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Abstract: Coffee is often grown in production systems associated with shade trees that provide different 16 

ecosystem services. Management, weather and soil conditions are spatially variable production factors. 17 

CAF2007 is a dynamic model for coffee agroforestry systems that takes these factors as inputs and simulates 18 

the processes underlying berry production at the field scale. There remain, however, uncertainties about 19 

process rates that need to be reduced through calibration. 20 

Bayesian statistics using Markov chain Monte Carlo algorithms is increasingly used for calibration of 21 

parameter-rich models. However, very few studies have employed multi-site calibration, which aims to reduce 22 

parameter uncertainties using data from multiple sites simultaneously. The main objectives of this study were 23 

to calibrate the coffee agroforestry model using data gathered in long-term experiments in Costa Rica and 24 

Nicaragua, and to test the calibrated model against independent data from commercial coffee-growing farms. 25 

Two sub-models were improved: calculation of flowering date and the modelling of biennial production 26 
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patterns. The modified model, referred to as CAF2014, can be downloaded at 27 

https://doi.org/10.5281/zenodo.3608877. 28 

Calibration improved model performance (higher R2, lower RMSE) for Turrialba (Costa Rica) and 29 

Masatepe (Nicaragua), including when all experiments were pooled together. Multi-site and single-site 30 

Bayesian calibration led to similar RMSE. Validation on new data from coffee-growing farms revealed that 31 

both calibration methods improved simulation of yield and its bienniality. The thus improved model was used 32 

to test the effect of N fertilizer and shade in different locations on coffee yield. 33 

 34 

 35 
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Introduction 64 

 65 

Process-based dynamic models have been used for over 50 years to explore the effect of variation of 66 

environmental variables or agricultural practices on agronomic or environmental indicators, like crop yields 67 

or N leached to aquifers (de Wit, 1965; Bunn et al., 2014; Makowski et al., 2014). Due to their ability to explore 68 

a wide range of options, dynamic models can be used to represent and optimize management decisions for 69 

increased outputs (Dogliotti et al. 2005). Models are frequently used to assess the effect of future climate 70 

change on crop yields, as they are able to represent conditions that are difficult to observe currently. However, 71 

to simulate the impacts of future conditions adequately, scientists have to evaluate very carefully the adequacy 72 

of their models for a wide variety of current conditions, including production situations to which the models 73 

were not specifically calibrated.  74 

Agroforestry systems combine crops with trees in the same field. As such, they can represent a solution 75 

to the challenge of producing food for a growing global population while preserving the resources used for 76 

this production, as well as other ecosystem services provided to societies, such as provision of clean water, 77 

control of soil erosion, and control of pests and weeds. For certain crops at least, production under shade trees 78 

can be as good or better than in full sun (Jose, 2009). The trees in agroforestry systems may produce goods 79 

like timber, firewood or fruits (Cerda et al., 2014), or medicine. But they are also known to protect natural 80 

resources from exhaustion, by working as safety nets for nutrients, or by mobilizing them better from the soil 81 

(Van Noordwijk et al., 1996), to regulate climate both locally and globally (Vaast et al., 2015), or to protect 82 

soil surface from crusting, runoff and erosion (Villatoro-Sánchez et al., 2015).  83 

Agroforestry systems have been used by farmers only in a limited number of cases. Such cases include 84 

perennial crops, naturally adapted to growth and reproduction as understory crops, like coffee and cocoa grown 85 

under humid climates in the tropics. They also include other crops, like dry cereals in dry climates, when soil 86 

fertility and soil water balance are enhanced by some perennial shrubs, like Guiera senegalensis or Piliostigma 87 

reticulatum (Kizito et al., 2012; Yelemou et al., 2013; Hernandez et al., 2015) or where crops and trees explore 88 

distinct niches, as is the case for Faidherbia albida in West Africa (Roupsard et al., 1999). The case of coffee 89 

and cocoa, though, is particular, as those crops are mostly cultivated in agroforestry systems (Jha et al., 2014).  90 
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Success in the combined provision of goods and services by agroforestry systems depends on delicate 91 

equilibria between the plant species involved, which can oscillate between competition and facilitation 92 

depending on the species involved, their management, or the environmental conditions (Jose, 2009; De 93 

Beenhouwer et al., 2013; Taugourdeau et al., 2014). No combination of crop and tree species exists that can 94 

be used everywhere. Scientific knowledge has been produced for a few decades now on the processes 95 

underlying these combined provisions. Some of this research has been done on experimental sites, where long-96 

term experiments have produced a wealth of information (Imbach et al., 1989; Haggar et al., 2011). However, 97 

even nowadays when interest in agroforestry is high, such experiments are few, as they require large areas of 98 

land (due to border effects of tree plantations) over long times (typically 15-30 years).  99 

Dynamic models can be used to explore the ability of agroforestry systems to provide ecosystem 100 

services. Agroforestry models can be somewhat artificially sorted into two types. Some, of a generic nature, 101 

focus on the interactions between species, like WaNuLCAS (Van Noordwijk and Lusiana, 1998). Others are 102 

more focused on a particular crop and try to estimate the effects of shade trees on its productivity (Zuidema et 103 

al., 2005; Rahn et al., 2018). These models, whatever their type, are useful for testing hypotheses on 104 

interactions between species under different environmental conditions, and for testing the impact of 105 

environmental change scenarios on the productivity and other ecosystem services provided by agroforestry 106 

systems. They have also proven useful to elicit and nurture fruitful participatory processes between farmers 107 

and researchers on the technical management of cropping systems (Carberry et al., 2004; Whitbread et al., 108 

