M. Ayoub, A. , and A. Z. , Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry, Renew. Sustain. Energy Rev, vol.16, pp.2671-2686, 2012.

C. Berthelot, F. Brunet, D. Chalopin, A. Juanchich, M. Bernard et al., The rainbow trout genome provides novel insights into evolution after whole-genome duplication invertebrates, Nat. Commun, vol.5, p.3657, 2014.

V. Bolliet, C. Cheewasedtham, D. Houlihan, A. Gélineau, and T. Boujard, Effect of feeding time on digestibility, growth performance and protein metabolism in the rainbow trout Oncorhynchus mykiss: interactions with dietary fat levels, Aquat. Living Resour, vol.13, pp.147-156, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02691070

D. Brisson, M. C. Vohl, J. St-pierre, T. J. Hudson, and D. Gaudet, Glycerol: a neglected variable in metabolic processes?, BioEssays, vol.23, pp.534-542, 2001.

P. J. Bromley and T. C. Adkins, The influence of cellulose filler on feeding, growth and utilization of protein and energy in rainbow trout, Salmo gairdnerii Richardson, J. Fish Biol, vol.24, pp.235-244, 1984.

D. V. Da-costa, J. Dias, and R. Colen, Partition and metabolic fate of dietary glycerol in muscles and liver of juvenile tilapia, Arch. Anim. Nutr, vol.71, pp.165-174, 2017.

T. Desvignes, C. Fauvel, and J. Bobe, The NME gene family in zebrafish oogenesis and early development, Naunyn Schmiedebergs Arch Pharmacol, vol.384, pp.439-449, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01205026

D. Ditlecadet and W. R. Driezdic, Glycerol synthesis in freeze-resistant rainbow smelt: towards the characterization of a key enzyme glycerol-3-phosphatase, Fish Physiol. Biochem, vol.40, pp.257-266, 2014.

C. Dong, L. Chen, J. Feng, J. Xu, S. Mahboob et al., , 2016.

, Genome wide identification, phylogeny, and expression of Aquaporin genes in common carp (Cyprinus carpio), PLoS One, vol.11

W. R. Driedzic, Rainbow smelt: the unusual case of cyoprotection by sutained glycerol production in an aquatic animal, J. Comp. Physiol. Part B, vol.185, pp.487-499, 2015.

R. C. Edgar, MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics, vol.5, p.113, 2004.

, The State of the World Fisheries and Aquaculture, Food Agric Organ, 2018.

D. M. Gatlin, F. T. Barrows, P. Brown, K. Dabrowski, and T. G. Gaylor, Expanding the utilization of sustainable plant products in aquafeeds: a review, Aquacult. Nutr, vol.38, pp.230-234, 2007.

J. W. Hilton, The effect of pre-fasting diet and water temperature on liver glycogen and liver weight in rainbow trout, Salmo gairdneri Richardson, during fasting, J. Fish Biol, vol.20, pp.69-78, 1982.

S. Jelen, S. Wacker, C. Aponte-santamaría, M. Skott, A. Rojek et al., Aquaporin-9 protein is the primary route of hepatocyte glycerol uptake for glycerol gluconeogenesis in mice, J. Biol. Chem, vol.286, pp.44319-44325, 2011.

B. J. Kamalam, F. Medale, and S. Panserat, Utilisation of dietary carbohydrates in farmed fishes: New insights on influencing factors, biological limitations and future strategies, Aquaculture, vol.467, pp.3-27, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01901447

E. Kamler, Resource allocation in yolk-feeding fish, Rev. Fish Biol. Fisher, vol.18, pp.143-200, 2008.

D. Klinger and R. Naylor, Searching for solutions in aquaculture: charting a sustainable course, Annu. Rev. Environ. Resour, vol.37, pp.247-276, 2012.

V. Lazzarotto, F. Medale, L. Larroquet, C. , and G. , Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): effects on growth, whole body fatty acids and intestinal and hepatic gene expression, PLoS One, vol.13, p.190730, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02139720

J. Lebeck, Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver, J. Mol. Endocrinol, vol.52, pp.165-178, 2014.

J. J. Lech, Glycerol kinase and glycerol utilization in trout (Salmo gairdneri) liver, Compar. Biochem. Physiol, vol.34, pp.90058-90065, 1970.

