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Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is one of the
most devastating fungal wheat diseases. During the past decades, many efforts have
been deployed to dissect FHB resistance, investigating both the wheat responses to
infection and, more recently, the fungal determinants of pathogenicity. Although no total
resistance has been identified so far, they demonstrated that some plant functions and
the expression of specific genes are needed to promote FHB. Associated with the
increasing list of F. graminearum effectors able to divert plant molecular processes, this
fact strongly argues for a functional link between susceptibility-related factors and the
fate of this disease in wheat. In this review, we gather more recent data concerning
the involvement of plant and fungal genes and the functions and mechanisms in the
development of FHB susceptibility, and we discuss the possibility to use them to diversify
the current sources of FHB resistance.

Keywords: Triticum aestivum, Fusarium graminearum, scab, susceptibility factors, S genes, fungal effectors, new
resistance sources

INTRODUCTION

Fusarium head blight (FHB) is a cereal fungal disease primarily induced by Fusarium graminearum
(Goswami and Kistler, 2004; Xu and Nicholson, 2009). In wheat, FHB has a direct impact on yield
and grain quality, reducing grain weight as well as changing protein accumulation. FHB also causes
serious health concerns through the contamination of grains by mycotoxins (e.g., deoxynivalenol,
DON, a group 3 carcinogenic toxin), which are resilient to most transformation processes (Li
et al., 2014). FHB has become a major threat for wheat crops since the early 1990s, especially in
the main producing areas, such as North America, Europe, and China (Zhang et al., 2012). For
example, economic losses have been estimated to a total of $1.176 billion over 2015 and 2016 in the
United States (Wilson et al., 2018). Such losses are expected to increase as a result of an amplification
of the frequency and the intensity of FHB outbreaks due to rises in temperatures and occasional
increases in air humidity expected with the climate change (Luck et al., 2011; Shah et al., 2014).

Although the combined use of tolerant wheat cultivars, fungicides, and specific management
practices (e.g., tillage and crop rotation) can reduce part of the losses due to the disease
(Haidukowski et al., 2005; Hollingsworth et al., 2008; Salgado et al., 2014; Dahl and Wilson,
2018), no efficient strategy can fully control FHB epidemics so far (Mesterházy et al., 2005;
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Tóth et al., 2008). Primarily addressed through the search for
genetic resistance, the last two decades of prolific FHB researches
turn out with more than 550 quantitative trait loci (QTLs)
(Steiner et al., 2017; Venske et al., 2019), covering the whole
genome of wheat but with little effect on resistance improvement
and failing in identifying regular resistant genes. Twenty years
after the identification of Fhb1, the most stable and efficient locus
for wheat resistance to FHB (Bai et al., 1999), it was recently
shown that a deletion spanning the start codon or an N-terminal
mutation of the TaHRC gene encoding a putative histidine-
rich calcium-binding protein explains part of the Fhb1-mediated
resistance (Li et al., 2019; Su et al., 2019). Although still in dispute,
TaHRC constitutes the first susceptibility (S) gene to FHB in
wheat and directly questions the involvement of susceptibility
factors in the disease progress. With this in mind, the purpose
of this review is to discuss the growing interest about the
determinism of susceptibility to FHB by gathering information
from both interacting partners and by emphasizing on its benefits
in diversifying the current sources of FHB resistance.

FHB INFECTION PROCESS: IS
SUSCEPTIBILITY BEHIND THE MIRROR?

