H. B. Aaron, D. Fainstein, and G. R. Kotler, Diffusion-Limited Phase Transformations : A comparison and Critical Evaluation of the Mathematical Approximations, Journal of Applied Physics, vol.11, pp.4404-4410, 1970.

A. Fea, Dassault Systèmes, Simulia products, 2019.

C. Agelet-de-saracibar, R. López, M. Chiumenti, D. Meester, and B. , Material Characterization and FSW Process Optimization Using Neural Networks, ESMC 2012, 8th European Solid Mechanics Conference, pp.9-13, 2012.

C. Agelet-de-saracibar, Challenges to be tackled in the computational modeling and numerical simulation of FSW processes, p.573, 2019.

S. Amelinckx and W. Dekeyser, The Structure and Properties of Grain Boundaries, Solid State Physics, pp.325-499, 1959.

A. Arora, Z. Zhang, A. De, and T. Debroy, Strains and strain rates during friction stir welding, Scripta Materialia, vol.61, pp.863-866, 2009.

H. J. Aval, S. Serajzadeh, and A. H. Kokabi, Thermo-mechanical and microstructural issues in dissimilar friction stir welding of AA5086-AA6061, Journal of Materials Science, vol.46, pp.3258-3268, 2011.

M. Avettand-fènoël and A. Simar, A review about Friction Stir Welding of metal matrix composites, Materials Characterization, vol.120, pp.1-17, 2016.

D. Bardel, M. Perez, D. Nelias, A. Deschamps, C. R. Hutchinson et al., Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy, Acta Materialia, vol.62, pp.129-140, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00925876

C. Bitondo, U. Prisco, A. Squilace, P. Buonadonna, and G. Dionoro, Friction-stir welding of AA 2198 butt joints: mechanical characterization of the process and of the welds through DOE analysis, The International Journal of Advanced Manufacturing Technology, vol.53, issue.5-8, pp.505-516, 2010.

B. I. Bjørneklett, Ø. Grong, O. R. Myhr, and A. O. Kluken, A process model for the heataffected zone microstructure evolution in Al-Zn-Mg weldments, Metallurgical and Materials Transactions A, vol.30, pp.2667-2677, 1999.

R. Blondeau, Metallurgy and mechanics of welding: processes and industrial applications, 2013.

G. Buffa, L. Fratini, and R. Shivpuri, CDRX modelling in friction stir welding of AA7075-T6 aluminum alloy: Analytical approaches, Journal of Materials Processing Technology, vol.191, pp.356-359, 2007.

, Computer Coupling of Phase Diagrams and Thermochemistry, 2019.

T. Carozzani, H. Digonnet, and -. A. Gandin-ch, 3D CAFE modeling of grain structures: application to primary dendritic and secondary eutectic solidification, Modelling and Simulation in, Materials Science and Engineering, vol.20, p.15010, 2012.

F. R. Castro-fernáandez and C. M. Sellars, Relationship between room-temperature proof stress, dislocation density and subgrain size, Philosophical Magazine A, vol.60, issue.4, pp.487-506, 1989.

R. Cazes, Soudage par friction-malaxage, Réf. BM7746 v1, 2003.

S. Chen, G. Guillemot, and .. Gandin-ch, Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes, Acta Materialia, vol.115, pp.448-467, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354148

Y. C. Chen, J. C. Feng, and H. J. Liu, Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys, Materials Characterization, vol.60, pp.476-481, 2009.

Z. Chen and S. Cui, On the forming mechanism of banded structures in aluminium alloy friction stir welds, Scripta Materialia, vol.58, issue.5, pp.417-420, 2008.

C. Chovet, S. Gourdet, and F. Montheillet, Modelling the transition from discontinuous to continuous dynamic recrystallization with decreasing purity in aluminium, Special Issue on Ultra-High Purity Metals, vol.41, pp.109-112, 2000.

P. Colegrove, M. Painter, D. Graham, and T. Miller, 3 Dimensional Flow and Thermal Modeling of the Friction Stir Welding Process, Proceedings of the Second International Symposium on Friction Stir Welding, 2000.

