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Introduction

Selenium (Se) is an essential micronutrient in humans and animals, with selenoproteins exerting various metabolic functions [START_REF] Rayman | Selenium intake, status, and health: A complex relationship[END_REF]. Among vertebrates, fishes have been described to have a well-developed selenoproteome [START_REF] Mariotti | Composition and evolution of the vertebrate and mammalian selenoproteomes[END_REF], but there is concern within the aquaculture sector with present feed formulations. The ongoing replacement of Se-rich fishmeal with plant protein sources [START_REF] Gatlin | Expanding the utilization of sustainable plant products in aquafeeds: A review[END_REF][START_REF] Glencross | Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds[END_REF] is associated with a decrease in dietary Se level provided to farmed fish reared over a long period [START_REF] Fontagné-Dicharry | Influence of the forms and levels of dietary selenium on antioxidant status and oxidative stress-related parameters in rainbow trout (Oncorhynchus mykiss) fry[END_REF][START_REF] Wischhusen | Effect of dietary selenium in rainbow trout (Oncorhynchus mykiss) broodstock on antioxidant status, its parental transfer and oxidative status in the progeny[END_REF]. Many of the characterized selenoproteins are known to influence antioxidant metabolism, but knowledge on the effects of dietary Se on other metabolic pathways is not well characterized [START_REF] Steinbrenner | Antioxidant selenoenzymes and beyond[END_REF].

As shown in vivo, in the case of a Se deficiency, an increase in glutathione levels possibly relates to a feedback mechanism by changes in redox state [START_REF] Hill | Effect of selenium deficiency and vitamin E deficiency on glutathione metabolism in isolated rat hepatocytes[END_REF][START_REF] Hill | Effect of selenium deficiency on the disposition of plasma glutathione[END_REF]. The major source for glutathione is cysteine, which is synthesized from homocysteine via the transsulfuration pathway [START_REF] Lu | Regulation of glutathione synthesis[END_REF]. On the other hand, Se deficiency can impair the transsulfuration pathway with decreased levels of cysteine, cystathionine and homocysteine [START_REF] Bunk | Evidence for an impairment in the conversion of methionine to cysteine in the selenium-deficient chick[END_REF][START_REF] Halpin | Selenium deficiency and transsulfuration in the chick[END_REF]. Homocysteine is a key metabolite in the methionine cycle, which links the antioxidant system to one-carbon (1C) metabolism [START_REF] Dalto | Pyridoxine (vitamin B6) and the glutathione peroxidase system; a link between one-carbon metabolism and antioxidation[END_REF]. Studies in mice have confirmed that Se affects methionine metabolism with decreased betaine homocysteine methyltransferase activity and S-adenosylhomocysteine (SAH) levels [START_REF] Uthus | Dietary selenium affects homocysteine metabolism differently in Fisher-344 rats and CD-1 mice[END_REF][START_REF] Uthus | Selenium deficiency in Fisher-344 rats decreases plasma and tissue homocysteine concentrations and alters plasma homocysteine and cysteine redox status[END_REF][START_REF] Speckmann | Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice[END_REF]. Comparable studies in fish are lacking.

In the methionine cycle, methionine is activated by S-adenosylmethionine synthetase to form S-adenosylmethionine (SAM). In the cell, SAM is the universal donor for methylation reactions forming SAH. DNA methylation is a major regulatory mechanism for epigenetic modifications [START_REF] Jones | The role of DNA methylation in mammalian epigenetics[END_REF]. DNA methylation at repeated cytosine phosphate guanine (CpG) residues, especially when localized at the promoter region, is considered to influence gene expression [START_REF] Razin | DNA methylation and gene expression[END_REF]. Dietary supplementation of Se has been associated with both hyper-and hypomethylation in mice, but the relationship between Se and epigenetic mechanisms is still not fully understood [START_REF] Speckmann | Epigenetic effects of selenium and their implications for health[END_REF]. The present work therefore aims to study the effect of parental Se nutrition in rainbow trout (Oncorhynchus mykiss) on the 1C metabolism and the hepatic DNA methylation pattern of the progeny.

The period of embryonic development is extremely sensitive to environmental-induced epigenetic modifications. For example, the allocation of maternal gene products and nutrients to the yolk has been associated with regulation of key embryonic developmental processes and persisting changes in the phenotype of the progeny [START_REF] Martín | Oxidative stress in mothers who have conceived fetus with neural tube defects: The role of aminothiols and selenium[END_REF][START_REF] Xu | One-carbon metabolism and epigenetic regulation of embryo development[END_REF]. In zebrafish (Danio rerio), dietary inclusion of methyl group donors did not lead to changes in hatching rate or survival, but mRNA sequencing of the embryos revealed "hidden" effects of parental nutrition [START_REF] Skjaerven | Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport-and apolipoprotein genes[END_REF] which led to phenotypic changes at later life stages [START_REF] Skjaerven | Parental micronutrient deficiency distorts liver DNA methylation and expression of lipid genes associated with a fatty-liver-like phenotype in offspring[END_REF]. In rainbow trout, the maternal Se nutrition during oogenesis increased not only the number of spawning females, but also the Se levels in the oocytes, especially when provided in the form of organic Se [START_REF] Wischhusen | Effect of dietary selenium in rainbow trout (Oncorhynchus mykiss) broodstock on antioxidant status, its parental transfer and oxidative status in the progeny[END_REF]. Changing Se levels in the progeny during embryonic development were also associated with modifications in the oxidative status.

In fish diets, Se supplementation becomes increasingly important to make up for the low Se levels detected in diets based on plant protein sources [START_REF] Jesu Prabhu | Mineral requirements of fish: A systematic review[END_REF]. With regard to Se supplements, in addition to the widespread use of sodium selenite in terrestrial livestock nutrition, selenomethionine is the naturally dominant dietary seleno-compound, known to be a highly bioavailable form of Se also in mineral premixes [START_REF] Schrauzer | Nutritional selenium supplements: Product types, quality, and safety[END_REF]. These seleno-compounds, however, might exert different impacts on the 1C metabolism as they are metabolized through different routes [START_REF] Burk | Regulation of selenium metabolism and transport[END_REF]. Seleno amino acids are metabolized interchangeably with their sulfur analogues making selenomethionine to follow the methionine cycle, while inorganic Se compounds such as sodium selenite can be directly reduced to selenide to be incorporated into selenoproteins as selenocysteine [START_REF] Jesu Prabhu | Mineral requirements of fish: A systematic review[END_REF].

In this context, the present study aims to make a comparison between the use of sodium selenite and hydroxy-selenomethionine (OH-SeMet), a pure form of the hydroxy-analogue of selenomethionine, as dietary supplements in plant protein-rich feeds for rainbow trout broodstock on the 1C metabolism and the hepatic DNA methylation pattern of the progeny.

Results

Parental Selenium Affects Transsulfuration Metabolites in Swim-Up Fry

A decrease in cysteine and cysteinyl-glycine was detected in liver of female broodstock only when fed sodium selenite (SS) compared to the non-supplemented control (NC). In addition, homocysteine levels were higher in fish fed OH-SeMet (SO) compared to the two other groups. No effect of the dietary Se on hepatic aminothiol concentrations was detected in males, which had generally lower hepatic aminothiol levels compared to females (Table 1). A parental effect of Se in swim-up fry could be detected for cysteine as well as cysteinyl-glycine, which were both significantly lower in fry originating from parents fed Se-supplemented diets compared to the NC group (Table 2). This was accompanied by a decrease in pyridoxamine levels, but other B vitamins (folate and vitamin B12) including the pyridoxamine derivate pyridoxal were not significantly affected. Cystathionine, glutathione and γ-glutamyl-cysteine levels were not significantly different between the Se treatments. Similarly, parental Se treatment had no significant effect on the homocysteine level detected in swim-up fry. 0.04 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.51 1 (µg/g sample); 2 (µg/mg sample). Values are the mean ± SEM (n = 8). a,b,c Within-rows values not sharing a common superscript letter are significantly different (p < 0.05) according to one-way ANOVA followed by Tukey's HSD.

Parental Selenium Nutrition Affects the Methionine Metabolism in Swim-Up Fry

In the whole body of swim-up fry, the methionine concentration was significantly decreased, when parents received Se-supplemented diets compared to fry from the NC group, with the lowest concentration observed in fries from SO treatment (Table 1). The decreased methionine levels were accompanied by a general decrease in both essential and non-essential amino acids. PCA analysis of free amino acids and N-metabolites in fry revealed a strong clustering of the data according to the three parental groups dominated by essential amino acids, with the main contributing variables being lysine, isoleucine, valine, leucine, methionine, threonine and histidine besides glutamine, ammonium chloride and glycine (Figure 1). The only amino acid that was significantly higher in Se-supplemented treatments compared to the control was asparagine, with a 18 ± 4 µg/mg sample in NC vs. a 34 ± 3 µg/mg sample in SS and a 44 ± 5 µg/mg sample in SO.

