R. Floris, T. Lambers, A. Alting, and J. Kiers, Trends in Infant Formulas: A Dairy Perspective, in Improving the Safety and Quality of Milk, vol.2, pp.454-474, 2010.

D. K. Thompkinson and S. Kharb, Aspects of Infant Food Formulation, Compr. Rev. Food Sci. Food Saf, vol.6, issue.4, pp.79-102, 2007.

D. E. Chatterton, D. N. Nguyen, S. B. Bering, and P. T. Sangild, Anti-Inflammatory Mechanisms of Bioactive Milk Proteins in the Intestine of Newborns, Int. J. Biochem. Cell Biol, issue.8, pp.1730-1747, 2013.

W. E. Heine, P. D. Klein, and P. J. Reeds, The Importance of ?-Lactalbumin in Infant Nutrition, J. Nutr, vol.121, issue.3, pp.277-283, 1991.

M. W. Yogman, S. H. Zeisel, and C. Roberts, Assessing Effects of Serotonin Precursors on Newborn Behavior, J. Psychiatr. Res, vol.17, issue.2, pp.90014-90014, 1982.

S. Rudloff and C. Kunz, Protein and Nonprotein Nitrogen Components in Human Milk, Bovine Milk, and Infant Formula: Quantitative and Qualitative Aspects in Infant Nutrition, J. Pediatr. Gastroenterol. Nutr, vol.24, issue.3, pp.328-344, 1997.

A. Fazzolari-nesci, D. Domianello, V. Sotera, and N. Räihä, Tryptophan Fortification of Adapted Formula Increases Plasma Tryptophan Concentrations to Levels Not Different from Those Found in Breast-Fed Infants, J. Pediatr. Gastroenterol. Nutr, vol.14, issue.4, pp.456-459, 1992.

R. M. Hanning, B. Paes, and S. A. Atkinson, Protein Metabolism and Growth of Term Infants in Response to a Reduced-Protein, 40 : 60 Whey: Casein Formula with Added Tryptophan, Am. J. Clin. Nutr, vol.56, issue.6, pp.1004-1011, 1992.

M. Totzauer, V. Luque, J. Escribano, R. Closa-monasterolo, E. Verduci et al., Grote and for The European Childhood Obesity Trial Study Group, Effect of Lower Versus Higher Protein Content in Infant Formula Through the First Year on Body Composition from 1 to 6 Years: Follow-Up of a Randomized Clinical Trial, Obesity, vol.26, issue.7, pp.1203-1210, 2018.

M. A. Fenelon, R. M. Hickey, A. Buggy, N. Mccarthy, and E. G. Murphy, Whey Proteins in Infant Formula, in Whey Proteins, pp.439-494, 2019.

A. Pierce, D. Colavizza, M. Benaissa, P. Maes, A. Tartar et al., Molecular Cloning and Sequence Analysis of Bovine Lactotransferrin, Eur. J. Biochem, vol.196, issue.1, pp.177-184, 1991.

O. Sandström, B. Lönnerdal, G. Graverholt, and O. Hernell, Effects of ?-Lactalbumin-Enriched Formula Containing Different Concentrations of Glycomacropeptide on Infant Nutrition, Am. J. Clin. Nutr, vol.87, issue.4, pp.921-928, 2008.

A. M. Davis, B. J. Harris, E. L. Lien, K. Pramuk, and J. Trabulsi, ?-Lactalbumin-Rich Infant Formula Fed to Healthy Term Infants in a Multicenter Study: Plasma Essential Amino Acids and Gastrointestinal Tolerance, Eur. J. Clin. Nutr, vol.62, issue.11, pp.1294-1301, 2008.

J. C. King, G. E. Cummings, N. Guo, L. Trivedi, B. X. Readmond et al., A Double-Blind, Placebo-Controlled, Pilot Study of Bovine Lactoferrin Supplementation in Bottle-Fed Infants, J. Pediatr. Gastroenterol. Nutr, vol.44, issue.2, pp.245-251, 2007.