P. A. Colegrove and H. R. Shercliff, Development of Trivex friction stir welding tool -Part 1 -Two-dimensional flow modelling and experimental validation, Science and Technology of Welding and Joining, vol.9, issue.4, pp.345-351, 2004.

P. A. Colegrove and H. R. Shercliff, Development of Trivex friction stir welding tool -Part 2 -Three-dimensional flow modelling, Science and Technology of Welding and Joining, vol.9, issue.4, pp.352-361, 2004.

K. Colligan, Material flow behaviour during friction welding of aluminium, Welding Research, vol.78, pp.229-237, 1999.

K. J. Colligan and R. S. Mishra, A conceptual model for the process variables related to heat generation in friction stir welding of aluminum, Scripta Materialia, vol.58, issue.5, pp.327-331, 2008.

, Software Product Suite, comsol.com CSFP, Center for Friction Stir, COMSOL Multiphysics Modeling Software, 2019.

B. M. Darras and M. K. Khraisheh, Analytical Modeling of Strain Rate Distribution During Friction Stir Processing, Journal of Materials Engineering and Performance, vol.17, pp.168-177, 2008.

S. Das, Modeling mixed microstructures using a multi-level cellular automata finite element framework, Computational Materials Science, vol.47, issue.3, pp.705-711, 2010.

, Scientific Forming Technologies Corporation (SFTC), 2019.

D. Pari, L. Misiolek, and W. Z. , Theoretical predictions and experimental verification of surface grain structure evolution for AA6061 during hot rolling, Acta Materialia, vol.56, pp.6174-6185, 2008.

B. Derby and M. F. Ashby, On dynamic recrystallization, Scripta Metallurgica, vol.21, pp.879-884, 1987.

V. Dixit, R. S. Mishra, R. J. Lederich, and R. Talwar, Influence of process parameters on microstructural evolution and mechanical properties in friction stirred Al-2024 (T3) alloy, Science and Technology of Welding and Joining, vol.14, issue.4, pp.346-355, 2009.

A. I. Dmitriev, E. A. Kolubaev, A. Y. Nikonov, V. E. Rubtsov, and S. G. Psakhie, Study patterns of microstructure formation during friction stir welding, Proceedings of XLII International Summer School-Conference APM 2014, pp.10-16, 2014.

R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. Jensen et al., Current issues in recrystallization: a review, Materials Science Engineering A, vol.238, pp.219-274, 1997.

D. Santos, J. F. Staron, P. Fischer, T. Robson, J. D. Kostka et al., Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation, Acta Materialia, vol.148, pp.163-172, 2018.

Z. Du, M. J. Tan, H. Chen, G. Bi, and C. K. Chua, Joining of 3D-printed AlSi10Mg by friction stir welding, Welding in the World, vol.62, issue.3, pp.675-682, 2018.

, European Union's Marie Sk?odowska-Curie Actions Innovative Training Networks H2020-MSCA-ITN-2017, ENABLE project, 2019.

. Esi-sysweld, Welding, Assembly and Heat Treatment Predictive Simulation, ESI Group, 2019.

Y. Estrin, L. S. Tóth, A. Molinari, and Y. Bréchet, A dislocation-based model for all hardening stages in large strain deformation, Acta Materialia, vol.46, issue.15, pp.5509-5522, 1998.

E. Feulvarch, Modélisation numérique du procédé de soudage par friction-malaxage, Réf. BM7764 v1, 2012.

, ANSYS Fluent software, 2019.

L. Fratini and G. Buffa, CDRX modelling in friction stir welding of aluminium alloys, International Journal of Machine Tools and Manufacture, vol.45, issue.10, pp.1188-1194, 2005.

L. Fratini, G. Buffa, and D. Palmeri, Using a neural network for predicting the average grain size in friction stir welding processes, Computers and Structures, vol.87, pp.1166-1174, 2009.

Ø. Frigaard, A process model for friction stir welding of age hardening aluminium alloys, pp.1999-2004, 1999.

Ø. Frigaard, Ø. Grong, and O. T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminium Alloys, Metallurgical and Materials Transactions A, vol.32, pp.1189-1200, 2001.