In the whole body of swim-up fry, the methionine concentration was significantly decreased, when parents received Se-supplemented diets compared to fry from the NC group, with the lowest concentration observed in fries from SO treatment (Table 1). The decreased methionine levels were accompanied by a general decrease in both essential and non-essential amino acids. PCA analysis of free amino acids and N-metabolites in fry revealed a strong clustering of the data according to the three parental groups dominated by essential amino acids, with the main contributing variables being lysine, isoleucine, valine, leucine, methionine, threonine and histidine besides glutamine, ammonium chloride and glycine (Figure 1). The only amino acid that was significantly higher in Se-supplemented treatments compared to the control was asparagine, with a 18 ± 4 µg/mg sample in NC vs. a 34 ± 3 µg/mg sample in SS and a 44 ± 5 µg/mg sample in SO. In broodstock liver tissue, a reduction in the SAM/SAH ratio was detected for the Sesupplemented groups (Figure 2A). SAM levels in males and females were, however, strongly affected by inorganic Se, without a significant difference between NC and SO in males that showed higher SAM as well as SAH levels compared to females. In oocytes, no significant difference in SAM or SAH levels and the SAM/SAH ratio was detected between treatments.

(A) (B) In broodstock liver tissue, a reduction in the SAM/SAH ratio was detected for the Se-supplemented groups (Figure 2A). SAM levels in males and females were, however, strongly affected by inorganic Se, without a significant difference between NC and SO in males that showed higher SAM as well as SAH levels compared to females. In oocytes, no significant difference in SAM or SAH levels and the SAM/SAH ratio was detected between treatments.

In the whole body of swim-up fry, the methionine concentration was significantly decreased, when parents received Se-supplemented diets compared to fry from the NC group, with the lowest concentration observed in fries from SO treatment (Table 1). The decreased methionine levels were accompanied by a general decrease in both essential and non-essential amino acids. PCA analysis of free amino acids and N-metabolites in fry revealed a strong clustering of the data according to the three parental groups dominated by essential amino acids, with the main contributing variables being lysine, isoleucine, valine, leucine, methionine, threonine and histidine besides glutamine, ammonium chloride and glycine (Figure 1). The only amino acid that was significantly higher in Se-supplemented treatments compared to the control was asparagine, with a 18 ± 4 µg/mg sample in NC vs. a 34 ± 3 µg/mg sample in SS and a 44 ± 5 µg/mg sample in SO. In broodstock liver tissue, a reduction in the SAM/SAH ratio was detected for the Sesupplemented groups (Figure 2A). SAM levels in males and females were, however, strongly affected by inorganic Se, without a significant difference between NC and SO in males that showed higher SAM as well as SAH levels compared to females. In oocytes, no significant difference in SAM or SAH levels and the SAM/SAH ratio was detected between treatments.

(A) (B) In the whole body of swim-up fry, the SAM/SAH ratio was low in both Se-supplemented treatments compared to the control with the lowest SAM/SAH ratio detected in the SO group (Figure 2B). The decrease in the SAM/SAH ratio can be related to the comparatively lower SAM levels observed in this group.

Parental Selenium Affects mRNA Levels of Genes Related to the One-Carbon Metabolism in Swim-Up Fry

Gene expression levels in female liver tissue were not significantly different between groups. Methionine synthase (mtr) expression was higher in male liver tissue when the fish were fed Se-supplemented diets, with the highest expression in the SS treatment (Figure 3A). In addition, in male liver tissue, the expression of adenosylmethionine decarboxylase 1a (amd1a) was higher in SO compared to NC and that of glycine N-methyltransferase (gnmt) in SS compared to the other two dietary treatments. Except for adenosylmethionine decarboxylase 1b (amd1b) and gnmt, the expression of the 1C metabolism-related genes analyzed was higher in the females than in the males.
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Parental Selenium Affects mRNA Levels of Genes Related to the One-Carbon Metabolism in Swim-up Fry

Gene expression levels in female liver tissue were not significantly different between groups. Methionine synthase (mtr) expression was higher in male liver tissue when the fish were fed Sesupplemented diets, with the highest expression in the SS treatment (Figure 3A). In addition, in male liver tissue, the expression of adenosylmethionine decarboxylase 1a (amd1a) was higher in SO compared to NC and that of glycine N-methyltransferase (gnmt) in SS compared to the other two dietary treatments. Except for adenosylmethionine decarboxylase 1b (amd1b) and gnmt, the expression of the 1C metabolism-related genes analyzed was higher in the females than in the males. Parental feeding of both SS and SO increased mtr gene expression in the swim-up fry compared to NC feeding (Figure 3B). In addition, the expression of amd1b was higher in SS compared to NC and that of adenosylhomocysteinase (sahh) was higher in SO compared to the two other groups.

Parental Selenium Resulted in a Weak Group-Wise DNA Methylation Clustering

Reduced representation bisulfite sequencing (RRBS) data were first processed and aligned to the rainbow trout genome (Table A1). For downstream analysis, only uniquely mapped reads (47.6 ± 1.4%) were used. Of the 12 samples sequenced (4 per dietary group), none appeared as an outlier. In the search for the global methylation pattern with all the mapped CpG sites, t-SNE (t-distribution stochastic neighbor embedding) was used. The individual methylation pattern was stronger compared to group-wise global patterns, with only a weak group-wise clustering identified when using the 95th percentile of the CpC variance (Figure 4). The stronger individual variation compared to group-wise clustering was confirmed using other methods including PCA, hierarchical clustering and correlation analysis (Figure A1). Parental feeding of both SS and SO increased mtr gene expression in the swim-up fry compared to NC feeding (Figure 3B). In addition, the expression of amd1b was higher in SS compared to NC and that of adenosylhomocysteinase (sahh) was higher in SO compared to the two other groups.
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Parental Selenium Resulted in a Weak Group-Wise DNA Methylation Clustering

Reduced representation bisulfite sequencing (RRBS) data were first processed and aligned to the rainbow trout genome (Table A1). For downstream analysis, only uniquely mapped reads (47.6 ± 1.4%) were used. Of the 12 samples sequenced (4 per dietary group), none appeared as an outlier. In the search for the global methylation pattern with all the mapped CpG sites, t-SNE (t-distribution stochastic neighbor embedding) was used. The individual methylation pattern was stronger compared to group-wise global patterns, with only a weak group-wise clustering identified when using the 95th percentile of the CpC variance (Figure 4). The stronger individual variation compared to group-wise clustering was confirmed using other methods including PCA, hierarchical clustering and correlation analysis (Figure A1). 

Data Alignment Gives a Balanced Hepatic Methylation Pattern between Groups

The regional annotation showed that most of the mapped CpG originated with 51.8% from the gene bodies compared to the whole rainbow trout genome, where it accounts for 22.9% (Figure 5A). With 37.6%, most of the mapped CpG in the gene body were coming from the intron region. Further, promoters were more targeted by RRBS compared to the whole rainbow trout genome, with an increase from 4.7% to 7.2%.

The total number of differentially methylated cytosine (DMC) was comparable for the groups SS:NC (10904), SO:NC (11806) and SO:SS (13179) and, within each group, the number of hyper-and hypomethylated CpG sites was balanced even when divided into different sub-regions, exon and intron for the body and P250 for the proximal promoter, P1K for the promoter and P6K for the distal promoter region as well as flanks (Figure 5B).
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Parental Selenium Affects the DNA Methylation Pattern in Several Metabolic Pathways

Comparing NC with the SS treatment showed a total of 6535 differentially methylated genes (DMGs) from which 1142 DMGs had DMCs located in the promoter region (Figure 6). Similarly, in total, 6890 DMGs were detected between NC and the treatment receiving SO with 1250 DMGs showing DMCs located in the promoter region. The highest number of DMGs was detected between the two different Se-supplemented treatments with a total of 7428 genes of which 1340 DMGs had 

Parental Selenium Affects the DNA Methylation Pattern in Several Metabolic Pathways

Comparing NC with the SS treatment showed a total of 6535 differentially methylated genes (DMGs) from which 1142 DMGs had DMCs located in the promoter region (Figure 6). Similarly, in total, 6890 DMGs were detected between NC and the treatment receiving SO with 1250 DMGs showing DMCs located in the promoter region. The highest number of DMGs was detected between the two different Se-supplemented treatments with a total of 7428 genes of which 1340 DMGs had DMCs located in the promoter region. A synergetic effect of Se in NC vs. SS and NC vs. SO was detected on 3663 genes, whereas SS vs. SO displays a specific effect of the Se source on 2387 genes.

