 
protein extraction and separation.243 For example, such a combinational approach has been used to 
efficiently characterize by 2-DE the cell-wall and membrane-associated subproteomes of the Gram-
positive bacterium Staphylococcus xylosus.244 

A different protocol originally developed for Bacillus cereus245 has been applied for the global 
extraction of L. monocytogenes cell-surface proteins combining the protein solubilization by SDS 
with a classical SDS-PAGE separation.246 The 1-DE and 2-DE separations were both used to char­
acterize the cell wall subproteome of L. monocytogenes.24 In this case, proteins were extracted 
by the sequential action of two salts at high concentration and their identification was performed 
by N-terminal sequencing and peptide mass fingerprint obtained with matrix assisted laser desorp­
tion ionization time of flight mass spectrometer (MALDI-TOF MS). It is interesting to note that 
among the 55 identified proteins, only 27 possessed a peptide signal, including 4 proteins with cell 
wall-binding motifs (2 GW proteins and 2 LysM proteins), 20 lipoproteins, and 3 proteins with no 
predictable surface association motif. The 28 remaining proteins without peptide signal were pri­
marily predicted with cytoplasmic functions and nothing could explain how they managed to cross 
the cytoplasmic membrane or how they associated with bacterial cell wall. Such unusual localiza­
tion of cytoplasmic proteins leads to the suggestion that they could moonlight on the bacterial cell 
surface, although no experimental evidence could back up such a hypothesis. 

More recent strategies and technologies consist in analyzing peptide mixture obtained by tryptic 
digestion of cell envelope protein samples issued from stringent protocols extraction (e.g., combin-

AU: do you mean ing cell mechanic broken) fractionation by centrifugation, and treatment with high concentration of 
“broken cell me­
chanics”? SDS at 100°C, then at 80°C.58,247 An alternative approach consists in “shaving” the bacterial surface 

with a specific protease (such as trypsin) to cleave surface-exposed proteins.239 After lyophilization 
to remove SDS, the peptide hydrolysate is then separated by two-dimensional liquid chromatog­
raphy coupled to tandem mass spectrometer (2-D LC MS/MS). This separation technique, termed 
“shotgun proteomic” or multidimensional protein identification technology (MudPIT), uses a two­
dimensional liquid chromatography to separate a tryptic peptide mixture where a strong cation 
exchange is applied in the first dimension and a reverse phase is applied in the second dimension. 
The separated peptides are subjected online to analysis by fragmentation (MS/MS) in an electro­
spray ionization MS. Peptide fragmentation spectrum is further used to identify the original protein 
via query against databases. 

Besides a significant gain of time, the use of 2-D LC MS/MS overcomes all limitations of gel­
based 2-DE previously cited. Even hydrophobic proteins can be identified thanks to amino acid 
cleavage sites accessible to tryptic digestion in exposed regions of the protein. These new approaches 
allowed extraction of proteins following treatments that are not always compatible with classical 
2-DE. Consequently, the set of proteins identified with high number of transmembrane spanning 
regions or LPXTG motif (i.e., covalently anchored to cell wall) has been significantly enlarged. The 
other development of 2-D LC MS/MS concerns the possibility to perform quantitative proteomics 
for comparative analysis of samples pretreated with amino acid tags or labels such as the ICAT™ 
(isotope-coded affinity tags), iTRAQ™, or SILAC technologies.239 

The years to come will undoubtedly see the development and improvement of these new explor­
ing methods of subproteomes. Everyone will have the possibility to map protein expression and to 
compare several biological samples with high throughput, sensibility, and resolution. In spite of 
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this very attractive progress and considering at least its complementarity, classical 2-DE technique 
remains irreplaceable. Indeed and contrary to LC MS/MS approaches, gel-based 2-DE allows one 
to separate simultaneously several hundreds of proteins at once and to visualize shifts due to post­
translational modifications. The implementation of two or more complementary proteomic strate­
gies would be one of the keys to generate valuable information on the role of cell envelope proteins 
in pathogenic processes, bacterial communication, sensing of and exchange with its environment, 
motility, and adhesion on and colonization of biotic or abiotic surfaces. 
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