H. E. Zenker, G. A. Van-lieshout, M. P. Van-gool, M. C. Bragt, and K. A. Hettinga, Lysine Blockage of Milk Proteins in Infant Formula Impairs Overall Protein Digestibility and Peptide Release, Food Funct, vol.2020, issue.1, pp.358-369

L. Sánchez, J. M. Peiró, H. Castillo, M. D. Pérez, J. M. Ena et al., Kinetic Parameters for Denaturation of Bovine Milk Lactoferrin, J. Food Sci, vol.57, issue.4, pp.873-879, 1992.

Y. Wada and B. , Effects of Different Industrial Heating Processes of Milk on Site-Specific Protein Modifications and Their Relationship to in Vitro and in Vivo Digestibility, J. Agric. Food Chem, issue.18, pp.4175-4185, 2014.

M. Lacroix, J. Léonil, C. Bos, G. Henry, G. Airinei et al., Heat Markers and Quality Indexes of Industrially Heat-Treated [15N] Milk Protein Measured in Rats, J. Agric. Food Chem, vol.54, issue.4, pp.1508-1517, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02669179

D. Dupont, G. Mandalari, D. Mollé, J. Jardin, O. Rolet-répécaud et al., Food Processing Increases Casein Resistance to Simulated Infant Digestion, Mol. Nutr. Food Res, issue.11, pp.1677-1689, 2010.

E. Leeb, A. Götz, T. Letzel, S. C. Cheison, and U. Kulozik, Influence of Denaturation and Aggregation of Food & Function Paper ?-Lactoglobulin on Its Tryptic Hydrolysis and the Release of Functional Peptides, Food Chem, vol.187, pp.545-554, 2015.

S. Zhang and B. Vardhanabhuti, Effect of Initial Protein Concentration and PH on in Vitro Gastric Digestion of Heated Whey Proteins, Food Chem, vol.145, pp.473-480, 2014.

A. Halabi, A. Deglaire, M. Hennetier, F. Violleau, A. Burel et al., Structural Characterization of Heat-Induced Protein Aggregates in Model Infant Milk Formulas, p.105928, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02570394

A. Brodkorb, L. Egger, M. Alminger, P. Alvito, R. Assunção et al., INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion, vol.14, pp.991-1014, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02073386

O. Ménard, C. Bourlieu, S. C. De-oliveira, N. Dellarosa, L. Laghi et al., A First Step towards a Consensus Static in Vitro Model for Simulating Full-Term Infant Digestion, Food Chem, vol.240, pp.338-345, 2018.

A. Mulet-cabero, A. R. Mackie, P. J. Wilde, M. A. Fenelon, and A. Brodkorb, Structural Mechanism and Kinetics of in Vitro Gastric Digestion Are Affected by Process-Induced Changes in Bovine Milk, Food Hydrocolloids, vol.86, pp.172-183, 2019.

F. C. Church, H. E. Swaisgood, D. H. Porter, and G. L. Catignani, Spectrophotometric Assay Using O-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins, J. Dairy Sci, issue.6, pp.1219-1227, 1983.

M. G. Davies and A. J. Thomas, An Investigation of Hydrolytic Techniques for the Amino Acid Analysis of Foodstuffs, J. Sci. Food Agric, issue.12, pp.1525-1540, 1973.

S. Moore, D. Spackman, and W. Stein, Chromatography of Amino Acids on Sulfonated Polystyrene Resins, pp.1186-1190, 1958.

P. Fox, T. Uniacke-lowe, P. Mcsweeney, and J. O'mahony, Milk Proteins, in Dairy Chemistry and Biochemistry, 2015.

J. Castellino, W. Fish, and G. Kenneth, Studies on Bovine Lactoferrin, J. Biol. Chem, issue.17, pp.4269-4275, 1970.

A. Mondino, G. Bongiovanni, S. Fumero, and L. Rossi, An Improved Method of Plasma Deproteination with Sulphosalicylic Acid for Determining Amino Acids and Related Compounds, J. Chromatogr. A, vol.74, issue.2, pp.255-263, 1972.

S. H. Lin, S. L. Leong, R. K. Dewan, V. A. Bloomfield, and C. V. Morr, Effect of Calcium Ion on the Structure of Native Bovine Casein Micelles, vol.11, pp.1818-1821, 1972.