DMCs located in the promoter region. A synergetic effect of Se in NC vs. SS and NC vs. SO was detected on 3663 genes, whereas SS vs. SO displays a specific effect of the Se source on 2387 genes. In all datasets, multiple KEGG pathways were significantly enriched-22 in SS:NC, 18 in SO:NC and 20 in SO:SS (Figure A2). These KEGG pathways relate to diverse biological mechanisms, mainly cellular metabolism and environmental information processing, but also the organismal system and cellular processing.

Among the five genes with the highest number of DMCs listed for each of the sub-regions (exon, intron, proximal promoter, promoter and distal promoter) in Tables C1-C3, three genes were common. The limbic system-associated membrane, transcript variant X5 protein (Isamp) belongs to the immunoglobulin super-family, known to be expressed and excreted in the developing forebrain showed 15 DMCs in SS:NC, 24 in SO:NC and 22 in SO:SS, all located in the intron region. The methylation pattern revealed both hyper-and hypomethylated CpG sites. The DMCs of the other two genes were located in the promoter region. The radical S-adenosyl methionine domain containing protein 2-like (viperin) is a cytoplasmic antiviral protein that is induced by interferons. Viperin had five DMCs in SS:NC and three DMCs in SO:NC and SO:SS, respectively. In the inorganic Se treatment, the CpG sites were hypomethylated, but they were hypermethylated in the organic Se treatment. The third gene was gamma-aminobutyric acid receptor subunit rho-2 (gabrr2), which is an inhibitory neurotransmitter in the vertebrate brain. The DMCs of gabrr2 were located in the distal promoter region and similar to viperin the gene was hypomethylated in SS:NC and hypermethylated in SO:NC.

Parental Selenium also Affects Methylation in Genes Related to the 1C Metabolism

Several genes related to the methionine cycle and transsulfuration pathway were identified, but mostly they contained only single DMC sites (Table 3). An effect on the genes that provide selenocysteine for the selenoprotein synthesis was only detected in the organic Se treatment. Nevertheless, selenoprotein I and selenoprotein U had DMCs in both Se-supplemented treatments. In all datasets, multiple KEGG pathways were significantly enriched-22 in SS:NC, 18 in SO:NC and 20 in SO:SS (Figure A2). These KEGG pathways relate to diverse biological mechanisms, mainly cellular metabolism and environmental information processing, but also the organismal system and cellular processing.

Among the five genes with the highest number of DMCs listed for each of the sub-regions (exon, intron, proximal promoter, promoter and distal promoter) in Tables A2-A4, three genes were common. The limbic system-associated membrane, transcript variant X5 protein (Isamp) belongs to the immunoglobulin super-family, known to be expressed and excreted in the developing forebrain showed 15 DMCs in SS:NC, 24 in SO:NC and 22 in SO:SS, all located in the intron region. The methylation pattern revealed both hyper-and hypomethylated CpG sites. The DMCs of the other two genes were located in the promoter region. The radical S-adenosyl methionine domain containing protein 2-like (viperin) is a cytoplasmic antiviral protein that is induced by interferons. Viperin had five DMCs in SS:NC and three DMCs in SO:NC and SO:SS, respectively. In the inorganic Se treatment, the CpG sites were hypomethylated, but they were hypermethylated in the organic Se treatment. The third gene was gamma-aminobutyric acid receptor subunit rho-2 (gabrr2), which is an inhibitory neurotransmitter in the vertebrate brain. The DMCs of gabrr2 were located in the distal promoter region and similar to viperin the gene was hypomethylated in SS:NC and hypermethylated in SO:NC.

Parental Selenium also Affects Methylation in Genes Related to the 1C Metabolism

Several genes related to the methionine cycle and transsulfuration pathway were identified, but mostly they contained only single DMC sites (Table 3). An effect on the genes that provide selenocysteine for the selenoprotein synthesis was only detected in the organic Se treatment. Nevertheless, selenoprotein I and selenoprotein U had DMCs in both Se-supplemented treatments. 

Discussion

Parental Selenium Nutrition and the Transsulfuration Pathway in the Progeny

Decreased levels of cysteine in rainbow trout fry originating from the parental group fed Se-supplemented diets are in contrast to reports in adult rats, mice and chicken, where rather an impaired transsulfuration with decreased cystathionine and cysteine levels has been described under Life 2020, 10, 121 10 of 24 dietary Se deficiency [START_REF] Halpin | Selenium deficiency and transsulfuration in the chick[END_REF][START_REF] Uthus | Dietary selenium affects homocysteine metabolism differently in Fisher-344 rats and CD-1 mice[END_REF][START_REF] Uthus | Selenium deficiency in Fisher-344 rats decreases plasma and tissue homocysteine concentrations and alters plasma homocysteine and cysteine redox status[END_REF]. Decreased levels of cysteine were also detected in liver tissue of female broodstock of the sodium selenite treatment, indicating an effect independent of life stage in rainbow trout (Figure 7). In the present study, swim-up fry of the Se-supplemented treatments had lower pyridoxamine levels compared to the control group, which indicates an increased demand for vitamin B6 by parental Se nutrition. The combined effect of maternal Se and pyridoxal nutrition has been studied in porcine embryos by Dalto et al. [START_REF] Dalto | Gene expression of porcine blastocysts from gilts fed organic or inorganic selenium and pyridoxine[END_REF][START_REF] Dalto | The importance of pyridoxine for the impact of the dietary selenium sources on redox balance, embryo development, and reproductive performance in gilts[END_REF], who described that the co-supplementation increased plasma seleno-dependent glutathione peroxidase levels in the progeny in the long term. In addition, the supply of organic Se and vitamin B6 stimulated the expression of elongation factors, biological processes related to translation and the mitotic cell cycle in five-day-old embryos [START_REF] Dalto | Gene expression of porcine blastocysts from gilts fed organic or inorganic selenium and pyridoxine[END_REF]. Although the sulfur and seleno amino acids follow a similar pathway, the most important reaction for selenocysteine is its reduction to selenide via selenocysteine lyase and further by selenophosphate synthetase that donates Se to the Sec-tRNA for the selenoprotein synthesis [START_REF] Burk | Regulation of selenium metabolism and transport[END_REF]. Both these enzymes are vitamin B6 dependent, highlighting the importance of this vitamin in Se metabolism. This reaction is independent of dietary Se form as both inorganic and organic forms undergo the reduction to selenide [START_REF] Weekley | Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease[END_REF]. The impact of dietary Se form as observed in the present study could be questioned as in an earlier study it was shown that even in the parental sodium selenite treatment more than 94% of the Se in oocytes was either selenocysteine or selenomethionine [START_REF] Wischhusen | Effect of dietary selenium in rainbow trout (Oncorhynchus mykiss) broodstock on antioxidant status, its parental transfer and oxidative status in the progeny[END_REF]. Nevertheless, the higher selenomethionine levels corresponding to the higher total Se levels in the organic Se treatment might contribute to changes in the methionine cycle, providing methyl groups and homocysteine/Se-homocysteine for the transsulfuration pathway. Thus, it can be inferred that the higher redox status of Se-homocysteine compared to homocysteine might favor transsulfuration, as its enzymes are readily regulated through the redox status [START_REF] Sbodio | Regulators of the transsulfuration pathway[END_REF].
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In the present study, parental Se had no effect on homocysteine levels in the swim-up fry, while studies in mice indicate an inverse correlation between liver Se and homocysteine levels [START_REF] Geillinger | Hepatic metabolite profiles in mice with a suboptimal selenium status[END_REF][START_REF] Wolf | Study of molecular targets influencing homocysteine and cholesterol metabolism in growing rats by manipulation of dietary selenium and methionine concentrations[END_REF]. An increased mRNA level of mtr in both Se-supplemented treatments could indicate that in rainbow trout, parental Se favors the re-methylation of homocysteine to methionine in the offspring. An increase in homocysteine can result in the accumulation of SAH, which is a competitive inhibitor of methyl-transferases and therefore associated to global hypomethylation [START_REF] Speckmann | Epigenetic effects of selenium and their implications for health[END_REF]. In mammals, selenomethionine supplementation resulted in decreased hepatic SAH, but selenite on the contrary increased hepatic SAH [START_REF] Speckmann | Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice[END_REF][START_REF] Uthus | Differential effects of dietary selenium (Se) and folate on methyl metabolism in liver and colon of rats[END_REF]. In the present study, the difference was not significant. Nevertheless, increased mRNA levels of sahh indicate that SAH might be increasingly metabolized to homocysteine in the organic Se treatment (Figure 7). The decrease in the SAM/SAH ratio in swim-up fry of Sesupplemented treatments due to a decrease in SAM levels is possibly due to the lower methionine levels. In the OH-SeMet treatment, it cannot be excluded that a competition of selenomethionine on active transporters reduced the methionine uptake in the gut [START_REF] Bakke | Competition between selenomethionine and methionine absorption in the intestinal tract of green sturgeon (Acipenser medirostris)[END_REF]. However, considering the small 
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In the present study, parental Se had no effect on homocysteine levels in the swim-up fry, while studies in mice indicate an inverse correlation between liver Se and homocysteine levels [START_REF] Geillinger | Hepatic metabolite profiles in mice with a suboptimal selenium status[END_REF][START_REF] Wolf | Study of molecular targets influencing homocysteine and cholesterol metabolism in growing rats by manipulation of dietary selenium and methionine concentrations[END_REF]. An increased mRNA level of mtr in both Se-supplemented treatments could indicate that in rainbow trout, parental Se favors the re-methylation of homocysteine to methionine in the offspring. An increase in homocysteine can result in the accumulation of SAH, which is a competitive inhibitor of methyl-transferases and therefore associated to global hypomethylation [START_REF] Speckmann | Epigenetic effects of selenium and their implications for health[END_REF]. In mammals, selenomethionine supplementation resulted in decreased hepatic SAH, but selenite on the contrary increased hepatic SAH [START_REF] Speckmann | Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice[END_REF][START_REF] Uthus | Differential effects of dietary selenium (Se) and folate on methyl metabolism in liver and colon of rats[END_REF]. In the present study, the difference was not significant. Nevertheless, increased mRNA levels of sahh indicate that SAH might be increasingly metabolized to homocysteine in the organic Se treatment (Figure 7). The decrease in the SAM/SAH ratio in swim-up fry of Se-supplemented treatments due to a decrease in SAM levels is possibly due to the lower methionine levels. In the OH-SeMet treatment, it cannot be excluded that a competition of selenomethionine on active transporters reduced the methionine uptake in the gut [START_REF] Bakke | Competition between selenomethionine and methionine absorption in the intestinal tract of green sturgeon (Acipenser medirostris)[END_REF]. However, considering the small fraction that selenomethionine represents compared to dietary methionine levels in this study, it might be rather indicative of a higher methionine flux in the organic Se treatment. The sequence of Se-compounds in the metabolism creates an additional drain on methyl groups, as selenide and other highly reactive seleno-compounds can be spontaneously methylated [START_REF] Fernandes | Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems[END_REF]. This process is of importance for inorganic Se sources which do not follow the methionine cycle and are directly reduced to selenide [START_REF] Nakamuro | Metabolism of selenoamino acids and contribution of selenium methylation to their toxicity[END_REF]. This hypothesis is supported by our data on broodstock liver, where a significant decrease in SAM was only observed in the selenite treatment. This might be an explanation why Speckmann et al. [START_REF] Speckmann | Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice[END_REF] reported a high SAM/SAH ratio in response to selenomethionine supplementation using Se-deficient conditions in mice where no methylation of seleno-compounds for removal could be expected. Several other studies in mice using higher Se levels detected no effect of Se on the SAM/SAH ratio [START_REF] Uthus | Dietary selenium affects homocysteine metabolism differently in Fisher-344 rats and CD-1 mice[END_REF][START_REF] Uthus | Differential effects of dietary selenium (Se) and folate on methyl metabolism in liver and colon of rats[END_REF][START_REF] Davis | Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon[END_REF]. A depletion of the methyl donor SAM can result in decreased DNA methyltransferases (DNMT) activity [START_REF] King | Relationships among biomarkers of one-carbon metabolism[END_REF]. If in human colon carcinoma cells, administration of selenite inhibits DNMT activity [START_REF] Fiala | Inhibition of DNA cytosine methyltransferase by chemopreventive selenium compounds, determined by an improved assay for DNA cytosine methyltransferase and DNA cytosine methylation[END_REF], dnmt1 expression in the present study was not affected by Se, similar to what was reported on hepatic mRNA levels in mice [START_REF] Speckmann | Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice[END_REF].