2010; Meylan et al., 2014).  109 

Dynamic crop models simulate phenology along full crop cycles. Rodríguez et al. (2011) proposed a 110 

physiologically-based full sun coffee dynamic growth and yield model, working from coffee organ (fruiting 111 

node) to whole coffee-plant and validated in two extreme latitudinal conditions for coffee cropping, with a 112 

special effort to accurately simulate the bud, flower and fruit phenology. This model proved to be efficient at 113 

early stages of the coffee cycle (0-5 years old). Recently, Vezy et al. (2020) incorporated the reproductive 114 

modules of Rodriguez et al. (2011), including reproductive cohorts to best distribute the fruit carbon demand 115 

along the year and scaled them up to simulate ecosystem services (multi-objective calibration) of a whole 116 

agroforestry field for full rotations, but the model was parameterized and tested for only one site so far. Indeed, 117 

another model existed previously for the simulation of coffee production at the field scale in full sun and 118 
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agroforestry systems, CAF2007 (van Oijen et al., 2010b). It was built to simulate coffee plantations in Central 119 

America, but has not been thoroughly parameterized based on agroforestry trials, nor tested in commercial 120 

plantations, so its use has been limited so far.  121 

Adequate parameterization of agroforestry models is a complex task. Numerous processes are closely 122 

interrelated, so it is difficult to parameterize one process without having previously parameterized other 123 

connected processes. Measurements on diverse processes in coffee agroforestry systems have been carried out 124 

in experiments and in commercial plantations for some years now (van Oijen et al., 2010a; Haggar et al., 2011; 125 

Charbonnier et al., 2013; Meylan et al., 2013; Taugourdeau et al., 2014; Gagliardi et al., 2015; Padovan et al., 126 

2015; Villatoro-Sánchez et al., 2015; Defrenet et al., 2016). This parameterization, necessary as it is to use a 127 

model with reasonable confidence, cannot be done everywhere. To avoid parameterizing the model again and 128 

again depending on its intended use, we need to assess the robustness of the parameterization process itself: to 129 

do that, we can compare site-specific and multi-site calibrations in their ability to reproduce the same sets of 130 

data (Van Oijen et al. 2013). 131 

The measurements made to parameterize the agroforestry models concern complex processes, 132 

measurement methods are frequently delicate and their results often come with significant uncertainties. These 133 

uncertainties need to be taken into account in the parameterization process. Methods for including probability 134 

distributions for measurements, parameters and outputs do exist, based on Bayesian statistics, and these 135 

methods have proven their suitability to complex processes and related models (Van Oijen et al., 2005; Van 136 

Oijen 2017). Bayesian calibration has been implemented in different models for specific sites. Multi-site 137 

calibration is a relatively new method for calibration of process-based models such as the VSD model, which 138 

simulates chemical solution of  soil and nitrogen pools in natural and semi-natural ecosystems (Reinds et al., 139 

2008), the BASFOR forest model (Van Oijen et al., 2013), and the BASGRA_N grassland model (Höglind et 140 

al., 2020). We followed the procedure described by Van Oijen et al. (2005) which makes it possible to calibrate 141 

the parameters that influence the model processes based on data measured in the field while accounting for 142 

uncertainties in measurements and modelling.  143 

This paper reports how the CAF2007 coffee agroforestry model was modified (and renamed to CAF2014), 144 

parameterized using data gathered over the course of several years at multiple sites, validated under 145 

commercial conditions for coffee in Central America, and applied to address challenges associated with the 146 
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management of coffee tree plantations regarding the effect of shade and fertilization dose and distribution at 147 

different sites and altitudes in Costa Rica and Nicaragua. 148 

 149 

 150 

2. Materials and methods 151 

2.1 Study area 152 

The study was carried out in the coffee-growing regions of Nicaragua and Costa Rica. The climatic conditions 153 

in these coffee growing regions have been analyzed and clustered in four different climatic zones shown in 154 

Figure 1, mainly related to the rainfall-temperature combinations from the WorldClim historical weather data 155 

base (Läderach et al. 2017).  156 

Climatic zone 1 is characterized by cold and dry weather with an annual average precipitation of 1,544 157 

mm and a mean annual temperature of 20°C. These conditions were only found in Nicaragua. Climatic zone 2 158 

is cold and humid with an annual average precipitation of 2,503 mm and a mean annual temperature of 19°C, 159 

present in both countries in some of the best producing regions, Jinotega and Matagalpa in Nicaragua and 160 

Tarrazú in Costa Rica. Climatic zone 3 is characterized by being hot and humid with an annual average 161 

precipitation of 2,886 mm and a mean annual temperature of 23°C, mostly present in Costa Rica (Turrialba) 162 

and marginally in Nicaragua. Climatic zone 4 is dry and hot, with an annual average precipitation of 1,688 mm 163 

and an annual mean temperature of 23°C, mainly present in Nicaragua (Masatepe, the oldest coffee producing 164 

region in Nicaragua, is a typical example of it), and almost restricted to the Nicoya peninsula in Costa Rica. 165 

2.2 Sites used for model calibration 166 

Twelve sites were used for calibration, representing three of the four climatic zones (Table 1). The sites were 167 

located at four different locations: 168 

a. The CATIE long-term agroforestry experiment in Turrialba, Costa Rica (six sites - Zone 3) planted in 169 

2000: Six of the calibration sites were located in the canton of Turrialba in the province of Cartago in 170 

Costa Rica, at 600 m above sea level. Haggar et al. (2011) described this location as one of low altitude 171 
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with humid weather. Six sites were selected for calibrating the model with different intensities of 172 

management (quantities of fertilizers and other inputs), different densities and species of shade tree. 173 

b. The Llano Bonito coffee-growing farm in San Pablo de León Cortés in Tarrazú, Costa Rica (single site - 174 

Zone 2): The calibration site was located at a coffee-growing farm in the region of Los Santos at 1,620 m 175 

above sea level near the central mountain range in Costa Rica. The selected farm has shade predominantly 176 

from Erythrina trees and some from musaceae (Meylan, 2012). The coffee field was gradually replanted 177 

conform local farming practice. 178 

c. The Coffee-Flux observatory at the Aquiares farm in Cartago, Costa Rica (single site - Zone 3): The final 179 

Costa Rican calibration site was at the Aquiares farm which is located 10 km northwest of Turrialba at an 180 

average altitude of 1,100 m above sea level. 98% of the selected site area is cultivated with the Caturra 181 

coffee cultivar with shade from tall free-growing Erythrina trees (no pruning or thinning). The general 182 

management practices varied from year to year. The data for calibration in Aquiares were obtained from 183 