C. Gallais, A. Denquin, Y. Bréchet, and G. Lapasset, Precipitation microstructures in an AA6056 aluminium alloy after friction stir welding : Characterisation and modelling, Materials Science and Engineering A, vol.496, pp.77-89, 2008.

S. Gastebois, Simulation numérique 3D du FSW à l'aide d'une formulation ALE, 2015.

L. Fourment, S. Gastebois, and L. Dubourg, Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints, AIP Conference Proceedings 1769, p.100006, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414675

C. Genevois, Genèse des microstructures lors du soudage par friction malaxage d'alliages d'aluminium de la série 2000 et 5000 et comportement mécanique résultant, 2004.

C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-cottignies, Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, Acta Materialia, vol.53, issue.8, pp.2447-2458, 2005.

D. Geuser, F. Malard, B. Deschamps, and A. , Microstructure mapping of a friction stir welded AA2050 Al-Li-Cu in the T8 state, Philosophical Magazine, vol.94, pp.1451-1462, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01053443

A. Gholinia, F. J. Humphreys, and P. B. Prangnell, Production of ultra-fine grain microstructures in Al-Mg alloys by conventional rolling, Acta Materialia, vol.50, pp.4461-4476, 2002.

B. Gibson, D. Lammlein, T. Prater, W. Longhurst, C. Cox et al., Friction stir welding: Process, automation, and control, Journal of Manufacturing Processes, vol.16, issue.1, pp.56-73, 2014.

O. Gopkalo, X. Liu, F. Long, M. Booth, A. P. Gerlich et al., Non-isothermal thermal cycle process model for predicting post-weld hardness in friction stir welding of dissimilar age-hardenable aluminum alloys, Materials Science and Engineering: A, vol.754, pp.205-215, 2019.

S. Gourdet, E. V. Konopleva, H. J. Mcqueen, and F. Montheillet, Recrystallization during Hot Deformation of Aluminium, Materials Science Forum, pp.441-446, 1996.

S. Gourdet, Etude des mécanismes de recristallisation au cours de la déformation à chaud de l'aluminium, 1997.

S. Gourdet and F. Montheillet, Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals, Acta Materialia, vol.50, issue.11, pp.2801-2812, 2002.

S. Gourdet and F. Montheillet, A model of continuous dynamic recrystallization, Acta Materialia, vol.51, pp.2685-2699, 2003.

M. Grujicic, S. Ramaswami, J. S. Snipes, V. Avuthu, R. Galgalikar et al., Prediction of the Grain-Microstructure Evolution Within a Friction Stir Welding (FSW) Joint via the Use of the Monte Carlo Simulation Method, Journal of Materials Engineering and Performance, vol.24, issue.9, pp.3471-3486, 2015.

S. Guerdoux, Numerical simulation of the friction stir welding process, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00271234

G. Guillemot and G. Ch, An analytical model with interaction between species for growth and dissolution of precipitates, Acta Materialia, vol.134, pp.375-393, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01552398

C. Hamilton, M. Kopy?cia?ski, A. W?glowska, S. Dymek, and A. Pietras, A Numerical Simulation for Dissimilar Aluminum Alloys Joined by Friction Stir Welding, Metallurgical and Materials Transactions A, vol.47, pp.4519-4529, 2016.

C. Hamilton, M. Kopyscianski, A. Weglowska, A. Pietras, and S. Dymek, Modeling, microstructure, and mechanical properties of dissimilar 2017A and 5083 aluminum alloys friction stir welds, Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, vol.233, issue.2, pp.553-564, 2019.

J. H. Hattel, H. N. Schmidt, and C. Tutum, Thermomechanical Modelling of Friction Stir Welding, Trends in Welding Research, 2008.

A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus et al., Recent development in aluminium alloys for aerospace applications, Materials Science and Engineering: A, vol.280, pp.102-107, 2000.

J. A. Hines and K. S. Vecchio, Recrystallization kinetics within adiabatic shear bands, Acta Materialia, vol.45, pp.635-649, 1997.