Parental Selenium Nutrition Affects the DNA Methylation Pattern of Genes Related to Several Metabolic Pathways

Analyzed liver tissue of rainbow trout fry revealed that the DNA methylation patterns of several genes are sensitive to parental Se nutrition. Alterations in DNA methylation by Se have been reported in several murine studies, although with somewhat contradictory results, as Se could be associated with both hyper-and hypomethylation [START_REF] Speckmann | Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice[END_REF][START_REF] Uthus | Differential effects of dietary selenium (Se) and folate on methyl metabolism in liver and colon of rats[END_REF][START_REF] Davis | Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon[END_REF][START_REF] Zeng | Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa[END_REF]. The methylation of DNA can possibly regulate the spatial-temporal expression pattern of genes driving towards the development of a specific phenotype [START_REF] Razin | DNA methylation and gene expression[END_REF]. Genes directly related to the sulfur and Se metabolism presented methylation differences according to parental Se nutrition. Therefore, epigenetic marks might relate to metabolic differences observed in the present as well as in an earlier study on the expression of genes involved in the glutathione and antioxidant metabolism in rainbow trout fry [START_REF] Wischhusen | Effect of dietary selenium in rainbow trout (Oncorhynchus mykiss) broodstock on antioxidant status, its parental transfer and oxidative status in the progeny[END_REF]. Although an expected enrichment of the glutathione pathway could not be detected, genes of the glutathione metabolism including glutathione synthetase and glutathione-s-transferase kappa 1 were detected as DMGs. It has been reported that in cancer cells, selenite supplementation reactivates the transcription of glutathione-s-transferase π, another member of the glutathione-s-transferase family by a hypermethylation of the promoter region [START_REF] Xiang | Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells[END_REF]. Most studies with cancer cells generally report the methylation of selenoproteins like glutathione peroxidase 1 and 3, methionine sulfoxide reductase B1 and selenium binding protein 1 in the promoter region [START_REF] Ńska | Chapter Eight-Selenium and Epigenetics in Cancer: Focus on DNA Methylation[END_REF]. In the present study with rainbow trout, parental Se nutrition did not result in changing methylation pattern for these genes, contrary to selenoprotein I, a potential target of parental Se nutrition on the progeny. Selenoprotein I is a protein involved in the formation of the glycerophospholipid phosphatidylethanolamine [START_REF] Ahmed | A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis[END_REF], belonging to the glycophospholipid metabolism KEGG pathway that was enriched in the sodium selenite treatment. A silencing of the gene has been associated with impaired neural development as it is essential in the myelination process [START_REF] Horibata | EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans[END_REF]. In general, several genes with high changes in DNA methylation like gabrr2 were related to brain signaling pathways and neurotransmission. Under physiologically relevant conditions, Se nutrition has been associated with a neuroprotective role on γ-aminobutyric acidergic neurons [START_REF] Solovyev | Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling[END_REF]. It remains unclear whether the changes in DNA methylation of neuronal signaling genes as observed here in the hepatic tissue would be similarly detected in other organs such as the brain. DNA methylation works on a time and spatial dimension as genes gain tissue-dependent importance and are also activated and deactivated at different developmental stages [START_REF] Fanning | Analysis of tissue-specific methylation patterns of mouse mammary tumor virus DNA by two-dimensional Southern blotting[END_REF][START_REF] Duque-Guimarães | Nutritional programming of insulin resistance: Causes and consequences[END_REF]. High methylation differences were also identified for genes with a role in immune protection, including the antiviral protein viperin that showed several DMC sites in the promoter region. Viperin was up-regulated by supra-nutritional Se feeding in rainbow trout as well as Atlantic salmon (Salmo salar) in earlier studies [START_REF] Pacitti | Impact of selenium supplementation on fish antiviral responses: A whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex ®[END_REF][START_REF] Jesu | Dietary selenium required to achieve body homeostasis and attenuate pro-inflammatory responses in Atlantic salmon post-smolt exceeds the present EU legal limit[END_REF]. This indicates that the impact of Se on the inflammatory response in fish might not be limited to direct feeding effects, but also be exerted through an epigenetic process. In this context, similar to other natural feed additives [START_REF] Elumalai | Herbal immunomodulators in aquaculture[END_REF], Se might act as an immunostimulant, improving fish immunity in the long term.

Materials and Methods

Experimental Set up

The experiment was conducted at the INRAE experimental fish farm in Lées-Athas, France. Fish maintenance and experimental procedures were conducted by trained personnel in compliance with the European Directive 2010/63/EU for the protection of animals used for scientific purposes and the French Decree no. 2013-118 for animal experimentation.

Three-year-old rainbow trout (Oncorhynchus mykiss) broodstock (initial mean weight: 1.1 ± 0.2 kg in females and 0.9 ± 0.3 kg in males) from the same genetic group produced at the INRAE facilities of Lées-Athas (permit no. A64-104-1) were individually tagged and divided into three groups consisting of 25 females and 15 males. The fish were reared under natural photoperiod, as previously described [START_REF] Wischhusen | Effect of dietary selenium in rainbow trout (Oncorhynchus mykiss) broodstock on antioxidant status, its parental transfer and oxidative status in the progeny[END_REF], over six months and fed the respective diets once daily to apparent satiation. At spawning, oocytes from eight females per group were fertilized with pooled sperm received from males of the same dietary treatment collected on the same day. Fertilized eggs from each female were reared separately in small trays until swim-up fry stage supplied with flow-through spring water at 8 ± 1 • C.