A. Ye, J. Cui, D. Dalgleish, and H. Singh, Formation of a Structured Clot during the Gastric Digestion of Milk: Impact on the Rate of Protein Hydrolysis, Food Hydrocolloids, vol.52, pp.478-486, 2016.

L. Donato, M. Alexander, and D. G. Dalgleish, Acid Gelation in Heated and Unheated Milks: Interactions between Serum Protein Complexes and the Surfaces of Casein Micelles, J. Agric. Food Chem, issue.10, pp.4160-4168, 2007.

G. Martin, R. Williams, and D. Dunstan, Comparison of Casein Micelles in Raw and Reconstituted Skim Milk, J. Dairy Sci, vol.90, pp.4543-4551, 2007.

J. E. Plowman and L. K. Creamer, Restrained Molecular Dynamics Study of the Interaction between Bovine ?-Casein Peptide 98-111 and Bovine Chymosin and Porcine Pepsin, J. Dairy Res, vol.62, issue.3, pp.451-467, 1995.

S. C. De-oliveira, A. Deglaire, O. Ménard, A. Bellanger, F. Rousseau et al., Holder Pasteurization Impacts the Proteolysis, Lipolysis and Disintegration of Human Milk under in Vitro Dynamic Term Newborn Digestion, Food Res. Int, vol.88, pp.263-275, 2016.

S. G. Anema and C. G. , Kees) de Kruif, Protein Composition of Different Sized Casein Micelles in Milk after the Binding of Lactoferrin or Lysozyme, J. Agric. Food Chem, issue.29, pp.7142-7149, 2013.

S. G. Anema, Acidification of Lactoferrin-Casein Micelle Complexes in Skim Milk, Int. Dairy J, 2019.

F. Guyomarc'h, C. Queguiner, A. J. Law, D. S. Horne, and D. G. Dalgleish, Role of the Soluble and Micelle-Bound Heat-Induced Protein Aggregates on Network Formation in Acid Skim Milk Gels, J. Agric. Food Chem, vol.51, issue.26, pp.7743-7750, 2003.

A. Deglaire, S. D. Oliveira, J. Jardin, V. Briard-bion, F. Kroell et al., Impact of Human Milk Pasteurization on the Kinetics of Peptide Release during in Vitro Dynamic Digestion at the Preterm Newborn Stage, Food Chem, vol.281, pp.294-303, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01984298

T. P. Nguyen, Digestibility and Structural Changes of Ingredients in Infant Formulae during the Gastrointestinal Digestion, 2017.

C. Bourlieu, O. Ménard, A. De-la-chevasnerie, L. Sams, F. Rousseau et al., The Structure of Infant Formulas Impacts Their Lipolysis, Proteolysis and Disintegration during in Vitro Gastric Digestion, Food Chem, vol.182, pp.224-235, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01209795

N. Kitabatake and Y. Kinekawa, Digestibility of Bovine Milk Whey Protein and ?-Lactoglobulin in Vitro and in Vivo, J. Agric. Food Chem, vol.46, issue.12, pp.4917-4923, 1998.

E. G. Stender, G. Koutina, K. Almdal, T. Hassenkam, A. Mackie et al., Isoenergic Modification of Whey Protein Structure by Denaturation and Crosslinking Using Transglutaminase, Food Funct, vol.9, issue.2, pp.797-805, 2018.

M. R. Peram, S. M. Loveday, A. Ye, and H. Singh, In Vitro Gastric Digestion of Heat-Induced Aggregates of ?-Lactoglobulin, J. Dairy Sci, issue.1, pp.63-74, 2013.

H. Singh and L. K. Creamer, In Vitro Digestibility of Whey Protein/K-Casein Complexes Isolated from Heated Concentrated Milk, J. Food Sci, vol.58, issue.2, pp.299-302, 1993.

J. R. Britton and O. Koldovsky, Gastric Luminal Digestion of Lactoferrin and Transferrin by Preterm Infants, Early Hum. Dev, vol.19, issue.2, pp.90123-90123, 1989.