D. C. Hofmann and K. S. Vecchio, Thermal history analysis of friction stir processed and submerged friction stir processed aluminum, Materials Science and Engineering A, vol.465, issue.1-2, pp.165-175, 2007.

K. Huang and R. E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Materials & Design, vol.111, pp.548-574, 2016.

F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2004.

D. Jacquin, Modélisation de l'histoire thermomécanique des zones soudées en Friction Stir Welding: Application à la prévision des microstructures, 2009.

D. Jacquin, B. De-meester, A. Simar, D. Deloison, F. Montheillet et al., A simple Eulerian thermomechanical modelling of friction stir welding, Journal of Materials Processing Technology, vol.211, issue.1, pp.57-65, 2011.

K. V. Jata and S. L. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scripta Materialia, vol.43, issue.8, pp.743-749, 2000.

. Jmatpro, Practical Software for Materials Properties, 2019.

X. Ju, F. Zhang, Z. Chen, G. Ji, M. Wang et al., Microstructure of Multi-Pass Friction-Stir-Processed Al-Zn-Mg-Cu Alloys Reinforced by Nano-Sized TiB2 Particles and the Effect of T6 Heat Treatment, p.530, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02341851

P. Kah, R. Rajan, J. Martikainen, and R. Suoranta, Investigation of weld defects in frictionstir welding and fusion welding of aluminium alloys, International Journal of Mechanical and Materials Engineering, issue.26, p.10, 2015.

I. Kalemba and S. Dymek, Microstructure and properties of friction stir welded aluminium alloys. Welding International, vol.30, pp.38-42, 2016.

N. Kamp, A. Sullivan, R. Tomasi, and J. D. Robson, Modelling of heterogeneous precipitate distribution evolution during friction stir welding process, Acta Materialia, vol.54, issue.6, pp.2003-2014, 2006.

N. Kamp, A. Sullivan, and J. D. Robson, Modelling of friction stir welding of 7XXX aluminium alloys, Materials Science and Engineering A, vol.466, pp.246-255, 2007.

A. Khalkhali and M. J. Saranjam, Finite element simulation of microstructure evolution during friction stir welding of automotive aluminum parts, International Journal of Automotive Engineering, vol.5, issue.1, pp.932-938, 2015.

K. N. Krishnan, On the formation of onion rings in friction stir welds, Materials Science and Engineering A, vol.327, pp.246-251, 2002.

K. Kumar and S. Kailas, The role of friction stir welding tool on material flow and weld formation, Materials Science and Engineering A, vol.485, issue.1-2, pp.367-374, 2008.

R. Kumar, V. Pancholi, and R. P. Bharti, Material flow visualization and determination of strain rate during friction stir welding, Journal of Materials Processing Technology, vol.255, pp.470-476, 2018.

A. Laasraoui and J. J. Jonas, Prediction of steel flow stresses at high temperatures and strain rates, Metallurgical Transactions A, vol.22, issue.7, pp.1545-1558, 1991.

D. H. Lammlein, D. R. Delapp, P. A. Fleming, A. M. Strauss, and G. E. Cook, The application of shoulderless conical tools in friction stir welding: An experimental and theoretical study, Materials & Design, vol.30, issue.10, pp.4012-4022, 2009.

, LAMMPS Molecular Dynamics Simulator, 2019.

V. Legrand, Modélisation des processus de précipitation et prédictions mécaniques résultantes dans les alliages d'aluminium à durcissement structural -Application au soudage par Friction Malaxage (FSW) de tôles AA2024, Mines ParisTech, 2015.

V. Legrand, S. Gastebois, G. Guillemot, .. Gandin-ch, and L. Fourment, Microstructural evolution during friction stir welding on AA2024 aluminium alloys -Application to the prediction of the mechanical properties, 11 th Int. Sem. Numerical Analysis of Weldability, vol.11, pp.497-513, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01448663

J. G. Lenard, M. Pietrzyk, and L. Cser, Mathematical and Physical Simulation of the Properties of Hot Rolled Products, 1999.

T. Li, W. Gan, and S. Khurana, Friction stir welding of L80 and X70 steels, Proceedings of the 6 th International FSW Symposium, 2006.