Experimental Diets

The diets were based on plant ingredients with an 8% fish oil inclusion and designed to differ only in their Se content (Table 4), as previously described [START_REF] Wischhusen | Effect of dietary selenium in rainbow trout (Oncorhynchus mykiss) broodstock on antioxidant status, its parental transfer and oxidative status in the progeny[END_REF]. The NC diet at a basal Se level of 0.3 mg/kg was not supplemented with Se. The SS diet was supplemented with sodium selenite to a target level of 0.6 mg/kg (analyzed concentration, 0.8 mg/kg) and the SO diet was supplemented to the same target level of 0.6 mg/kg with OH-SeMet (Selisseo®, Adisseo SAS, Antony, France), resulting in a final Se concentration of 0.7 mg/kg. 1 Plant meals (% diet): 20% wheat gluten (Roquette), 18% corn gluten meal (Inzo), 15% soybean protein concentrate Estril®75 (Sopropêche), 6% soybean meal (Sud-Ouest Aliment), 5% rapeseed meal 00 (Sud-Ouest Aliment), 5% white lupin meal Farilup 500 (Terrena), 3% dehulled pea meal Primatex (Sotexpro), 2% whole wheat (Sud-Ouest Aliment). 2 Crystalline amino acids and attractant mixture (% diet): 1.34% L-lysine, 0.3% DL-methionine, 0.5% glucosamine, 0.3% taurine, 0.3% betaine, 0.2% glycine, 0.2% alanine. 3 Soybean lecithin from Louis François and fish oil from Sopropêche. 4 Vegetable oils (% diet): 4% rapeseed oil, 2.4% linseed oil, 1.6% palm oil (Daudry). 5 Provided as Carophyll®pink (DSM). 6 Vitamin and mineral mixture without Se (per kg diet): retinol acetate, 55,000 IU; cholecalciferol, 2,500 IU; DL-α-tocopherol acetate, 50 IU; sodium menadione bisulfate, 10 mg; thiamin-HCl, 1 mg; riboflavin, 4 mg; niacin, 10 mg; D-calcium pantothenate, 20 mg; pyridoxine-HCl, 3 mg; D-biotin, 0.2 mg; folic acid, 1 mg; cyanocobalamin, 10 µg; L-ascorbyl-2-polyphosphate, 50 mg; myo-inositol, 0.3 g; choline, 1 g; CaHPO 7 Sodium selenite contained 42% Se (Sigma-Aldrich) and hydroxy-selenomethionine contained 40% Se provided as Selisseo®(Adisseo). 8 Total Se was determined using inductively coupled plasma mass spectrometry (ICP MS, Agilent series 7500cx) by Ultra-Trace Analysis Aquitaine (UT2A, Pau, France) according to Vacchina and Dumont [START_REF] Vacchina | Total selenium quantification in biological samples by inductively coupled plasma mass spectrometry (ICP-MS)[END_REF], with a calculated uncertainty of 15 µg/kg and a limit of quantification of 3 µg/kg.

Sampling

The broodstock fish were anaesthetized with benzocaine for stripping and afterwards euthanized by a sharp blow to the head for liver dissection in both males and females. For each individual female, samples of pooled oocytes after stripping (1 g sized samples) and progeny at swim-up fry stage (whole-body fry) killed by an overdose of benzocaine were withdrawn. Moreover, a total of 36 individual swim-up fry livers were randomly dissected on the same day at the Ecology and Fish Population Biology facility in Saint-Pée-sur-Nivelle, France [START_REF] Ecp; Inrae | Ecology and Fish Population Biology Facility (ECP)-Catalogue des Infrastructures de Recherche[END_REF], originating from 12 females (n = 4 females per dietary treatment). The three individual livers per female were pooled into a single sample tube for DNA extraction. All collected samples were immediately frozen in liquid nitrogen and stored at -80 • C until further analysis.

Metabolite Analysis

In 0.1 g of pooled whole-body swim-up fry, free amino acids and other N-metabolites were analyzed using the Biochrome Analyzer and post column ninhydrin reaction following deproteinization, as previously described [START_REF] Espe | Can Atlantic salmon (Salmo salar) grow on diets devoid of fish meal?[END_REF]. The aminothiols of the transsulfuration and glutathione pathway including homocysteine, cysteine, γ-glutamyl-cysteine, reduced glutathione and cysteinyl-glycine as well as SAM and SAH were measured by HPLC using one sample extract. First, 0.3 g of broodstock liver tissue, 1 g of pooled oocytes or 1 g whole-body swim-up fry were homogenized with an ultra-turrax in a 20 mM phosphate, 1 mM EDTA (pH = 6.4) buffer. After centrifugation (10,000 g, 15 min, 4 • C), deproteinization of the supernatant was performed using a 10% metaphosphoric acid solution. The protocol for aminothiol analysis was adapted from Toyooka and Imai [START_REF] Toyooka | New fluorogenic reagent having halogenobenzofurazan structure for thiols: 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole[END_REF]. Derivatization was performed by adding 62.5 µL AccQ•Fluor™ borate buffer (Waters, Guyancourt, France), 5 µL 1.55N NaOH and 4.5 mM ABD-F buffer to 25 µL sample aliquot for 20 min at 60 • C. After, the reaction was stopped by addition of 12.5 µL of 1N HCL and cooling at 4 • C for 15 min. Separation was performed using a AccQTaq TM column at 40 • C using gradient elution: 0-2 min 97% A, 3% C; 20 min: 96% A, 4% C; 25 min: 20% B, 80% C; 30-35 min: 97% A, 3% C with (A) aqueous solution of AccQTag TM Eluent A; (B) ultra-pure water and (C) methanol. Aminothiols were detected with fluorescence (excitation 385 nm, emission 515 nm). SAM/SAH measurement was adapted from She et al. [START_REF] She | A simple HPLC method for the determination of S-adenosylmethionine and S-adenosylhomocysteine in rat tissues: The effect of vitamin B6 deficiency on these concentrations in rat liver[END_REF] with separation on a Revolve C18 at 40 • C with the following gradient: 0-10 min 95% A, 5% B; 20 min 30% A, 70% B; 35-45 min 95% A, 5% B with (A) 20mM phosphate buffer with 8mM OSA (pH 2.7, TFA adjusted) and (B) methanol. In 0.1 g of pooled whole-body swim-up fry, pyridoxine, pyridoxal and pyridoxamine were measured by ultra-performance liquid chromatography (UPLC) [START_REF] Albrektsen | The effect of dietary vitamin B6 on tissue fat contents and lipid composition in livers and gills of Atlantic salmon (Salmo salar)[END_REF] and vitamin B12 and total folate were analyzed microbiologically using Lactobacillus delruceckii ssp. lactis and Lactobacillus rhamnosus, respectively, as previously described [START_REF] Maeland | Water-soluble vitamins in natural plankton (copepods) during two consecutive spring blooms compared to vitamins in Artemia franciscana nauplii and metanauplii[END_REF].

RNA Extraction and RT-qPCR

The RNA was extracted and analyzed by quantitative RT-qPCR on 0.1 g samples of broodstock liver and a pool of three whole-body swim-up fry, as previously described [START_REF] Wischhusen | Effect of dietary selenium in rainbow trout (Oncorhynchus mykiss) broodstock on antioxidant status, its parental transfer and oxidative status in the progeny[END_REF]. The primer sequences are given in Table 5. 

Statistical Analysis on Metabolic Analysis and Gene Expression Data

Results are given as the mean ± SEM. Statistical analysis was performed using statistical software R (R Core Team). All data were tested for normality and homogeneity. Gene expression data were rank transformed before further analysis. Principle component analysis (PCA) was performed on the free amino acid dataset in search for biological clusters and outliers (R: factoextra [START_REF] Kassambara | Factoextra: Extract and Visualize the Results of Multivariate Data Analyses[END_REF]). One-way ANOVA was used to identify differences between Se treatments or sex. Tukey's HSD was used as a post hoc test in case a significant difference (p < 0.05) was detected.

DNA Extraction, RRBS Library Preparation and Sequencing

DNA extraction on swim-up fry livers was performed using a QIAGEN DNeasy Blood and Tissue Kit (cat. no. 69504), following the manufacturer's instruction. DNA quantity was measured using Qubit fluorometric quantitation (Life Technologies, Carlsbad, California, USA), ensuring that the sample contained a minimum of 200 ng of DNA. The DNA extract was stored at -20 • C before DNA methylation was measured by reduced representation bisulfate sequencing (RRBS) performed at the Biomedical Sequencing Facility BSF in Vienna, Austria.