Charbonnier 2013, Taugourdeau et al., 2014, Defrenet et al., 2016 and Kinoshita et al., 2016. 184 

d. The CATIE long-term coffee agroforestry trial in the low and dry zone in Masatepe, Nicaragua (four sites 185 

– Zone 4). The sites were located in the Pacific Center for Training and Regional Services (UNICAFE) 186 

with two repetitions planted in 2000. The sites were planted with the Pacas coffee variety (genetically very 187 

similar to the Caturra variety) with different management intensities. Two sites were in the shade 188 

predominantly from Inga edulis trees and two other sites were in full sun (Table 1). 189 

 190 

2.3 Field data used for calibration 191 

Seventeen variables were used for calibrating the model. These were variables that the model calculated and 192 

for which also measurements were available, but not all variables at all sites, as data had been collected 193 

primarily for other purposes. Information was available about coffee productivity at all sites, but data on 194 

average soil carbon content were only collected at 92% of the sites (Table 2). Data on the content of carbon in 195 

the above-ground portion of the coffee plants were available for 50% of sites. The leaf area indices of the 196 

coffee and shade trees as well as the content of carbon in the trunk and coffee leaves were measured more 197 

rarely. 198 
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Additionally, we had access to historical data on coffee flowering dates in the agroforestry trial in 199 

Turrialba. From prior simulations, we knew that flowering date was not predicted accurately. We used these 200 

data to modify the subroutine of the model that calculates the onset of flowering, which is essential as all other 201 

phenological stages are based on this flowering date (see next section).  202 

2.4 From CAF2007 to CAF2014 203 

2.4.1 Original version of the model 204 

CAF2007 is a basic dynamic process model for simulating managed coffee full sun or agroforestry fields at a 205 

daily time step (van Oijen et al., 2010b). Two vegetation layers are distinguished: shade tree and coffee. 206 

CAF2007 was designed to assist in taking decisions associated with management strategies such as fertilizer 207 

dose, shade tree density and species, pruning and thinning schedule. The model is also able to simulate the 208 

response of the system to environmental change (climate, atmospheric CO2). The model simulates growth, 209 

yield and other services associated with specific tree species, taking into account the main processes occurring 210 

in plants and soil.  These include the processes that contribute to the C-, N- and water-balance of the system. 211 

The model is generic by nature but it has thus far been calibrated only for the edapho-climatic conditions, 212 

coffee and tree genotypes and management conditions that are typical of Central America. 213 

The model takes into consideration environmental inputs including radiation, precipitation, 214 

temperature, [CO2], water, and nitrogen. The behavior of the simulated agroforestry system is constrained by 215 

soil properties, weather conditions, and individual site management. CAF2007 simulates the effects of shade 216 

trees on coffee through competition for light, water, and nutrients, and it takes into account the contribution of 217 

pruning and thinning to organic matter in the litter layer (van Oijen et al., 2010b). 218 

The model has 104 parameters, 70 of which are calibrated. Prior information for estimating parameter 219 

values was obtained from reviews of literature  (van Oijen et al., 2010a) including dissertations, project reports, 220 

data collections, and interviews with farmers. We now describe two modifications of the model, which led to 221 

a new model version that we refer to as CAF2014. 222 

2.4.2 Model modifications for flowering 223 



10 

 

In the original model, flowering was triggered by daily rainfall exceeding a certain threshold, set at 10 mm by 224 

default, as soon as it occurred in the calendar year (Van Oijen 2010b). We modified this to better simulate 225 

actual flowering dates in regions where flowering is grouped and occurs after a significant period of water 226 

shortage: flowering now starts on the first day of the year on which the product of the amount of daily rainfall 227 

and the Julian day is greater than 1,000. This means that it can take 100 days after January 1 for flowering to 228 

occur with a daily rainfall of 10 mm to induce flowering or just 10 days of 100 mm rain. We used multi-annual 229 

time-series of flowering dates observed at the Aquiares farm experiment to check the ability of this new routine 230 

to improve the simulation of coffee flowering dates (Figure 2). The modification reduced RMSE for flowering 231 

date from 41.5 to 26.0. Further increases in prediction quality may be achievable, but it would require the 232 

writing of a new, complex model that takes into account soil water content, temperature and day length. We 233 

considered that the model in its new form was sufficiently accurate for our purposes, and consistent with our 234 

limited knowledge on the triggering of coffee flowering.  235 

2.4.3 Model modifications for biennial production 236 

In current full sun and moderate shade systems, years with high yields and low leaf-area index (LAI) tend to 237 

alternate with years with low yields but high LAI (Carvalho et al. 2020). The original CAF2007 model did not 238 

simulate a biennial pattern of coffee productivity. To incorporate this widely occurring phenomenon, the sink 239 

strength of the coffee beans is now inversely related to previous year’s sink strength. This small change leads 240 

to biennial variation of simulated coffee yields which matches observations as shown in Figure 3. In the 241 

absence of data on bean sink strength, the inclusion of this modification in the model was not tested 242 

independently of the whole model. 243 

2.4.4 Initialization and inputs of CAF2014 244 

We refer to the model formed by modifying the flowering and bean sink algorithms of CAF2007 as CAF2014. 245 

This new model version is freely downloadable from https://doi.org/10.5281/zenodo.3608877, and a 246 

description of model structure can be found in a paper by Rahn et al. (2018), who carried out a parameter 247 

sensitivity analysis of CAF2014 for application in Uganda and Tanzania. To run the model, the initial values 248 

of state variables must be specified, as must be the site management practices and weather conditions. Data to 249 

https://doi.org/10.5281/zenodo.3608877
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meet these model information requirements were compiled for each of the experimental sites and coffee-250 

growing farms in the study. 251 

• Model initialization. Four values of initial carbon content in different plant parts are needed for shade trees, 252 

and four values for coffee trees. Seven initial values (primarily the contents of N and C) are needed for the 253 

soil. 254 

• Management. Three parameters for coffee management (first day of pruning, pruning interval, and pruned 255 

biomass fraction), six for shade tree management (first day of pruning, pruning interval, pruned biomass 256 

fraction, thinning data, thinned biomass fraction, and initial tree density), and two for soil fertility 257 

management (date of application and dose of soil fertilizer). 258 

• Weather. Six daily variables: minimum and maximum temperature (°C), wind speed (m s-1), global 259 

radiation (MJ m-2 d-1), atmospheric vapour pressure (kPa), and precipitation (mm d-1). 260 