Although the recessive nature of some plant resistances has been
established for decades, the concept of susceptibility factors,
encoded by the so-called susceptibility genes (S genes), has
been clearly defined in 2002 by describing the function of
the pmr6 plant gene that promotes the infection process and
supports the pathogen’s growth and development (Vogel et al.,
2002). Many S genes are now described in plants [reviewed
in van Schie and Takken (2014)]. Albeit relatively few, those
controlling the wheat/pathogens interactions fit well with this
model. For example, the monodehydroascorbate reductase gene,
TaMDHAR4, has been demonstrated to promote wheat stripe
rust infection (Feng et al., 2014). Its mutation results in
reducing the hyphae growth of the biotrophic pathogen Puccinia
striiformis, thus inhibiting its sporulation and enhancing necrosis
at the infection site. Further studies in the same interaction
evidenced two other S genes, TaMDAR6 and TaSTP13 (Abou-
Attia et al., 2016; Huai et al., 2020), emphasizing the existence
of several S genes in the wheat genome and suggesting that
some of them might be implicated in wheat susceptibility-
related mechanisms to FHB. If most studies have focused on
the genetic determinants of wheat resistance to FHB so far,
an interesting alternative is to consider the molecular and the
physiological processes that make the host plant susceptible
to F. graminearum. An extensive literature dealing with large-
scale analyses has already shown that, compared to resistant
cultivars, the most susceptible ones are characterized by a
specific deregulation of genes involved in a wide range of
molecular processes (e.g., transcription factors, enzymes involved
in primary and secondary metabolism, and defense-related
genes), suggesting the intricate participation of a wealth of
potential susceptibility factors (Ding et al., 2011; Gottwald et al.,
2012; Erayman et al., 2015; Pan et al., 2018; Wang et al., 2018;
Brauer et al., 2019).

Genetics Demonstration of the Existence
of Wheat Susceptibility Factors to FHB
The involvement of putative susceptibility determinants during
FHB development has been primarily suggested by studies using
wheat aneuploïd lines (Figure 1). Ma et al. (2006) first evidenced
that ditelosomic lines lacking in specific chromosome arms
displayed an enhanced resistance to F. graminearum infection,
suggesting the removal of pivotal susceptibility factors along with
chromosome fragment deletion. Likewise, Garvin et al. (2015),
in an attempt to introgress a new FHB resistance locus from
the cultivar (cv.) “Freedom” into the susceptible cv. “Apogee,”
have shown that the most resistant line was characterized by the
deletion of a chromosome segment of about 19% of the length
of the 3DL arm in comparison with the cv. “Apogee” (Figure 1).
The wheat line missing this genomic interval resulted in up
to 59% decrease of FHB severity as compared to cv. “Apogee”
and displayed a significant reduction of DON accumulation
(Garvin et al., 2015). Similarly, another chromosomal fragment
of 31.7 Mbp on the short arm of chromosome 4D was
demonstrated to contain potential wheat susceptibility factors
to FHB (Hales et al., 2020). Its deletion leads to a significant
decrease of F. graminearum spreading in wheat spikes. Evidence
of susceptibility factors to FHB has also been provided through
allele mining studies. The dwarfing allele at the locus Rht-D1
(Rht-D1b, formerly termed Rht2) has not been associated to FHB
susceptibility by a direct effect of the plant height but rather
through a pleiotropic or linkage effect (Draeger et al., 2007).
Further experiments demonstrated that, in the cv. “Spark,” FHB
resistance was largely conferred by the wild allele of the Rht-D1
gene, while the Rht-D1b allele found in the susceptible lines was
responsible for approximately 50% of the phenotypic variance
associated with the magnitude of initial infection (Srinivasachary
et al., 2009). A similar increase of FHB infection has been
described for the two particular alleles of the vernalization-
related genes Vrn-A1 and Vrn-B1 (Xu et al., 2020). An FHB
susceptibility source has also been identified in the “Sumai 3”
Qfhs.kibr-2DS QTL (Figure 1), in which a specific allele encoding
a multidrug resistance-associated protein was identified in the
susceptible “Sumai 3”-derived cv. named “Gamenya,” unveiling
that the FHB susceptibility determinants could be fortuitously
inherited from resistant cultivars (Handa et al., 2008; Basnet
et al., 2012; Niwa et al., 2014). Such examples suggest that a
substantial subset of S genes/factors could be present in the
wheat genome and highly conserved among the wheat cultivars.
Although most of these studies provide only indirect evidences
about the molecular determinism of FHB susceptibility, these
results emphasize the relevance of considering the diversity of S
genes as a complementary and promising approach to improve
wheat resistance to FHB.