The RRBS library preparation was performed, as previously described [START_REF] Skjaerven | Parental micronutrient deficiency distorts liver DNA methylation and expression of lipid genes associated with a fatty-liver-like phenotype in offspring[END_REF], on 100 mg genomic DNA including DNA digestion (Msp1 20 U, 16h at 37 • C), enzymatic adapter ligation (T4 DNA Ligase rapid), quantification and pooling. Bisulfite conversion was performed using EZ DNA Methylation-Direct Kit D5020, Zymo Research, but conversion reagent was used at 0.9× concentration with incubation for 20 cycles of 1 min at 95 • C, 10 min at 60 • C and a desulphonation time of 30 min to increase the number of CpG nucleotides covered. Enrichment PCR was performed after AMPure XP clean up and library concentrations were quantified with the Qubit Fluorometric Quantitation system (Life Technologies) and size distribution by a Bioanalyzer High Sensitive DNA Kit (Agilent). Sequencing was performed on Illumina HiSeq 3000/4000 instruments. The data have been stored in SRA [START_REF]NCBI) Sequence Read Archive (SRA)[END_REF] under the accession number PRJNA629594.

Rainbow Trout Genome and Genomic Annotation

The reference genome data of rainbow trout (Omyk_1.0) were downloaded from the NCBI assembly site (https://www.ncbi.nlm.nih.gov/assembly/ GCF_002163495.1).

For genes with multiple RefSeq sequences, only the longest sequence was kept after eliminating overlapped isoforms. All the CpG sites in the genome were identified and split into four regions-gene body (GB), promoter (P), flanking regions around mRNA (flanks), and intergenic. Gene body was further divided into two sub-regions, intron and exon, whereas promoter was also divided based on the distance from the transcriptional start site (TSS) as P250 (1 bp-250 bp), P1K (251 bp-1000 bp) and P6K (1001 bp-6000 bp). Flanks were defined as a combination of 4K upstream from the 5 end of P6Ks (equivalently 6001-10,000 bp from TSS) and 10K downstream of the 3 end of mRNA. All the regions outside of gene bodies, promoters and flanks were annotated as intergenic. Each CpG site was defined as a unique and non-redundant region or sub-region according to the precedence of exon > intron > P250 > P1K > P6K > flanks > intergenic.

RRBS Data Processing

Illumina2bam tools (1.17.3; https://github.com/wtsi-npg/illumina2bam) were used to de-multiplex pooled samples. SAMtools [START_REF] Li | The sequence alignment/map format and SAMtools[END_REF] was used to convert BAM files into FASTQ, before quality check by FastQC (Babraham Institute; https://www.babraham.ac.uk) and MultiQC [START_REF] Ewels | Summarize analysis results for multiple tools and samples in a single report[END_REF]. Adapters and low-quality reads in the RRBS mode based on Cutadapt [START_REF] Martin | Cutadapt removes adapter sequences from high-throughput sequencing reads[END_REF] were removed with Trim Galore! (Babraham Institute). Long reads were trimmed to 50 bp, and reads were selected by in-house python scripts to keep only those digested by MspI and TaqI.

Reads were aligned to the rainbow trout genome by Bismark [START_REF] Krueger | A flexible aligner and methylation caller for Bisulfite-Seq applications[END_REF] with Bowtie 1 [START_REF] Langmead | Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[END_REF]. Two Bismark tools, bismark_methylation_extractor and coverage2Cystosine, were used to retrieve methylation calls at CpG sites. Reads were filtered by methylKit tool [START_REF] Akalin | methylKit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles[END_REF] when either the number of reads was above 99.9th percentile or less than or equal to 10.

Cluster analysis was performed by Rtsne [START_REF] Krijthe | T-Distributed Stochastic Neighbor Embedding Using Barnes-Hut[END_REF] for t-SNE [START_REF] Van Der Maaten | Visualizing data using t-SNE[END_REF], with perplexity = 2 and factoextra [START_REF] Kassambara | Factoextra: Extract and Visualize the Results of Multivariate Data Analyses[END_REF] for PCA, scree plot and hierarchical clustering with Ward's method.

Prior to differential methylation calculation, the unite function of methylKit was used to form SS:NC and SO:NC with NC as control and SO:SS with SS as control. Methylation differences were calculated by methylKit for all the CpG sites with methylation calls as a percentage and p-values by logistic regression. The SLIM method [START_REF] Wang | A sliding linear model for estimating the proportion of true null hypotheses in datasets with dependence structures[END_REF] was used to calculate q-values. CpG sites with a q-value of < 0.01 and ≥ 20% methylation difference were defined as differentially methylated cytosines (DMCs). Genes with at least one DMC in the gene body or promoter region are considered to be differentially methylated genes (DMGs).

In-house R and Python scripts were coordinated in a pipeline by using Snakemake [START_REF] Köster | Snakemake-A scalable bioinformatics workflow engine[END_REF].

Functional Annotation and Statistical Analysis of DMGs

To find Kyoto Encyclopedia of Genes and Genomes (KEGG) [START_REF] Kanehisa | KEGG: Kyoto encyclopedia of genes and genomes[END_REF] orthologues that correspond to rainbow trout genes, the results of BLASTKoala, GhostKoala [START_REF] Kanehisa | BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences[END_REF] and KEGG Automatic Annotation Server (KAAS) [START_REF] Moriya | An automatic genome annotation and pathway reconstruction server[END_REF] were merged. The precedence of BLASTKoala > GhostKoala > KASS was applied when conflicting annotation occurred. A total of 22501 orthologues along with 168 KEGG pathways were identified. Over representation analysis (ORA) on KEGG pathways and Gene Ontology (GO) terms [START_REF] Ashburner | Gene ontology: Tool for the unification of biology[END_REF] was performed on DMGs by the R package clusterProfiler [START_REF] Yu | clusterProfiler: An R package for comparing biological themes among gene clusters[END_REF][START_REF] Yu | An R/Bioconductor package for disease ontology semantic and enrichment analysis[END_REF].

The Wilcoxon signed-rank test (Wilcox) was used to test the differences of methylation rates between two groups in a pair-wise manner for KEGG pathways.

A bootstrap version of the Kolmogorov-Smirnov test (KS-boot; the number of iterations: 1000) was used to test the methylation differences that are associated with a KEGG pathway against the methylation differences of the whole CpG sites in a region. All three methods of enrichment analysis were performed for all the defined regions, and the p-values were adjusted by the Benjamini-Hochberg procedure.

Conclusions

Our results demonstrate that in rainbow trout, parental Se nutrition decreased transsulfuration and modified the methionine cycle, as summarized in Figure 7. A decrease in the methyl donor SAM was noticed in parental fish and their offspring by Se supplementation. In the offspring, significant changes in the DNA methylation pattern were identified, especially for genes related to signal transmission and immune function, by parental Se supplementation with organic and inorganic Se forms. It could be suspected that such epigenetic changes might persist during subsequent growth and development of the fish, leading to long-term molecular and metabolic alterations in the progeny, which deserves further investigation. 

Figure 1 .

 1 Figure 1. PCA biplot of free amino acids and related compounds measured in whole-body swim-up fry. Arrows represent the 10 most contributing variables to the model. Ellipses represent the 95% confidence intervals around a center of eight pooled samples per dietary treatment.
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 2 Figure 2. (A) SAM, SAH and the SAM/SAH ratio in whole-body swim-up fry; (B) SAM, SAH and the SAM/SAH ratio in broodstock tissue. Bars are the mean ± SEM (n = 8 in swim-up fry and female tissues and n = 5 in males). Means not sharing a common superscript letter are significantly different (p < 0.05) according to one-way ANOVA followed by Tukey's HSD.
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 3 Figure 3. (A) Relative mRNA levels in whole-body swim-up fry from rainbow trout subjected to different Se treatments; (B) relative mRNA levels in parental liver tissue from rainbow trout subjected to different Se treatments. Data are normalized to β-actin and expressed as fold changes compared with the control group NC. In A, values are expressed relative to NC males. Bars are the mean ± SEM (A: n = 8; B n = 8 in female liver and n = 5 in male liver). Means not sharing a common superscript letter are significantly different (p < 0.05) according to one-way ANOVA followed by Tukey's HSD.
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 5 Figure 5. (A) Regional distributions of mapped/original CpG. (B) Regional distributions of methylation differences of the differentially methylated cytosines (DMC) with a 20% threshold. Three violin plots show the density of overall methylation differences for SS:NC, SO:NC, and SO:SS, with scattered dots indicating DMC.
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 6 Figure 6. Venn diagrams summarizing the analysis of genes with different methylation patterns in NC vs. SS, NC vs. SO and SS vs. SO. (A) Genes are included with at least one DMC in gene body or promoter region; (B) Genes are included with at least one DMC in the promoter region.
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 7 Figure 7. Effect of parental Se nutrition on the methionine cycle and transsulfuration pathway in the progeny of rainbow trout. Superscript indicates that the effect was only detected in the respective treatment.
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 A1 Figure A1. Clustering of the 12 RRBS samples by different algorithms. (A + B) PCA biplot by dietary treatment. (C + D) Scree plot with percentage of explained variance within the top 10 dimensions of the PCA. (E) Heatmap with sample-sample distance calculated by normalized Pearson's correlation coefficient in a range between 0 and 1, with d = 0 as r = 1 and d=1 as r = -1. (F) Dendrogram with hierarchical clustering.