 261 

2.5 Bayesian calibration 262 

The values of model parameters are generally poorly constrained and the consequences of these uncertainties 263 

for model outputs must be quantified. We can represent such parameter uncertainties of process-based models 264 

by means of prior probability distributions, and use measurements on the model's output variables to calibrate 265 

the model within a Bayesian framework (Kennedy & O’Hagan 2001, Van Oijen et al. 2005, Van Oijen 2017).  266 

2.5.1 Selection and prioritization of parameters to be calibrated 267 

Some parameters values were known or directly measurable. These included geographic parameters and other 268 

parameters well documented in scientific literature. We did not include these parameters in the model 269 

calibration. Also not included in the calibration were parameters that had no significant impact on the results 270 

of the model, as shown in a sensitivity analysis by Remal (2009). Therefore, only those parameters were 271 

calibrated that had a significant impact on the results of the model and were not measured directly. Depending 272 

on each site, the number of parameters ranges from 63 to 67: 26 tree parameters, 13-17 soil parameters 273 

(depending on whether there was information available from a soil analysis at the site), and 24 coffee 274 
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parameters. The sites with the largest number of calibration parameters were those for which there was no 275 

initial soil analysis available.  276 

2.5.2 Bayesian calibration 277 

Every Bayesian calibration begins by assigning a prior probability distribution to the model’s parameters. The 278 

prior distribution for CAF2014 consisted of wide beta probability distributions  based on literature review and 279 

other information (Van Oijen et al. 2010a). The calibration itself consists of using data on model output 280 

variables to update the parameter distribution, by application of Bayes’ Theorem. We assumed independent 281 

measurement errors, represented by zero-centered Gaussian probability distributions with a coefficient of 282 

variation of 0.3. After all data are used, the updated distribution is referred to as the posterior parameter 283 

distribution. The method that we used for the calibration was Markov chain Monte Carlo sampling (MCMC) 284 

by means of the Metropolis algorithm (Robert & Casella 1999, Van Oijen et al. 2005). The R-code for the 285 

Metropolis algorithm is provided together with CAF2014 code at https://doi.org/10.5281/zenodo.3608877. 286 

The algorithm produces a representative sample from the posterior parameter distribution by a walk through 287 

‘parameter space’. Each proposed next step of the walk, i.e. each proposed new parameter vector, is accepted 288 

or rejected based on the product of the prior probability for that parameter vector and the likelihood of the data 289 

given CAF2014’s outputs for the parameter vector. In this way, Bayesian calibration combines prior 290 

information with new data. For the calibrations reported here, we used Markov chains of length 100,000. Trace 291 

plots of the chains – showing how parameters values changed over the 100,000 iterations, were inspected to 292 

assess convergence visually. Based on this, an initial burn-in phase of 10,000 iterations was discarded from 293 

the final sample. 294 

 295 

2.5.3 Types of calibration 296 

We carried out both single-site and multi-site calibrations (Reinds et al. 2008). In the single-site calibrations, 297 

all calibrated parameters were considered to be site-specific. A separate MCMC was thus run for each site of 298 

Table 1, leading to twelve different site-specific posterior parameter distributions. In multi-site calibrations, 299 

data from multiple sites were used simultaneously in one MCMC, and posterior parameter estimates were 300 

assumed to apply to all sites involved. Two types of multi-site calibration were carried out: ‘cluster’ calibration 301 

https://doi.org/10.5281/zenodo.3608877
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using subsets of sites close to each other (this was done for Turrialba and for Masatepe) and ‘generic’ 302 

calibration which included all twelve sites of Table 1. Therefore a total of 15 different calibrations were carried 303 

out: 304 

 12 single-site calibrations (one for each site), 305 

 2 cluster calibrations (a six-site calibration for Turrialba and a four-site calibration for Masatepe), 306 

 1 generic calibration (for all twelve sites simultaneously). 307 

 308 

2.5.4 Calibration evaluation 309 

To estimate the goodness of fit of the model to data, the root mean square error (RMSE) was calculated for the 310 

mode of the posterior parameter distribution. The number of measurements observed vs. the number of 311 

simulated measurements was taken into account. The RMSE is defined as the square root of the sum of the 312 

squared differences between observed and simulated values divided by the total number of values. Values 313 

close to zero indicate a good model fit to the data. 314 

RMSE= √
∑ (𝑋𝑜𝑏𝑠,𝑖− 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)2 𝑛

𝑖=1

𝑛
, 315 

where 𝑛 = number of observations in the sample, 𝑋𝑜𝑏𝑠,𝑖= values observed for the "i"-th instance, and 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖 316 

= are the values modelled for the "i"-th instance. 317 

The validity of the RMSE value is limited in that this indicator assumes that data measured are accurate, 318 

which is contradictory to the Bayesian calibration principle that affirms that all values, including measured 319 

data, are associated with an uncertainty represented by a distribution of probabilities. The interpretation of 320 

RMSE must therefore be taken with some caution; in our study, we will focus on its use for the detection of 321 

systematic bias in the modelling outputs and possible correction. 322 

2.6 Sites used for model validation 323 

For validation purposes, information was compiled from non-experimental sites in Nicaragua (Table 3) where 324 

yield and climatic data could be collected accurately.  Historical data were compiled from farmer-surveys and 325 

climatic data from weather stations near the farms for running the model. These included input data for driving 326 
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the model such as weather, management of coffee plants, trees and soil as well as data on coffee yields to 327 

compare with model outputs.  328 

One site was taken from each farm, planted with the Caturra coffee variety where shade comes 329 

predominantly from Inga trees using different coffee tree management practices. The coffee-growing farms 330 

were located in three climatic zones: 331 

- Climatic zone 2 (cold and humid) was represented by the Solingalpa farm located in Jinotega. The farm 332 

has steep slopes (25%) planted with the Caturra coffee variety. Shade comes predominantly from guaba 333 