W. Li, Z. Zhang, J. Li, and Y. Chao, Numerical analysis of joint temperature evolution during friction stir welding based on sticking contact, Journal of Materials Engineering and Performance, vol.21, issue.9, pp.1849-1856, 2012.

Y. Li, L. E. Murr, and J. C. Mcclure, Solid-state flow visualization in the friction-stir welding of 2024 Al to 6061 Al, Scripta materialia, vol.40, issue.9, pp.1041-1046, 1999.

S. Lomolino, R. Tovo, and J. Santos, On the fatigue behaviour and design curves of friction stir butt-welded Al alloys, International Journal of Fatigue, vol.27, issue.3, pp.305-316, 2005.

R. Lopez, B. Ducoeur, M. Chiumenti, B. De-meester, and C. Agelet-de-saracibar, Modeling Precipitate Dissolution in Hardened Aluminium Alloys using Neural Networks, International Journal of Material Forming, vol.1, issue.1, pp.1291-1294, 2008.

Y. E. Ma, Z. Xia, R. Jiang, and W. Li, Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198 T8 aluminium-lithium alloy joints, Engineering Fracture Mechanics, vol.114, pp.1-11, 2013.

A. Magalhães, Production Technology, Thermo-electric temperature measurements in friction stir welding -Towards feedback control of temperature, 2016.

M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling, and W. Bingel, Properties of friction-stir-welded 7075 T651 aluminium, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, vol.29, issue.7, pp.1955-1964, 1998.

K. Masaki, Y. S. Sato, M. Maeda, and H. Kokawa, Experimental simulation of recrystallized microstructure in friction stir welded Al alloy using a plane-strain compression test, Scripta Materialia, vol.58, issue.5, pp.355-360, 2008.

T. R. Mcnelley, S. Swaminathan, and J. Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys, Scripta Materialia, vol.58, issue.5, pp.349-354, 2008.

H. J. Mcqueen and E. Evangelista, Substructures in aluminium from dynamic and static recovery, Czechoslovak Journal of Physics B, vol.38, issue.4, pp.359-372, 1988.

H. J. Mcqueen, Development of dynamic recrystallization theory, Materials Science and Engineering: A 387-389, pp.203-208, 2004.

R. Mishra and Z. Ma, Friction Stir Welding and Processing, Materials Science and Engineering: R: Reports, vol.50, issue.1-2, pp.1-78, 2005.

F. Montheillet, L. Coze, and J. , Influence of Purity on the Dynamic Recrystallization of Metals and Alloys, 7 th Int Conf on Ultra-High Purity Materials (UHPM-00), vol.189, pp.51-58, 2002.

S. Mukherjee and A. K. Ghosh, Friction stir processing of direct metal deposited coppernickel 70/30, Materials Science and Engineering A, vol.528, pp.3289-3294, 2011.

O. R. Myhr and Ø. Grong, Process modelling applied to 6082-T6 aluminium weldments -I. Reaction kinetics, Acta Metallurgica et Materialia, vol.39, issue.11, pp.2693-2702, 1991.

O. R. Myhr, Ø. Grong, S. Klokkehaug, H. G. Fjoer, and A. O. Kluken, Process model for welding of Al-Mg-Si extrusions Part 1: Precipitate stability, Science and Technology of Welding and Joining, vol.2, issue.6, pp.245-253, 1997.

O. R. Myhr, S. Klokkehaug, Ø. Grong, H. G. Fjaer, and A. O. Kluken, Modeling of Microstructure Evolution, Residual Stresses and Distortions in 6082-T6 Aluminum Weldments, Welding Journal, vol.77, issue.6, pp.286-292, 1998.

O. R. Myhr and Ø. Grong, Modelling of non-isothermal transformations in alloys containing a particle distribution, Acta Materialia, vol.48, pp.1605-1615, 2000.

R. Nandan, T. Debroy, and H. K. Bhadeshia, Recent advances in friction-stir welding -Process, weldment structure and properties, Progress in Materials Science, vol.53, issue.6, pp.980-1023, 2008.

, Orion Spacecraft, 2019.