Table 1 .

 1 Aminothiol concentrations (µg/g sample) measured in liver and oocytes of rainbow trout (Oncorhynchus mykiss) broodstock fed diets containing different levels and source of Se.

			Homocysteine Cysteine	Cysteinyl-Glycine	Glutathione γ-Glutamyl-Cysteine
		NC	0.3 ± 0.0	6.7 ± 1.0	3.7 ± 0.4	16 ± 1	1.0 ± 0.1
	Oocyte	SS	0.3 ± 0.0	6.7 ± 0.6	4.1 ± 0.5	17 ± 1	1.0 ± 0.1
		SO	0.2 ± 0.0	8.1 ± 1.1	3.1 ± 0.3	13 ± 1	1.0 ± 0.1
	p-value		0.21	0.48	0.35	0.07	0.48
		NC	1.4 ± 0.1 b	33 ± 4 a	53 ± 4 a	551 ± 32	30 ± 4
	Female liver	SS	1.1 ± 0.1 b	17 ± 2 b	37 ± 3 b	530 ± 32	23 ± 2
		SO	3.2 ± 0.3 a	38 ± 3 a	48 ± 3 ab	526 ± 47	28 ± 3
	p-value		<0.01	<0.01	0.01	0.88	0.29
		NC	0.7 ± 0.1	21 ± 3	26 ± 3	511 ± 64	21 ± 2
	Male liver	SS	1.0 ± 0.2	24 ± 5	23 ± 3	300 ± 66	10 ± 2
		SO	1.1 ± 0.3	33 ± 8	27 ± 4	465 ± 30	16 ± 5
	p-value		0.49	0.33	0.80	0.06	0.48
	Average	Female Male	1.9 ± 0.2 a 0.9 ± 0.1 b	29 ± 2 26 ± 3	46 ± 2 a 25 ± 2 b	536 ± 22 a 434 ± 39 b	27 ± 2 a 13 ± 2 b
	p-value		<0.01	0.43	<0.01	0.02	<0.01

Values are the mean ± SEM (n = 8 in female tissue and n = 5 in males). a,b Within-rows values not sharing a common superscript letter are significantly different (p < 0.05) according to one-way ANOVA followed by Tukey's HSD.

Table 2 .

 2 Free amino acid, aminothiol, and B vitamin composition of swim-up fry from broodstock fed the different diets.

	Dietary Group	NC	SS	SO	p-Value
	Essential amino acids 1	1972 ± 79 a	1737 ± 54 b	1400 ± 65 c	<0.01
	Non-essential amino acids 1	2415 ± 50 a	2351 ± 41 a	2109 ± 60 b	<0.01
	Methionine 1	99 ± 5 a	83 ± 3 b	56 ± 4 c	<0.01
	Homocysteine 1	1.2 ± 0.1	1.1 ± 0.1	1.2 ± 0.1	0.86
	Cystathionine 1	9 ± 1	6 ± 1	7 ± 1	0.21
	Cysteine 1	21 ± 1 a	17 ± 1 b	17 ± 0 b	0.01
	Cysteinyl-glycine 1	28 ± 1 a	24 ± 1 b	24 ± 1 b	0.02
	Glutathione 1	179 ± 7	159 ± 7	169 ± 13	0.35
	γ-Glutamyl-cysteine 1	18 ± 1	17 ± 1	16 ± 1	0.25
	Taurine 1	688 ± 17	751 ± 18	724 ± 16	0.05
	Pyridoxamine 2	0.24 ± 0.01 a	0.21 ± 0.02 b	0.18 ± 0.01 b	0.01
	Pyridoxal 2	1.82 ± 0.08	1.65 ± 0.06	1.85 ± 0.10	0.17
	Folate 2	0.36 ± 0.03	0.37 ± 0.02	0.28 ± 0.02	0.05
	Cobalamine 2				

Table 3 .

 3 Differentially methylated genes (DMGs) related to sulfur and selenium metabolism.

		DMGs	Hyper-/Hypomethylated DMC
	Gene ID	Gene name	SS:NC	SO:NC	SO:SS

Table 3 .

 3 Differentially methylated genes (DMGs) related to sulfur and selenium metabolism.

	DMGs		Hyper-/Hypomethylated DMC
	Gene ID	Gene name	SS:NC	SO:NC	SO:SS
		Methionine Cycle			
	S-adenosylmethionine synthase	0/1		
	S-adenosylmethionine synthase-like		0/1	0/2
	S-adenosylmethionine synthase-like	1/0 P	0/2	1/0
	S-adenosylmethionine decarboxylase proenzyme-like		0/1	0/1
	DNA (cytosine-5)-methyltransferase 1-like, transcript variant X1		0/1	
	DNA (cytosine-5)-methyltransferase 3A-like		1/0	
	DNA (cytosine-5)-methyltransferase 3A-like, transcript variant X2			1/0
	DNA (cytosine-5)-methyltransferase 3A-like, transcript variant X6	1/0		
	DNA (cytosine-5)-methyltransferase 3B-like, transcript variant X1			1/0
	Putative adenosylhomocysteinase 3		0/1 P	
	S-adenosylhomocysteine hydrolase-like protein 1 transcript variant X1		1/0	
	Adenosylhomocysteinase 3-like	2/1	4/2	0/1
	Putative adenosylhomocysteinase 3, transcript variant X2			0/1
		Glutathione Metabolism			
	Glutamate-cysteine ligase regulatory subunit-like	0/1		
	Glutamate-cysteine ligase catalytic subunit-like, transcript variant X2	0/1		
	Glutathione synthetase		0/1 P	
	Glutathione-specific gamma-glutamylcyclotransferase 1-like		2/0	
	Gamma-glutamyltransferase 5-like,transcript variant X1	0/1 P	1/0 P	2/0 P
	Glutathione S-transferase kappa 1, transcript variant X1			1/0 P
	Glucose-6-phosphate 1-dehydrogenase-like, transcript variant X2		2/0	0/1
	Peroxiredoxin 6, transcript variant X2		1/0	
	Spermidine synthase		0/1 P	
	5-oxoprolinase (ATP-hydrolyzing)		0/1	1/2
	Isocitrate dehydrogenase [NADP] cytoplasmic-like	1/0 P		0/1 P
	Isocitrate dehydrogenase [NADP] cytoplasmic-like		1/1	
		Selenoprotein Synthesis and Selenoproteins		
	Methionyl-tRna synthetase 1		0/1	0/1
	Methionyl-tRNA synthetase 2, mitochondrial	1/0		
	Sep (O-phosphoserine) tRNA:Sec (selenocysteine) tRNA synthase			1/0 P
	tRNA selenocysteine 1-associated protein 1-like		0/1	
	Eukaryotic elongation factor, selenocysteine-tRNA specific		1/0	
		Selenoprotein I	0/3	5/0	7/0
	Selenoprotein U	0/1 P	1/0 P	1/0 P
	Selenoprotein K, transcript variant X1		0/1	
	Selenoprotein O-like			1/0
	Thioredoxin reductase 2			0/1

P located at the promoter region.

Table 4 .

 4 Dietary composition.

	Diet	NC	SS	SO
	Ingredients			
	Plant meals 1	74	74	74
	Crystalline amino acids and attractant mixture 2	3.14	3.14	3.14
	Soybean lecithin 3	2	2	2
	Fish oil 3	8	8	8
	Vegetable oils 4	8	8	8
	Astaxanthin (µg/g diet) 5	40	40	40
	Vitamin and mineral mixture without Se 6	4.82	4.82	4.82
	Sodium selenite (µg/g diet) 7	-	0.71	-
	Hydroxy-selenomethione (µg/g diet) 7	-	-	0.75
	Analytical composition			
	Dry matter (DM, %)	96	98	97
	Crude protein (% DM)	49	50	50
	Total lipid (% DM)	23	22	23
	Gross energy (kJ/g DM)	25	25	25
	Ash (% DM)	6	6	6
	Phosphorus (% DM)	1.2	1.1	1.2
	Selenium (mg/kg dry feed) 8	0.3	0.8	0.7

Table 5 .