(Psidium sp.) trees with selective management practices.  334 

- El Rosal farm is in Climatic zone 4 (dry and hot). It is located in Carazo department in Nicaragua, and 335 

represented by the "Las Negras" site. This site has shade predominantly from Erythrina trees with presence 336 

of the Catrenic coffee variety and management of shade and coffee trees. 337 

- Lastly, the Hammonia and La Pinedita farms in the department of Matagalpa in Nicaragua represented 338 

Climatic zone 1 (dry and cold), to further challenge the robustness of model predictions.  339 

 340 

2.7 Sensitivity analysis 341 

To assess model behaviour under a wider range of conditions than were present in the study sites, we analysed 342 

the sensitivity of the calibrated model to various management options regarding fertilization and shade. The 343 

calibration sites differed in many respects (weather, shade management, fertilizer use etc.), so cannot be 344 

compared directly. The sensitivity analysis standardized fertilization to analyse shade response differences 345 

between sites (Table 5), and it standardized shade management to analyse fertilization impact differences 346 

(Table 6). 347 

 348 

3. Results 349 

The study results were first broken down into individual and multi-site calibrations using the modified model. 350 

The model was then validated using information of coffee-growing farms located in different climate clusters. 351 

We finally ran simulations of coffee-growing sites with the calibrated model, as a preliminary assessment of 352 

the capacity of the model to evaluate different management practices and site conditions. 353 
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3.1 Calibration of the CAF2014 model 354 

In the first stage, the calibration was performed separately for each of the twelve sites listed in Table 1 (single 355 

site calibrations), then for Turrialba and Masatepe (cluster calibrations) and lastly, for the set of all sites 356 

(generic calibration). For each calibration, 100,000 MCMC iterations were carried out. Figure 3 shows 357 

examples of model simulations after cluster calibration for two of sites in Turrialba with different levels of 358 

fertilization and shade. 359 

3.1.1 Single-site calibration 360 

Measured production data were available for between 10 and 11 years for all sites, with the exception of Llano 361 

Bonito (only two years). Maximum measured production values of coffee beans dry matter in Turrialba, 362 

Aquiares, and Masatepe were 5.74, 4.3, and 5 tons DM cherry y-1, respectively. The single-site calibrated model 363 

simulated maximum production values in Turrialba, Aquiares, and Masatepe of 5.81, 4.8, and 2.27, 364 

respectively. 365 

Figure 4 shows simulated coffee production compared against measured production and the relevant 366 

determination coefficients (R2) for each of the calibrated sites. We can globally observe that all Turrialba 367 

experiments were adequately simulated, with acceptable R2, ranging from 0.54 to 0.71. More importantly, 368 

there seems to be no clear bias, overestimations and underestimations seem to compensate each other. On the 369 

other hand, although low production levels in Masatepe were correctly estimated, high productions are not, 370 

and this is particularly clear in the full sun intensive management site, where the best production was measured 371 

at 5 tons ha-1, in 2005-2006, while the production simulated did not exceed 2.3 tons ha-1.  In Aquiares the 372 

model overestimates most harvests on average by 0.7 t DM cherry ha-1 y-1. It has, however, a good fit with an 373 

R2 value of 0.71 (Figure 4). 374 

A comparison of the individually calibrated and uncalibrated sites (Fig. 5) indicates that the RMSE for 375 

coffee production (t DM cherry ha-1 y-1) improves at the majority of the calibrated sites with an improvement 376 

in RMSE that ranges from 0.22 to 1.84.  Several sites in Turrialba exhibit a good fit with low RMSE. Llano 377 

Bonito exhibits a high RMSE from the calibration of the coffee production. This is due to the low number of 378 

measured production data.  This is also the case for sites in full sun with high conventional management 379 

practices in Turrialba and Masatepe before calibration, but RMSE was greatly reduced by calibration.  380 
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3.1.2 Multi-site calibration (by cluster and generically) 381 

Figure 5 shows the RMSE for model simulations of coffee production in t DM cherry ha-1 y-1, for each of the 382 

sites, after different calibration efforts: (1) no calibration, (2) generic calibration, (3) cluster calibration, (4) 383 

single-site calibration.  The highest RMSE values are found in the case of no calibration, confirming that a 384 

calibrated model fits measured data better. On average, RMSE improves by 0.91.  385 

The progression of RMSE from generic via cluster to individual calibration is uneven: it generally 386 

decreases but this evolution is not systematic: at Aquiares, surprisingly, the single-site calibration shows higher 387 

RMSE than generic calibration, but both calibrations show rather low RMSE.  388 

Coefficients of determination (R2) for cluster and generic calibrations are shown in Figure 6. Turrialba 389 

and Masatepe exhibit a similar R2 value of 0.54-0.56. Some of the high harvest values simulated at both sites 390 

are underestimated. Generic calibration yields an R2 of 0.64. The underestimations of the model at high 391 

productivity remain, but are not systematic. 392 

Table 4 shows average coffee production as simulated following the three types of calibration. There 393 

were no significant differences versus measured production for any site with the exception of the Masatepe-3, 394 

the Nicaraguansite in full sun with high fertilization. 395 

 396 

3.2 Validation of the CAF2014 model 397 

Production simulations using the generically calibrated model exhibit low RMSE values and a good 398 

determination coefficient. Figure 7 shows an R2 of 0.55 for the four validation farms, whose data had not been 399 

used for any model calibration. The model underestimated some of the high harvests, while the other harvests 400 

exhibit a good fit. 401 

As the results from generic calibration were shown to perform adequately for calibration sites, without 402 

any dramatic increase in RMSE compared to cluster calibration or single-site calibration, we decided to use 403 

the generically calibrated model for the following simulations.  404 

3.3 Additional simulations using the generically calibrated CAF2014 model 405 
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Simulations were carried out with the generically calibrated model to show the effect of shade and fertilization 406 

at different sites and altitudes in Costa Rica and Nicaragua (Tables 5, 6). The results reveal that production 407 

varies depending on the altitude and weather conditions at each site. Production in a hot and dry area 408 