Role of Phytohormones in FHB
Development
Several works have already suggested that wheat hormonal
pathways play a favorable role in FHB development. For instance,
reducing EIN2 expression in wheat, one of the major components
of ethylene signaling, decreased the disease symptoms and DON
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FIGURE 1 | Circos plot of the wheat genome (Triticum aestivum) exemplifying Fusarium head blight susceptibility determinants. The three-component genome is
represented as a circle including the A, B, and D genomes and their respective chromosomes. The pink areas refer to the deleted chromosome arms in the
ditelosomic lines (Ma et al., 2006), the green and blue zones refer to the deleted genomic regions, and the red lines indicate the gene position.

accumulation in the grains (Chen et al., 2009). Further large-
scale transcriptomics showed that the ethylene pathway was
specifically induced in the FHB-susceptible NAUH117 line, as
compared to the resistant Wangshuibai landrace (Xiao et al.,
2013). The abscisic acid (ABA) signaling pathway has also
been demonstrated to favor F. graminearum infection in wheat
spikes (Gordon et al., 2016; Wang et al., 2018). A virus-induced
gene silencing approach demonstrated a role of the wheat ABA
receptor Ta_PYL4AS_A (Figure 1), and its close homologs,
in mediating FHB susceptibility and in decreasing mycotoxin
accumulation (Gordon et al., 2016). Likewise, transcriptional
and hormonal profiling showed that wheat genes involved
in auxin biosynthesis were highly up-regulated, along with
auxin accumulation, in the susceptible cultivars during the
F. graminearum infection process as compared to the resistant
ones (Biselli et al., 2018; Wang et al., 2018; Brauer et al., 2019).
Salicylic and jasmonic acids are also widely described for their
role in modulating FHB responses and in discriminating resistant
vs. susceptible cultivars as well (Ding et al., 2011; Gottwald et al.,
2012; Sun et al., 2016; Wang et al., 2018). Upon F. graminearum
infection, their respective actions occur in two phases, an initial
induction of salicylic acid happens at the early stages followed
by the synthesis of jasmonic acid at the later stages (Ding et al.,
2011). In addition, the silencing of the wheat TaSSI2 gene has

been shown to increase FHB resistance, promoting salicylic acid
signaling (Hu et al., 2018) and potentially altering the jasmonic
acid pathway as demonstrated in Arabidopsis ssi2 mutant lines
(Kachroo et al., 2004). This illustrates further the involvement of
these two antagonist hormones in the FHB progress and suggests
that susceptibility may involve systemic signals capable of deeply
reshaping the plant physiology.

Shaping FHB Susceptibility in the Course
of Grain Development
With a period of maximal susceptibility occurring within 3 days
after anthesis (Beccari et al., 2019), FHB develops concomitantly
with the grain filling period, during which a large number of plant
physiological processes allow a massive accumulation of sugars,
lipids, and proteins (Nadaud et al., 2010), resulting in a possible
nutrient reservoir in the infection area. Spike ontogeny could
thus indirectly and sequentially set up a range of susceptibility
factors that can partly explain the dynamics of fungal
development during the infection course (Chetouhi et al., 2015,
2016). Extensively boosted during the endosperm expansion,
in planta F. graminearum growth is associated with massive
protein abundance adjustments detectable simultaneously in
both plant and fungal proteomes at 48–72 h post-inoculation at
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anthesis transition (Fabre et al., 2019b). At this stage, extensive
metabolic changes in wheat rachis nodes have been reported,
including a strong increase of gibberellic acid amount as well
as glycolysis intermediates, suggesting that a release of wheat
storage carbohydrates could possibly be used for fungal metabolic
requirements (Bönnighausen et al., 2018). This is also supported
by the converging evidences of large decreases in the expression
of genes involved in sucrose and starch metabolism (Erayman
et al., 2015; Chetouhi et al., 2016). Starch components, such
as amylopectin and amylose, are known to be difficult for the
fungus to recycle as a carbon source and for DON production
(Oh et al., 2016), unlike sucrose (Jiao et al., 2008; Kawakami
et al., 2014), suggesting that the deregulation of the host energy
processes at the early stage of the disease could be one of the
key factors that determine wheat susceptibility. However, the
links are not obvious since many other studies have shown
that primary metabolism and especially photosynthesis are
extensively rearranged (Long et al., 2015; Biselli et al., 2018; Li
et al., 2018; Fabre et al., 2019b). Although this can substantially
limit the accumulation of sugars, this could also be seen as
a means of constraining the energy requirements necessary to
trigger defense mechanisms (Bolton, 2009). In agreement with
many previous studies suggesting a key role of chloroplast
in plant susceptibility (Lo Presti et al., 2015; Sowden et al.,
2018; Han and Kahmann, 2019; Kretschmer et al., 2020), the
remodeling of its functioning in wheat spikes during FHB is
suspected to be a link between the plant defense responses and the
adjustments of primary metabolism. This raises direct questions
about the mechanisms used by the fungus to achieve such effects
(Fabre et al., 2019b).