L. Magnoni, N. A. Scarlato, O. F. Patricio, and O. C. Wöhler, Gluconeogenic pathway does not display metabolic cold adaptation in liver of Antarctic notothenioid fish, Polar Biol, vol.36, pp.661-671, 2013.

L. Magnoni, E. Vaillancourt, and J. Weber, High resting triacylglycerol turnover of rainbow trout exceeds the energy requirements of endurance swimming, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.295, pp.309-315, 2008.

L. Marandel, C. Labbe, J. Bobe, L. Bail, and P. , Evolutionary history of c-myc in teleosts and characterization of the duplicated c-myca genes in goldfish embryos, Mol. Reprod. Dev, vol.79, pp.85-96, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01205046

L. Marandel, I. Seiliez, V. Véron, S. Skiba-cassy, and S. Panserat, New insights into the nutritional regulation of gluconeogenesis in carnivorous rainbow trout (Oncorhynchus mykiss): a gene duplication trail, Physiol. Genomics, vol.47, pp.253-263, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01901407

L. Marandel, V. Veron, A. Surget, E. Plagnes-juan, and S. Panserat, Glucose metabolism ontogenesis in rainbow trout (Oncorhynchus mykiss) in the light of the recently sequenced genome: new tools for intermediary metabolism programming in the light of the recently sequenced genome, J Exp. Biol, vol.219, pp.734-743, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02139687

J. Mennigen, S. Skiba-cassy, and S. Panserat, Ontogenetic expression of metabolic genes and microRNAs in rainbow trout alevins during the transition from the endogenous to exogenous feeding period, J. Exp. Biol, vol.216, pp.1597-1608, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646393

J. A. Mennigen, S. Panserat, M. Larquier, E. Plagnes-juan, F. Medale et al., Postprandial regulation of hepatic microRNAs predicted to target the insulin pathway in rainbow trout, PLoS One, vol.7, p.38604, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02649925

D. J. Menton, S. J. Slinger, and J. W. Hilton, Utilization of free glycerol as a source of dietary energy in rainbow trout (Salmo gairdneri), Aquaculture, vol.56, issue.86, pp.90337-90343, 1986.

F. Meurer, A. Franzen, P. Piovesan, K. A. Rossato, and L. D. Santos, Apparent energy digestibility of glycerol from biodiesel production for Nile tilapia (Oreochromis niloticus, Linnaeus 1758), Aquacult. Res, vol.43, pp.1734-1737, 2012.

F. Meurer, N. A. Tovo, L. C. Da-silva, L. Cagol, M. T. Theisen et al., Crude glycerol in diets for Nile tilapia sex reversal (Oreochromis niloticus, Linnaeus 1758), Aquacult. Res, vol.47, pp.2682-2685, 2016.

A. Moesch, F. Meurer, I. V. Zadinelo, W. F. Carneiro, L. C. Da-silva et al., Growth, body composition and hepatopancreas morphology of Nile tilapia fingerlings fed crude glycerol as a replacement for maize in diets, Anim. Feed Sci. Technol, vol.219, pp.122-131, 2016.

Y. Mugabo, S. Zhao, A. Seifried, S. Gezzar, A. Al-mass et al., Identification of a mammalian glycerol-3-phosphate phosphatase: role in metabolism and signaling in pancreatic beta-cells and hepatocytes, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.430-439, 2016.

R. L. Naylor, R. W. Hardy, D. Bureau, A. Chiu, M. Elliott et al., Feeding aquaculture in an era of finite resources, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.15103-15110, 2009.

D. H. Neu, W. M. Furuya, W. R. Boscolo, F. R. Potrich, T. A. Lui et al., Glycerol inclusion in the diet of Nile tilapia (Oreochromis niloticus) juveniles, Aquacult. Nutr, vol.19, pp.211-217, 2013.

M. Palma, L. C. Tavares, J. Rito, L. F. Henriques, J. G. Silva et al., Metabolic effects of dietary glycerol supplementation in muscle and liver of european seabass and rainbow trout by 1H NMR metabolomics, vol.9, p.202, 2019.

S. Panserat, G. A. Hortopan, E. Plagnes-juan, C. Kolditz, M. Lansard et al., Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver, Aquaculture, vol.294, pp.123-131, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01193491

S. Panserat, L. Marandel, I. Seiliez, and S. Skiba, New insights on intermediary metabolism for a better understanding of nutrition in teleosts, Ann. Rev. Anim. Biosci, vol.7, pp.195-220, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02624219

D. Patsouris, S. Mandard, P. J. Voshol, P. Escher, N. S. Tan et al., PPARa governs glycerol metabolism, J. Clin. Investigat, vol.114, pp.94-103, 2016.