M. Nicolas and A. Deschamps, Characterisation and modelling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments, Acta Materialia, vol.51, pp.6077-94, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01774071

A. Y. Nikonov, A. I. Dmitriev, I. S. Konovalenko, E. A. Kolubaev, S. V. Astafurov et al., Features of interface formation in crystallites under mechanically activated diffusion. A molecular dynamics study, XIII International Conference on Computational Plasticity: Fundamentals and Applications COMPLAS 2015, pp.982-991, 2015.

A. Y. Nikonov, I. S. Konovalenko, and A. I. Dmitriev, Molecular dynamics study of lattice rearrangement under mechanically activated diffusion, Physical Mesomechanics, vol.19, issue.1, pp.77-85, 2016.

V. Patel, W. Li, G. Wang, F. Wang, A. Vairis et al., Friction Stir Welding of Dissimilar Aluminum Alloy Combinations: State-of-the-Art, vol.9, p.270, 2019.

M. Perez, M. Dumont, and D. Acevedo-reyes, Implementation of classical nucleation and growth theories for precipitation, Acta Materialia, vol.56, issue.9, pp.2119-2132, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01540121

A. Pineau, G. Guillemot, D. Tourret, A. Karma, and .. Gandin-ch, Growth competition between columnar dendritic grains -Cellular automaton versus phase field modeling, Acta Materialia, vol.155, pp.286-301, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02377817

R. Potts, Some generalized order-disorder transformations, Mathematical Proceedings of the Cambridge Philosophical Society, vol.48, issue.1, pp.106-109, 1952.

P. B. Prangnell and C. P. Heason, Grain structure formation during friction stir welding observed by the 'stop action technique, Acta Materialia, vol.53, issue.11, pp.3179-3192, 2005.

G. Rambabu, D. Balaji-naik, C. H. Venkata-rao, K. Srinivasa-rao, M. Reddy et al., Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints, Defence Technology, vol.11, issue.4, pp.330-337, 2015.

P. Rambabu, N. Eswara-prasad, V. V. Kutumbarao, and R. J. Wanhill, Aluminium Alloys for Aerospace Applications (Chap. 2), in. Aerospace Materials and Material Technologies, Indian Institute of Metals Series, 2017.

A. P. Reynolds, W. D. Lockwood, and T. U. Seidel, Processing-Property Correlation in Friction Stir Welds, Materials Science Forum, pp.1719-1724, 2000.

A. P. Reynolds, Visualisation of material flow in autogenous friction stir welds, Science and Technology of Welding and Joining, vol.5, issue.2, pp.120-124, 2000.

D. G. Richards, P. B. Prangnell, P. J. Withers, S. W. Williams, A. Wescott et al., FE Modelling of Mechanical Tensioning for Controlling Residual Stresses in Friction Stir Welds, Materials Science Forum, pp.4025-4030, 2006.

O. G. Rivera, P. G. Allison, L. N. Brewer, O. L. Rodriguez, J. B. Jordon et al., Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition, Materials Science & Engineering A, vol.724, pp.547-558, 2018.

J. D. Robson and L. Campbell, Model for grain evolution during friction stir welding of aluminium alloys, Science and Technology of Welding and Joining, vol.15, issue.2, pp.171-176, 2010.

L. Rougier, A. Jacot, -. A. Gandin-ch, P. Di-napoli, P. Théry et al., Numerical simulation of precipitation in multicomponent Ni-base alloys, Acta Materialia, vol.61, issue.17, pp.6396-6405, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00856688

K. C. Russell, Phase Transformations, pp.219-64, 1970.

P. K. Sahu and S. Pal, Mechanical properties of dissimilar thickness aluminium alloy weld by single/double pass FSW, Journal of Materials Processing Technology, vol.243, pp.442-455, 2017.

R. S. Saluja, R. Ganesh-narayanan, and S. Das, Cellular automata finite element (CAFE) model to predict the forming of friction stir welded blanks, Computational Materials Science, vol.58, pp.87-100, 2012.

D. Santiago, S. Urquiza, G. Lombera, and L. D. Vedia, 3D Modelling of Material Flow and Temperature in Friction Stir Welding, Soldagem & Inspeção, Brazilian Welding Association (ABS), vol.14, issue.3, pp.248-256, 2009.