Fusarium graminearum EFFECTORS:
KNOCKING AT THE WHEAT CELL DOOR
TO TRIGGER SUSCEPTIBILITY?

Several studies have already demonstrated that plant
susceptibility factors could be diverted by a range of pathogen
effectors. Consisting of proteins, RNA, and metabolites, effectors
are molecules synthesized by the pathogen, delivered in host
tissues, and able to alter the structure and the function of the host
cell (Hogenhout et al., 2009; Lo Presti et al., 2015). Compared
to bacteria, knowledge about fungal effectors remains relatively
limited (Niu et al., 2013). However, a number of studies have
provided essential information on the ability of F. graminearum
in interfering with wheat molecular processes. Identifying
F. graminearum effectors and understanding their roles in the
infectious process could be a relevant strategy for identifying
wheat susceptibility factors.

Breaking Wheat’s Defenses
One of the first characterized effectors of F. graminearum is the
secreted DON mycotoxin (Miller and Young, 1985). Although
its synthesis is not necessary for the penetration phase, its role
in fungal spreading within the spike has been reported (Bai
et al., 2001). DON acts as an inhibitor of protein and nucleotide
synthesis in the host cell (Audenaert et al., 2013). Through such

an effect, DON is supposed to alter the mitochondrial functions
of many eukaryotes, and its role in inhibiting programmed
cell death as well as in the expression of defense compounds
(chitinases, peroxidases, and pathogen-related proteins) has
already been described (Brown et al., 2011; Audenaert et al., 2013;
Diamond et al., 2013). A recent report has shown that DON
promotes the TaNFXL1 transcription factor in wheat, leading
to FHB susceptibility through uncharacterized mechanisms
(Brauer et al., 2020). Other F. graminearum effectors have
been reported so far, revealing that proteins belonging to the
cell-wall-degrading enzymes (CWDEs) are important promoters
of wheat susceptibility to FHB (Quarantin et al., 2016, 2019;
Paccanaro et al., 2017; Lu and Faris, 2019). For instance, several
studies identified F. graminearum xylanases with a direct impact
on cell wall weakening and an indirect role in enhancing
hypersensitive-like symptoms in plant tissues (Paper et al., 2007;
Pollet et al., 2009; Sella et al., 2013; Tundo et al., 2015). The FGL1
lipase, another CWDE effector (Voigt et al., 2005), was shown
to physically interact with the wheat immunophilin protein
FKBP12, altering the establishment of the FKBP12/ERG complex,
which finally triggers cell death (Niu et al., 2013). In addition,
by degrading the plant cell wall, the FGL1 effector promotes
the release of free fatty acids that inhibit the callose deposits
associated with the immune responses (Blümke et al., 2014).
Similarly, the arabinanase Arb93b, induced during the early stage
of FHB, was shown to suppress ROS-activated defense along
with its arabinan-degrading activity (Hao et al., 2019). Besides
protein effectors, sRNA products have also been reported to
control plant responses. The 18-nt-length sRNA (Fg-sRNA1)
targets a wheat chitin elicitor-binding protein, which is likely to
function in wheat disease resistance signaling pathways (Jian and
Liang, 2019). The identification of non-targeted allelic variants
could thus guide future research toward “loss-of-susceptibility”
forms of resistances.