M. P. Pearson, L. L. Spriet, and D. Stevens, Effect of sprint training on swim performance and white muscle metabolism during exercise and recovery in rainbow trout (Salmo gairdneri), J. Exp. Biol, vol.149, pp.45-60, 1990.

E. Possick, M. Madiraiu, and M. Prentki, Glycerol-3-phosphate phosphatase/PGP: role in intermediary metabolism and target for cardiometabolic diseases, Biochimie, vol.143, pp.18-28, 2017.

C. A. Quispe, C. J. Coronado, and J. A. Carvalho, Glycerol: Production, consumption, prices, characterization and new trends in combustion, Renew. Sustain. Energy Rev, vol.27, pp.475-493, 2013.

J. Rito, I. Viegas, M. Â. Pardal, I. Meton, I. V. Baanante et al., Utilization of glycerol for endogenous glucose and glycogen synthesis in seabass (Dicentrarchus labrax): A potential mechanism for sparing amino acid catabolism in carnivorous fish, Aquaculture, vol.498, pp.488-495, 2019.

M. V. Savina and A. B. Wojtczak, Enzymes of gluconeogenesis and the synthesis of glycogen from glycerol in various organs of the lamprey (Lampetra fluviatilis), Compar. Biochem. Physiol. Part B, vol.57, pp.90141-90150, 1977.

M. A. Sheridan, Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization, Compar. Biochem. Physiol. Part B, vol.90, pp.679-690, 1988.

G. Sriram, L. Rahib, J. He, A. E. Campos, L. S. Parr et al., Global metabolic effects of glycerol kinase overexpression in rat hepatoma cells, Mol. Genet. Metab, vol.93, pp.145-159, 2008.

R. K. Suarez and T. P. Mommsen, Gluconeogenesis in teleost fishes, Canad. J. Zool, vol.65, pp.1869-1882, 1987.

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol, vol.30, pp.2725-2729, 2013.

H. W. Tan, A. R. Aziz, and M. K. Aroua, Glycerol production and its applications as a raw material: a review, Renew. Sustain. Energy Rev, vol.27, pp.118-127, 2013.

C. Terner, L. A. Kumar, and T. S. Choe, Studies of metabolism in embryonic development: biosynthesis of lipids in embryonated trout ova, Compar. Biochem. Physiol, vol.24, pp.806-808, 1968.

J. M. Vernier, Table chronologique du développement embryonnaire de la truite arc-en-ciel, Ann. Embryol. Morphol, vol.2, pp.495-520, 1969.

J. M. Vernier and M. F. Sire, Evolution of the glycogen content and of glucose-6-phosphatase activity in the liver of Salmo gairdneri during development, Tissue and Cell, vol.8, pp.531-546, 1976.

I. Viegas, I. Jarak, J. Rito, R. A. Carvalho, I. Metón et al., Effects of dietary carbohydrate on hepatic de novo lipogenesis in European seabass (Dicentrarchus labrax L.), J. Lipid Res, vol.57, pp.1264-1272, 2016.

I. Viegas, L. H. Trenkner, J. Rito, M. Palma, L. C. Tavares et al., Impact of dietary starch on extrahepatic tissue lipid metabolism in farmed European (Dicentrarchus labrax) and Asian seabass, 2019.

, Compar. Biochem. Physiol. Part A, vol.231, pp.170-176

N. Westergaard, P. Madsen, and K. Lundgren, Characterization of glycerol uptake and glycerol kinase activity in rat hepatocytes cultured under different hormonal conditions, Biochim Biophys Acta, vol.1402, issue.98, pp.16-16, 1998.

D. Wiesmann and E. Pfeffer, Influence of indigestible carbohydrates on the efficiency of utilization of dietary energy and protein in growing rainbow trout (Salmo gairdnerii, R), Arch. Anim. Nutr, vol.36, pp.1145-1149, 1986.

L. L. Xue, H. H. Chen, and J. G. Jiang, Implications of glycerol metabolism for lipid production, Prog. Lipid Res, vol.68, pp.17-25, 2017.