(Masatepe) is lower in the sun than in the shade, in contrast to the wetter conditions (Turrialba and Llano 409 

Bonito) where shade reduces production (Table 5). But shade has a positive effect on productivity in the drier 410 

conditions. In contrast, in the more humid Costa Rican areas, production decreases by 10 to 22% in the shade 411 

from Inga edulis trees. The model simulations show that this is due to the fact that the tree crown diameter 412 

grows at a faster rate in humid zones than in dry zones. 413 

Two virtual experiments were run to explore fertilization effects, the most expensive input in coffee 414 

production in Central America (Meylan et al., 2013), related to dose and fractionation (Table 6).  The dose 415 

that simulates the largest production in three fractions is 300 kg N ha-1 y-1. At higher doses, the production did 416 

not increase anymore; most of this additional N was lost. Simulations using different fractionation of this 417 

fertilization rate showed that the effects of higher fractionations were real (with one exception), but minimal, 418 

probably less than the labour cost of an additional application. The days of N application were optimized in 419 

each experiment.  420 

 421 

4.  Discussion 422 

 423 

We started from CAF2007, a simple dynamic model of coffee agroforestry systems (van Oijen et al., 2010b), 424 

and modified the algorithms for two processes that were simulated inaccurately, i.e. blossoming date and 425 

biennial oscillation of cherry production. We then proceeded to calibrate the new model, CAF2014 using 426 

measurements from contrasting environmental conditions and management regimes. A Bayesian method was 427 

used for the calibration, for a total of 12 experimental sites. We found few differences between calibrations 428 

performed for each site separately (leading to site-specific estimates for coffee, tree and soil parameters), by 429 

cluster (Turrialba- and Masatepe-specific parameters), or generically for the complete dataset. The generically 430 

calibrated model was able to account for most of the variation in independent yield data from commercial 431 

plantations, the model was thus considered to be robust. We finally found that the modelled effects of N 432 
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fertilization were not as strong as expected, and the effects of shade depended mainly on local humidity. 433 

 434 

4.1 Single-site vs. multi-site model calibration 435 

Single-site and multi-site calibrations revealed that the model exhibits very similar fits regardless of whether 436 

it is calibrated for a single site, for clusters, or for all sites together. The RMSE values are very similar at any 437 

of the sites regardless of the procedure, and always lower than the RMSE values of the uncalibrated model. 438 

This result is encouraging because it suggests that parameter values for coffee ecophysiology have limited 439 

variability in the studied region, which facilitates broadscale model application across Costa Rica and 440 

Nicaragua without a need for additional calibration. The finding is consistent with the narrow genetic base of 441 

cultivated Coffea arabica in the Western hemisphere (Sousa et al. 2017). The RMSE values for shaded sites 442 

for coffee production in Costa Rica and Nicaragua (t DM cherry ha-1 y-1) were low and the R2-values were 443 

high. Strong model performance for these sites may have been aided by the availability of good information 444 

on initial constants, site management, and a priori distribution of parameters. A remarkable feature of the 445 

calibrated model is that it accounts very well for the very high interannual variability in yields that was 446 

observed on all sites. Model predictions always accounted for more than 50% of interannual variation, and for 447 

about half the sites this reached about 70% (Figures 4 and 6). So the calibrated model can reproduce patterns 448 

of alternating high- and low-yielding years, i.e. alternate bearing (see also Figure 3). The absolute values of 449 

yield were underestimated in some years with high yields, in particular for Masatepe (e.g. Figure 4i). This site 450 

is in Climatic zone 4, which is dry and hot, so CAF2014 may be overestimating the impacts of water deficiency. 451 

The calibrated model also had a relatively high RMSE-value for the Llano Bonito site where shade was 452 

provided by Erythrina poeppigiana trees that were pollarded twice or thrice each year (see Figure 5). CAF2014 453 

uses allometric equations to establish the relationship between tree branch biomass and crown area – and this 454 

relationship may conceivably be disrupted by the frequent pollarding. Quick re-growth of branches of this tree 455 

species after pollarding is generally observed, initiated by rapid mobilization of reserves from trunks (Nygren 456 

et al., 1993). A new, Erythrina-specific tree submodel would be required to model the pollarding response, 457 

possibly based on the earlier work by Nygren et al. (1993, 1996). This is considered for future modifications 458 

of the model.  459 
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 460 

4.2 Model testing against independent data and sensitivity analysis 461 

Our tests against independent data from three of the climatic zones corroborated that the model behaves well 462 

under different management and biophysical conditions (Fig. 7). The tests were carried out using the posterior 463 

mode from generic calibration; no site-specific information was used to adjust parameter values. Overall, the 464 

comparison of model estimates and production rates at commercial farms showed the same qualities and 465 

defects as the calibration results. The model correctly estimated low production rates, but underestimated high 466 

production rates. It is possible that the control of weeds, pests and diseases as well as the reliability of the data 467 

themselves differed between the experimental calibration sites and the commercial testing sites, but detailed 468 

information on the growing conditions at the commercial farms is lacking. Nevertheless, the model again 469 

ranked high- and low-yielding years for the most part correctly, leading to an R2 value of 0.55 (Fig. 7). It thus 470 

seems that the alternate bearing pattern of coffee may largely be explained from factors that were present in 471 

the model, i.e. interannual variation in weather conditions and the negative lag-effects of high reproductive 472 

sinks on sink strengths in succeeding years – conform theories of carbon allocation in woody plants (Génard 473 

et al., 2008). The flowering date, the modelling of which was modified in CAF2014, also affects the balance 474 

between the sources and sinks of carbohydrates, as allocation patterns change dramatically after flowering. We 475 

note however that our new implementation of biennial sink patterns was not highly mechanistic, so there 476 

remains significant scope for model improvement. This is complicated because of the difficulty of measuring 477 

sink strength directly and because of the complicated interannual dynamics of reserves in perennial woody 478 

plants. It does constitute an important research question because alternate bearing is a phenomenon common 479 

to a large number of species of fruit trees (Monselise and Goldschmidt, 1982). In future model development, 480 