Predicted Effector Searches Reveal an
Increasingly Complex Arsenal
Although the catalog of characterized F. graminearum effectors
remains limited, substantial efforts using genomics approaches
have provided a large set of new candidates. Using the reference
genome sequence, Brown et al. (2012) established a predicted
secretome of 574 proteins sharing the structural features of
secreted proteins (small size, cysteine-rich proteins, and signal
peptides). This revealed a diverse hydrolytic arsenal and a
range of putative effectors that could be potentially delivered
in the wheat tissues. Secretome was further investigated by
focusing on the 190 small secreted cystein-rich proteins (SS): the
extracellular localization was confirmed for 25 of them, and the
expression of 34 of them was demonstrated as regulated during
the FHB progress (Lu and Edwards, 2015). The sequence analysis
suggested that 17 SS harbor conserved functional domains
such as glycosyl-hydrolase or pathogenesis-related domains,
and two of them were homologous to Ecp2, a well-known
effector produced by the tomato pathogen Cladosporium fulvum
(Van den Ackerveken et al., 1993). Other studies dealing with
in vitro or in planta approaches have also been successful in
enlarging the list of candidate effectors (Paper et al., 2007;
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Yang et al., 2012; Ji et al., 2013). By evidencing the protein
repertoire found specifically in the extracellular part of the plant
tissues or identified in liquid culture and confirmed in planta
using qRT-PCR, these extended the range of putative function
including a number of proteases, esterase, and nucleases. Based
on the few structural information available about fungal effectors
(Sperschneider et al., 2018), several exploratory reports provided
novel insights in their diversity and dynamics (Lysøe et al.,
2011; Brown et al., 2017; Fabre et al., 2019a,b). By dissecting
the asymptomatic and the symptomatic stages of the FHB
infection, Brown et al. (2017) revealed particular gene groups
with specific abundance patterns illustrating the early expression
of genes involved in the transport of amino acids, in polyamine
synthesis and ABC transporters, while hydrolytic carbohydrate-
active enzymes and lipases were found at later stages. The
delivery of putative effectors by waves at specific stages of the
infection has also been confirmed at the protein level using
an in planta dual-proteome approach (Fabre et al., 2019b).
This study further demonstrated that putative effectors could
be already accumulated in spores or synthesized within hours,
and extensive co-variations were evidenced between abundance
changes of effectors and the regulation of plant chloroplast
proteins, especially at the beginning of grain cellularization. In
addition, strong links were evidenced between the abundance of
candidate effectors and strain aggressiveness (Fabre et al., 2019a),
emphasizing that increased knowledge of the fungal component
could lead to a better understanding of the processes involved in
host susceptibility.

CONCLUDING REMARKS

The past decades of researches on FHB in wheat have
provided a wealth of information on the genetic and the
molecular determinants of the disease progress in spikes, mostly
focused on resistance mechanisms. Although still marginally

investigated, wheat susceptibility factors to FHB are emerging
as key components that determine the fate of the disease,
involving a complex molecular dialogue based on the interplay
of fungal effectors and their plant targets. Understanding wheat
susceptibility still requires many efforts on both partners and
needs to fill the gap between wheat and fungal studies. This
knowledge will open new strategies in order to control this
complex plant/fungus interaction, providing alternative forms
of resistance that are potentially more sustainable. While
still a challenge, such loss-of-susceptibility forms have already
demonstrated their potential to provide efficient and durable
sources of disease resistance in crops (Pavan et al., 2010). They
represent a promising strategy to control FHB epidemics and
may provide a complementary approach to the introgression of
gain-of-function resistance genes.
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