X. Sauvage, A. Dédé, A. C. Muñoz, and B. Huneau, Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys, Materials Science and Engineering: A, vol.491, pp.364-371, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00314076

F. Scherillo, A. Astarita, D. Di-martino, V. Contaldi, L. Di-matteo et al., On the microstructure analysis of FSW joints of Aluminium components made via Direct Metal Laser Sintering, Proceedings of the 20 th International ESAFORM Conference on Material Forming, pp.26-28, 2017.

H. Schmidt, J. Hattel, and J. Wert, An analytical model for the heat generation in friction stir welding, Modelling and Simulation in, Materials Science and Engineering, vol.12, issue.1, pp.143-157, 2004.

H. Schmidt and J. Hattel, A local model for the thermomechanical conditions in friction stir welding, Modelling and Simulation in Materials Science and Engineering, vol.13, pp.77-93, 2005.

H. N. Schmidt, T. L. Dickerson, and J. H. Hattel, Material flow in butt friction stir welds in AA2024-T3, Acta Materialia, vol.54, issue.4, pp.1199-1209, 2006.

G. J. Schmitz and U. Prahl, Handbook of Software Solutions for ICME, 2016.

. Scopus, , 2019.

T. U. Seidel and A. P. Reynolds, Visualization of the material flow in AA2195 Friction-Stir Welds using a marker insert technique, Metallurgical and Materials Transactions A, vol.32, issue.11, pp.2879-2884, 2001.

L. M. Serio, D. Palumbo, L. A. De-filippis, U. Galietti, and A. D. Ludovico, Effect of friction stir process parameters on the mechanical and thermal behavior of 5754-H111 aluminum plates, Materials, vol.9, p.122, 2016.

M. Serrière, .. Gandin-ch, E. Gautier, P. Archambault, and M. Dehmas, Modeling of precipitation coupled with thermodynamic calculations, th International Conference on Aluminium Alloys, vol.8, pp.747-752, 2002.

H. R. Shercliff, M. J. Russell, A. Taylor, and T. L. Dickerson, Microstructural Modelling in Friction Stir Welding of 2000 Series Aluminium Alloys, Mécaniques et Industries, vol.6, pp.25-35, 2005.

M. H. Shojaeefard, M. Akbari, A. Khalkhali, P. Asadi, and A. H. Parivar, Optimization of microstructural and mechanical properties of friction stir welding using the cellular automaton and Taguchi method, Materials & Design, vol.64, pp.660-666, 2014.

A. C. Silva, J. De-backer, and G. Bolmsjö, Temperature measurements during friction stir welding, The International Journal of Advanced Manufacturing Technology, vol.88, pp.2899-2908, 2017.

A. Silva-magalhães, J. D. Backer, J. Martin, and G. Bolmsjö, In-situ temperature measurement in friction stir welding of thick section aluminium alloys, Journal of Manufacturing Processes, vol.39, pp.12-17, 2019.

A. Simar, Y. Bréchet, B. De-meester, A. Denquin, and T. Pardoen, Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminium alloy 6005A-T6, Acta Materialia, vol.55, issue.18, pp.6133-6143, 2007.

A. Simar, Y. Bréchet, B. De-meester, A. Denquin, C. Gallais et al., Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties, Progress in Materials Science, vol.57, issue.1, pp.95-183, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00664802

M. Song and R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation, International Journal of Machine Tools and Manufacture, vol.43, issue.6, pp.605-615, 2003.

A. Steuwer, M. Dumont, J. Altenkirch, S. Birosca, A. Deschamps et al., A combined approach to microstructure mapping of an Al-Li AA2199 friction stir weld, Acta Materialia, vol.59, issue.8, pp.3002-3011, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00639981

H. Su, C. S. Wu, A. Pittner, and M. Rethmeier, Simultaneous measurement of tool torque, traverse force and axial force in friction stir welding, Journal of Manufacturing Processes, vol.15, pp.495-500, 2013.