CAF2014 may benefit from incorporating the equations of Rodriguez et al. (2011) for the dynamics of cohorts 481 

of reproductive organs and reserve compartment, as was done by Vezy et al. (2020) in their DynACof model. 482 

That would constitute a more mechanistic simulation of sink competition between leaf and reproductive 483 

compartments than we attempted here, but it would increase model complexity. Moreover, the method still 484 

needs independent testing across sites in multiple climatic zones (only one site was used by Vezy et al. 2020) 485 

and Bayesian multi-site calibration following the approach that we developed here. 486 
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 487 

Our findings suggest that our model can be used in Central America, because the calibrations at experimental 488 

sites exhibited a good and relatively robust fit, which was confirmed through validation. Moreover, the 489 

sensitivity analysis provided plausible conclusions with respect to management: least yield loss from shading 490 

at low altitude ((Table 5) and little benefit from fertilizer above 200 kg N ha-1 y-1, both of which are consistent 491 

with the literature (e.g. Beer et al. 1998, Meylan et al. 2017). The calibrated model may thus become a useful 492 

tool for various stakeholders, such as farms and policymakers, to support decisions regarding issues like 493 

climate change, fertilization efficiency, use of tree species for shade, and other management practices. The 494 

model can also provide estimates of other ecosystem services, including water-, carbon- and nitrogen-retention, 495 

but the quality of model predictions for those variables requires additional data to allow further testing of the 496 

model beyond the yield estimates that we focused on here. 497 

 498 

5. Conclusions 499 

We were able to calibrate the CAF2014 coffee agroforestry model for farms in Costa Rica and Nicaragua that 500 

span different climatic zones, soils, shading practices and management conditions. Interannual variability was 501 

well accounted for by the model. Whereas simulation of coffee production (t DM cherry ha-1 year-1) using the 502 

original model underestimated production, the modified and calibrated model showed realistic production 503 

rates, decreasing RMSE and increasing R2. Simulations were improved for coffee production in three climatic 504 

zones, including one that had not been included for calibration. However, the model still underestimates very 505 

high production rates at some sites. Coffee models implemented thus far have allowed providing an assessment 506 

of the niche-range over which the species is distributed and comparing the ability of crops to face climate 507 

changes in the future. The calibrated CAF2014 model makes it possible to simulate coffee production yields 508 

in agroforestry systems, thus enabling estimates of the costs and benefits of implementing the system as well 509 

as the impacts of climate change, elevated CO2, fertilization and pruning of coffee plants and trees - estimates 510 

that empirical suitability models are not able to provide (Ovalle-Rivera et al., 2015). The model may thus be 511 

used as a tool for exploring different adaptation scenarios in the face of current and future problems of coffee 512 
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growers, as shown in our preliminary study of the effects of N fertilizer and shade in different locations on 513 

coffee productivity. 514 

 515 

 516 
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Table 1. Sites used for model calibration: Turrialba (9.8962N; 83.6673W, 610 masl), Aquiares (9.9383N; 83.7279W, 1100 masl) and 645 
Llano Bonito (9.6707N; 84.0951W, 1620 masl) in Costa Rica, and Masatepe (11.9008N; 86.1461W, 467 masl) in Nicaragua.  646 

Site 
Climatic 

zone Shade 
Fertilization  

(kg N ha-1 y-1) 

Shade tree 

pruning 

Annual shade 

tree thinning 

Turrialba-1 3 Terminalia amazonia 280  Regulated 80% 

Turrialba-2 3 Terminalia amazonia 150  Regulated 80% 

Turrialba-3 3 Erythrina poeppigiana 280  Drastic 50% 

Turrialba-4 3 Erythrina poeppigiana 150  Regulated 50% 

Turrialba-5 3 Full sun 280  - - 

Turrialba-6 3 Full sun 150  - - 

Aquiares 3 Erythrina poeppigiana 260  Unregulated Without  

Llano Bonito 2 Mainly E. poeppigiana 300  Regulated 20% 

Masatepe-1 4 Mainly Inga edulis  144  Regulated 61% 

Masatepe-2 4 Mainly Inga edulis  73  Regulated 66%  

Masatepe-3 4 Full sun 144  - - 

Masatepe-4 4 Full sun 73  - - 

 647 

 648 
 649 
 650 
 651 
 652 
 653 
 654 
 655 
 656 
Table 2. Output variables for calibration of the CAF2014 model. The frequency indicates the percentage of sites where a variable was 657 
measured. 658 

Variable Identifier Unit  Frequency 

Average content of C in the soil Csoilave t C ha-1 92% 

Average leaf area index of coffee trees  LAIave m2 m-2 17% 

Average leaf area index of shade trees LAIT m2 m-2 17% 

C in the above-ground portion of coffee plants CT kg C m-2 50% 

C in the above-ground portion of shade trees CTT kg C m-2 50% 

C in coffee leaves in full sun CL(1) kg C m-2 8% 

C in coffee leaves in the shade.  CL(2) kg C m-2 8% 

C in coffee trunks in full sun CW(1) kg C m-2 8% 

C in coffee trunks in the shade CW(2) kg C m-2 8% 

Coffee productivity * harvDMav_year t DM ha-1 y-1 100% 

Leaf area index in full sun  LAI(1) m2 m-2 8% 

Leaf area index in the shade LAI(2) m2 m-2 8% 

N in the soil Nsoilave t N ha-1 75% 

Shade area SA  m2 m-2 50% 

Tree crown area CAtree m2  17% 

Tree height h  m 33% 

Water content in the soil WC_F m3 H2O m-3  25% 

* split into "under the sun" and "in the shade" at Llano Bonito 659 

  660 
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Table 3. Coffee-growing farms in three climatic zones in Nicaragua used for validating the CAF2014 model. 661 

Climatic 

zone 
Farm 

Coordinates / 

Altitude (masl) 
Main shade sp. 