N. St?nciuc, I. Aprodu, G. Râpeanu, I. Van-der-plancken, G. Bahrim et al., Analysis of the Thermally Induced Structural Changes of Bovine Lactoferrin, J. Agric. Food Chem, issue.9, pp.2234-2243, 2013.

A. M. Moscovici, Y. Joubran, V. Briard-bion, A. Mackie, D. Dupont et al., The Impact of the Maillard Reaction on the in Vitro Proteolytic Breakdown of Bovine Lactoferrin in Adults and Infants, Food Funct, vol.5, issue.8, pp.1898-1908, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209650

S. Sharma, M. Sinha, S. Kaushik, P. Kaur, T. P. Singh et al., The Whole Story of the Half-Molecule, pp.1-8, 2013.

N. Rastogi, A. Singh, S. N. Pandey, M. Sinha, A. Bhushan et al., Structure of the Iron-Free True C-Terminal Half of Bovine Lactoferrin Produced by Tryptic Digestion and Its Functional Significance in the Gut, FEBS J, issue.12, pp.2871-2882, 2014.

N. Rastogi, N. Nagpal, H. Alam, S. Pandey, L. Gautam et al., Preparation and Antimicrobial Action of Three Tryptic Digested Functional Molecules of Bovine Lactoferrin, PLoS One, vol.9, issue.3, p.90011, 2014.

B. , Human Milk: Bioactive Proteins/Peptides and Functional Properties, Nestlé Nutrition Institute Workshop Series

S. Vandenplas and A. G. Karger, , vol.86, pp.97-107, 2016.

F. Fan, M. Liu, P. Shi, S. Xu, W. Lu et al., Effects of Thermal Treatment on the Physicochemical Properties and Osteogenic Activity of Lactoferrin, J. Food Process. Preserv, vol.43, issue.9, p.14068, 2019.

S. Harouna, J. J. Carramiñana, F. Navarro, M. D. Pérez, M. Calvo et al., Antibacterial Activity of Bovine Milk Lactoferrin on the Emerging Foodborne Pathogen Cronobacter Sakazakii: Effect of Media and Heat Treatment, vol.47, pp.520-525, 2015.

L. L. Roux, R. Chacon, D. Dupont, R. Jeantet, A. Deglaire et al., In Vitro Static Digestion Reveals How Plant Proteins Modulate Model Infant Formula Digestibility, Food Res. Int, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02625044

A. Deglaire, C. Fromentin, H. Fouillet, G. Airinei, C. Gaudichon et al., Hydrolyzed Dietary Casein as Compared with the Intact Protein Reduces Postprandial Peripheral, but Not Whole-Body, Uptake of Nitrogen in Humans, Am. J. Clin. Nutr, vol.90, issue.4, pp.1011-1022, 2009.

S. M. Rutherfurd, A. J. Darragh, W. H. Hendriks, C. G. Prosser, and D. Lowry, True Ileal Amino Acid Digestibility of Goat and Cow Milk Infant Formulas, J. Dairy Sci, issue.7, p.72313, 2006.

G. Sarwar, R. W. Peace, and H. G. Botting, Differences in Protein Digestibility and Quality of Liquid Concentrate and Powder Forms of Milk-Based Infant Formulas Fed to Rats, Am. J. Clin. Nutr, issue.5, pp.806-813, 1989.

G. Picariello, B. Miralles, G. Mamone, L. Sanchez-rivera, I. Recio et al., Role of Intestinal Brush Border Peptidases in the Simulated Digestion of Milk Proteins, Mol. Nutr. Food Res, issue.5, pp.948-956, 2015.

N. Tobey, W. Heizer, R. Yeh, T. Huang, and C. Hoffner, Human Intestinal Brush Border Peptidases, Gastroenterology, vol.88, issue.4, pp.80008-80009, 1985.

K. Inouye and J. S. Fruton, Studies on the Specificity of Pepsin *, vol.6, issue.6, pp.1765-1777, 1967.

B. , Specificity of Proteolysis, 1992.

I. L. Huërou-luron, Chapter 16 Production and Gene Expression of Brush Border Disaccharidases and Peptidases during Development in Pigs and Calves, Biology of Growing Animals, vol.1, pp.491-513, 2002.

, Food & Function Paper