A. Sullivan, J. D. Robson, H. R. Shercliff, and G. Mcshane, Process Modelling of Friction Stir Welding for Aerospace Aluminium Alloys, Advanced Materials Research 15-17, pp.351-356, 2006.

J. Svoboda, F. D. Fischer, P. Fratzl, and E. Kozeschnik, Modelling of kinetics in multicomponent multi-phase systems with spherical precipitates: I: Theory, Materials Science and Engineering: A, vol.385, issue.1-2, pp.166-174, 2004.

, Software, Thermo-Calc Software company, TC_PRISMA, 2019.

. Tcal3--tcs, Al-based alloy thermodynamic database, 2014.

. Thermo-calc, Thermo-Calc Software Company, 2019.

W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Church, P. Templesmith et al., Friction Stir Butt Welding, International Patent No. PCT/GB92/02203, GB Patent No. 9125978, vol.8, p.317, 1991.

P. Threadgill, Friction stir welds in aluminium alloys: Preliminary microstructural assessment, TWI Bulletin, 1997.

L. S. Toth, Y. Estrin, R. Lapovok, and C. Gu, A model of grain fragmentation based on lattice curvature, Acta Materialia, vol.58, issue.5, pp.1782-1794, 2010.

, The Welding Institute, 2019.

K. Ullegaddi, V. Murthy, R. N. Harsha, and . Manjunatha, Friction Stir Welding Tool Design and Their Effect on Welding of AA-6082 T6, Materials Today: Proceedings, vol.4, pp.7962-7970, 2017.

S. R. Valvi, A. Krishnan, S. Das, and R. G. Narayanan, Prediction of microstructural features and forming of friction stir welded sheets using cellular automata finite element (CAFE) approach, International Journal of Material Forming, vol.9, issue.1, pp.115-129, 2016.

, Veille innovation Aquitaine, 2017.

P. Vilaça, L. Quintino, J. F. Santos, R. Zettler, and S. Sheikhi, Quality assessment of friction stir welding joints via an analytical thermal model, iSTIR, Materials Science and Engineering: A, pp.501-508, 2007.

R. Wagner and R. Kampmann, Homogeneous Second Phase Precipitation, Phase Transformation in Materials, Material Science and Technology, vol.5, pp.213-303, 1991.

Z. Y. Wan, Z. Zhang, and X. Zhou, Finite element modeling of grain growth by point tracking method in friction stir welding of AA6082-T6, The International Journal of Advanced Manufacturing Technology, vol.90, issue.9, pp.3567-3574, 2017.

X. Wang, K. Wang, Y. Shen, and K. Hu, Comparison of fatigue property between friction stir and TIG welds, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, vol.15, issue.3, pp.280-284, 2008.

W. Woo, L. Balogh, T. Ungár, H. Choo, and Z. Feng, Grain structure and dislocation density measurements in a friction-stir welded aluminium alloy using X-ray peak profile analysis, Materials Science and Engineering: A, vol.498, issue.1-2, pp.308-313, 2008.

Y. Yang, P. Kalya, R. G. Landers, and K. Krishnamurthy, Automatic gap detection in friction stir butt welding operations, International Journal of Machine Tools and Manufacture, vol.48, issue.10, pp.1161-1169, 2008.

Y. Yi, X. Fu, J. Cui, and H. Chen, Prediction of grain size for large-sized aluminium alloy 7050 forging during hot forming, Journal of Central South University of Technology, vol.15, issue.1, pp.1-5, 2008.

J. Zeldovich, On the theory of new phase formation, cavitation, Acta Physicochimica U.R.S.S. XVIII, pp.1-22, 1943.

Z. Zhang, Q. Wu, M. Grujicic, and Z. Y. Wan, Monte Carlo simulation of grain growth and welding zones in friction stir welding of AA6082-T6, Journal of Materials Science, vol.51, issue.4, pp.1882-1895, 2016.

S. Zimmer, L. Langlois, J. Laye, and R. Bigot, Experimental investigation of the influence of the FSW plunge processing parameters on the maximum generated force and torque, The International Journal of Advanced Manufacturing Technology, vol.47, pp.201-215, 2010.