Soil fertilization 

(kg N ha-1) 

Shade tree 

pruning* 

Shade tree 

thinning** 

1 Hammonia  
12.99N 85.92W / 

1237 
guaba 80 Once No 

1 La Pinedita  
12.92N 85.90W / 

917 
guaba 116 None 50% 

2 Solingalpa  
13.03N 85,91W / 

1368 
guaba 182 10% 60% 

4 El Rosal  
11.88N 86.20W / 

588 
Erythrina 136 10% 50% 

Selective coffee tree pruning   * Fraction for each tree pruning ** Fraction of thinning 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

Table 4. Average production (10-11 years) in t DM ha-1 y-1 for calibration sites in Turrialba, Costa Rica, and in Masatepe, Nicaragua.  670 

Site 
Measured 

production 

Simulated 

production 

(Single-site 

calibration)  

p-value 

Simulated 

production 

(Cluster 

calibration ) 

p-value 

Simulated 

production 

(Generic 

calibration)  

p-value 

Turrialba-1 2.25 2.22 0.94 2.19 0.91 1.68 0.25 

Turrialba-2 1.58 1.73 0.73 1.56 0.98 1.53 0.92 

Turrialba-3 3.03 2.82 0.81 2.88 0.70 2.53 0.36 

Turrialba-4 1.90 2.31 0.33 2.68 0.14 2.33 0.33 

Turrialba-5 3.53 3.22 0.65 2.47 0.13 2.60 0.16 

Turrialba-6 2.87 3.27 0.53 2.47 0.54 2.57 0.63 

Masatepe-1 1.59 1.29 0.4 1.19 0.23 1.40 0.25 

Masatepe-2 1.47 1.24 0.49 1.25 0.51 1.26 0.92 

Masatepe-3 2.28 1.55 0.14 1.26 0.045 1.31 0.05 

Masatepe-4 1.78 1.55 0.51 1.30 0.18 1.31 0.198 

 671 
 672 
 673 
 674 
 675 
 676 
  677 
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Table 5. Effect of shade on coffee production at three different altitudes with fertilization fractionated in three doses of 150 kg N ha-1 678 
y-1. 679 

Altitude 

(m above 

sea level) 

Site 

Production average over 11 years 

(t DM ha-1 y-1) 

Sun Shade/Inga edulis 

453 Masatepe 1.61 1.68 (42% shade) 

600 Turrialba 3.00 2.70 (53% shade) 

1620 Llano Bonito 3.16 2.47 (56% shade) 

 680 

 681 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
 689 
 690 
 691 
 692 
 693 
 694 
 695 
Table 6. Effect on coffee production of fertilization in different fractions and at different doses for Turrialba and Masatepe. 696 

Dose 

(kg N ha-1 y-1) 
Fractionation 

(day of year) 

Production average over 11 years 

(t DM ha-1 y-1) 

Turrialba Masatepe 

Full sun Erythrina trees Full sun  

50 

(135,289,350) Turrialba 

(185, 256, 276) Masatepe 

2.61 2.52 1.46 

100 2.85 2.73 1.54 

200 3.09 2.90 1.66 

300 3.17 2.97 1.73 

400 3.20 2.95 1.76 

300 

(135,289) Turrialba 

(165,275) Masatepe 

3.09 2.92 1.72 

(135,289,350) Turrialba 

(185,256,276) Masatepe 

3.17 2.97 1.73 

(135,210,289,350) Turrialba 

(165,215,275,300) Masatepe 

3.17 2.94 1.73 

 697 
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 699 
Figure 1. The coffee growing regions of Nicaragua and Costa Rica. Four climatic zones: 1 = cold and dry; 2 700 

= cold and humid ; 3 = hot and humid; 4 = hot and dry. Triangles indicate the experimental and coffee-701 

growing farms from which data were used for model simulations. 702 
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 704 

Figure 2. Start date of flowering simulated with the original unmodified model, the modified model (CAF2014) 705 

and actually observed flowering in Turrialba, Costa Rica. 706 

707 
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 708 
 709 

Figure 3. Coffee production at two sites in Costa Rica. Fertilization rate was high in Turrialba-3 (280 kg N 710 

ha-1 y-1) and intermediate in Turrialba-6 (150 kg N ha-1 y-1). Blue circles and error bars: measurements. Black 711 

lines: simulations using the posterior mode from cluster calibration, showing cumulative yield within each 712 

calendar year. 713 
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715 

 716 

 717 

Figure 4. Simulated vs. measured coffee productivity (t DM ha-1 y-1) at each calibrated site. The simulated 718 

yields are from the posterior mode after single-site calibration. The Llano Bonito site is not shown because it 719 

has data for only two years of production. The digits on the top two panels identify the six different sites in 720 

Turrialba and the four sites in Masatepe (see Table 1).  721 

  722 



33 

 

 723 

Figure 5. RMSE values for coffee production (t DM ha-1 y-1) from 12 sites after different calibrations in Costa 724 

Rica and Nicaragua. See Table 1 for details about the sites. 725 
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727 

 728 

Figure 6. Simulated vs. measured coffee productivity (t DM ha-1 y-1) after two types of multi-site calibration. 729 

Top two panels show results for the posterior mode from cluster calibration, the bottom panel for the posterior 730 

mode from generic calibration. The digits on the top panels identify the six different sites in Turrialba and the 731 

four sites in Masatepe (see Table 1). The letters in the bottom panel identify the Aquiares site and the Turrialba 732 

and Masatepe clusters. 733 

 734 
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 736 

Figure 7. Simulated vs. measured coffee productivity (t DM ha-1 y-1) for commercial farms in Nicaragua. 737 
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