 5 Oligonucleotide primers used to assay mRNA levels by Fluidigm PCR.

	Gene	Accession No.	Forward Primer	Reverse Primer	Amplification Size
	amd1a	XM_021611778.1	ccgtaccatcccaaggtttga	tcctgcttgtcggtctttgt	87
	amd1b	XM_021600287.1	cagccagattttcccaaacgg	gcatgctcgttctcccagaa	108
	bhmt	FR908041.1	cagagaagcacggtaactgg	ttctttgtgctgcatcaggt	188
	cbs	NM_001124686.1	ccacctcaggcaatacaggt	aacatccaccttctccatgc	107
	cgl	EU315111.1	caccaaccccaccatgaaag	gcgctggaagtaggctgaca	118
	dnmt1	XM_021557911.1	ttgccagaagaggagatgcc	cccaggtcagcttgccatta	152
	gnmt	XM_021585680.1	ctcaagtacgcgctgaagga	cactctggtcccctttgaagt	187
	mtr	XM_021576690.1	aatgcaggtctgcccaatac	ctgatgtgtgcaggagtcgt	137
	sahh	XM_021609053.1	atcaaacgggccacagatgt	tcgtaccttccatggcagc	167
	β-actin	AJ438158.1	gatgggccgaaagacagcta	tcgtcccgtggtgacgat	105
	amd1, adenosylmethionine decarboxylase 1; bhmt, betaine-homocysteine S-methyltransferase 1; cbs, cystathionine
	beta-synthase; cgl, cystathionine gamma-lyase; dnmt1, DNA methyltransferase 1; gnmt, glycine N-methyltransferase;
	mtr, methionine synthase; sahh, adenosylhomocysteinase.		

Table A2 .

 A2 Top five DMGs in the dataset SS:NC, with the highest number of CpG in each sub-region.Genes in bold are commonly highly affected also in SO:NC and SO:SS.

		Gene Symbol	Gene ID	Gene Name	Total DMC	DMC in the Region Hyper-/Hypomethylated CpG
				Glycoprotein		
		LOC110496419 110496419	endo-alpha-1,2-mannosidase-like	10	10	0/10
				protein		
	Exon	LOC110503414 110503414	TCDD-inducible poly [ADP-ribose] polymerase-like	10	8	8/0
		LOC110497587 110497587	SAM and SH3 domain-containing protein 1-like, transcript variant X2	10	7	0/7
				Von Willebrand factor C		
		LOC110520294 110520294	domain-containing protein 2-like,	7	7	5/2
				transcript variant X1		
				MAM domain-containing		
		LOC110529233 110529233	glycosylphosphatidylinositol anchor	6	5	5/0
				protein 2-like		
		CTNNA2	110534326	Catenin alpha-2	18	18	11/7
		alk	110506268	ALK receptor tyrosine kinase	17	17	13/4
	Intron			Limbic system-associated		
		lsamp	110507545	membrane protein, transcript	15	15	9/6
				variant X5		
		NRXN2-like	110531840	Neurexin-2-like	16	12	5/7
		CDH4-like	110532012	Cadherin-4-like	13	12	5/7
		LOC110498119 110498119	Radical S-adenosyl methionine domain-containing protein 2-like	5	5	0/5
	P250	LOC110493563 110493563 COX6A2 100335037	Septin-9-like Cytochrome c oxidase subunit VIa	4 3	2 2	0/2 0/2
		TIMP2-like	110487076	Metalloproteinase inhibitor 2-like	2	2	0/2
		LOC110490026 110490026	Mitogen-activated protein kinase kinase kinase 8-like	2	2	2/0
		LOC110534101 110534101	Matrin-3-like	4	4	4/0
		LOC110489756 110489756	Transmembrane protein 14C-like	4	3	0/3
	P1K	LOC110486159 110486159	Proline-rich protein 15-like protein A	3	3	2/1
		TNFR11B-like	110506163	Tumor necrosis factor receptor superfamily member 11B-like	3	3	0/3
				Tubulin polymerization-promoting		
		TPPP3X2-like	110518569	protein family	3	3	0/3
				Member 3-like, transcript variant X2		
		COX4I2-like	110492636	Cytochrome c oxidase subunit 4 isoform 2, mitochondrial-like	8	8	8/0
	P6K	LOC110523211 110523211	Oocyte zinc finger protein XlCOF6-like, transcript	8	8	0/8
				Variant X2		
		LOC110498688 110498688	Fatty acid-binding protein, liver-type-like	7	7	7/0
				Gamma-aminobutyric acid		
		LOC110505815 110505815	receptor subunit rho-2-	6	5	0/5
				like		
		LOC110503024 110503024	Ras-related C3 botulinum toxin substrate 3-like	5	4	0/4

Table A3 .

 A3 Top five DMGs in the dataset SO:NC, with the highest number of CpG in each sub-region.
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		Gene Symbol	Gene ID	Gene Name	Total DMC DMC in the Region Hyper-/Hypomethylated CpG
		LOC110490066 110490066	E3 ubiquitin-protein ligase rififylin-like, transcript variant X2	6	6	5/1
	Exon	LOC110520294 110520294	von Willebrand factor C domain-containing protein 2-like,	6	6	3/3
				transcript variant X1		
		LOC110531157 110531157	Serine/threonine-protein kinase WNK2-like	7	5	0/5
		LOC110497587 110497587	SAM and SH3 domain-containing protein 1-like, transcript variant X2	6	5	1/4
		LOC110506316 110506316	Muscarinic acetylcholine receptor M4-like, transcript variant X1	6	5	0/5

Table A3 .

 A3 Cont. 

		Gene Symbol	Gene ID	Gene Name	Total DMC	DMC in the Region Hyper-/Hypomethylated CpG
				Limbic system-associated		
		lsamp	110507545	membrane protein, transcript	24	24	9/15
				variant X5		
	Intron	LOC110505581 110505581	Placenta growth factor-like	15	15	9/6
		LOC110501635 110501635	Serine/threonine-protein kinase BRSK2-like	14	14	10/4
		LOC110506270 110506270	Protein kinase C-binding protein NELL1-like, transcript variant X1	13	13	5/8
		Catenin alpha-2	110534326	Catenin alpha-2	13	13	6/7
				Alkyldihydroxyacetonephosp		
		LOC110501919 110501919	hatesynthase,peroxisomal-like,	5	3	2/1
				transcript variant X2		
	P250	LOC110494831 110494831	Complement C1q-like protein 2	4	3	0/3
		LOC110508922 110508922	MARVEL domain-containing protein 2-like, transcript variant X2	4	3	3/0
		CRIP2-like	110505831	Cysteine-rich protein 2-like	3	3	3/0
		LOC110497531 110497531	Uncharacterized LOC110497531, transcript variant X2	4	2	2/0
		LOC110493345 110493345	Gastrula zinc finger protein XlCGF17.1-like, transcript variant X1	4	4	4/0
	P1K	LOC110521247 110521247	Lactadherin-like, transcript variant X1	4	4	4/0
		LOC110533598 110533598	Ras-related protein Rab-24-like, transcript variant X1	4	4	0/4
		LOC110498119 110498119	Radical S-adenosyl methionine domain-containing protein 2-like	3	3	3/0
		NFATC3-like	110506757	Nuclear factor of activated T-cells, cytoplasmic 3-like	3	2	0/2
		LOC110505815 110505815	Gamma-aminobutyric acid receptor subunit rho-2-like	8	5	4/1
	P6K	LOC110519930 110519930	Uncharacterized LOC110519930, transcript variant X2	6	5	0/5
		LOC110520086 110520086	Collagen alpha-1(XXVIII) chain-like	5	5	3/2
		taf6l	110531860	TATA-box binding protein associated Factor 6 like, transcript variant X1	5	5	5/0
		LOC110537362 110537362	Glutamate receptor 3, transcript variant X3	5	5	5/0

Genes in bold commonly highly affected also in SS:NC and SO:SS.

Table A4 .

 A4 Top five DMGs in the dataset SO:SS, with the highest number of CpG in each sub-region.

		Gene Symbol	Gene ID	Gene Name	Total DMC	DMC in the Region Hyper-/Hypomethylated CpG
		CDH2-like	110506386	Neural-cadherin-like	10	10	7/3
				Pleckstrin homology		
	Exon	PLEKHG7-like 110497700	domain-Containing family G	9	9	0/9
				member 7-like		
		NRXN2-like	110531840	Neurexin-2-like	21	8	2/6
				Glycoprotein		
		LOC110496419 110496419	endo-alpha-1,2-mannosidase-like	8	8	8/0
				protein		
		LOC110496815 110496815	Glutamate receptor ionotropic, kainate5-like	8	7	7/0
				Limbic system-associated		
		lsamp	110507545	membrane protein, transcript	22	22	9/13
				variant X5		
	Intron	LOC110500600 110500600	Adhesion G protein-coupled receptor L3-like, transcript variant X5	23	20	17/3
		FBXL17X1	110525966	F-box and leucine rich repeat protein 17, transcript variant X2	18	16	13/3
		LOC110535694 110535694	Glutamate receptor ionotropic, delta-2, transcript variant X3	17	15	5/10
		ZNF407-like	110501552	Zinc finger protein 407-like	16	15	3/12
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