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ABSTRACT In the cereal crop sorghum (Sorghum bicolor) inflorescence morphology variation underlies yield
variation and confers adaptation across precipitation gradients, but its genetic basis is poorly understood. We
characterized the genetic architecture of sorghum inflorescence morphology using a global nested association
mapping (NAM) population (2200 recombinant inbred lines) and 198,000 phenotypic observations frommulti-
environment trials for four inflorescence morphology traits (upper branch length, lower branch length, rachis
length, and rachis diameter). Trait correlations suggest that lower and upper branch length are under somewhat
independent control, while lower branch length and rachis diameter are highly pleiotropic. Joint linkage and
genome-wide association mapping revealed an oligogenic architecture with 1–22 QTL per trait, each explain-
ing 0.1–5.0% of variation across the entire NAMpopulation. There is a significant enrichment (2.twofold) of QTL
colocalizing with grass inflorescence gene homologs, notably with orthologs of maize Ramosa2 and rice
Aberrant Panicle Organization1 and TAWAWA1. Still, many QTL do not colocalize with inflorescence gene
homologs. In global georeferenced germplasm, allelic variation at the major inflorescence QTL is geograph-
ically patterned but only weakly associated with the gradient of annual precipitation. Comparison of NAM with
diversity panel association suggests that naive association models may capture some true associations not
identified bymixed linear models. Overall, the findings suggest that global inflorescence diversity in sorghum is
largely controlled by oligogenic, epistatic, and pleiotropic variation in ancestral regulatory networks. The
findings also provide a basis for genomics-enabled breeding of locally-adapted inflorescence morphology.
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Understanding the genetic architecture of complex traits in crops
provides insights into crop evolution and guidance on breeding

strategies. Adaptive traits are phenotypic characteristics that are
subject to selection toward an optimum for a particular environment
(Barrett and Hoekstra 2011). Genetic architecture describes the
structure of the genotype-phenotype map for complex traits in
populations: the number of loci, distribution of effect size, frequencies
of alleles, gene action (dominance and epistasis), and the degree of
linkage and pleiotropy (Holland 2007). A complex trait may be
oligogenic or polygenic, depending on whether few or many loci
contribute to the trait variation, respectively (Timpson et al., 2018).
Trait variation in a population may shift from oligogenic to polygenic
architecture as a population moves toward an optimum (i.e., Fisher-
Orr model) (Orr 2005; Tenaillon 2014). Thus, characterizing genetic
architecture of complex traits under natural and/or artificial selection
is a key step to bridge theoretical understanding (e.g., evolutionary,
metabolic, or developmental drivers) and applied outcomes (e.g., crop
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and livestock breeding strategies, or management of human genetic
disorders) (Hansen 2006; Timpson et al. 2018). For instance, mo-
lecular breeding strategies are guided by genetic architecture, with
marker-assisted backcross for monogenic traits, marker-assisted re-
current selection for oligogenic traits, and genomic selection for
polygenic traits (Bernardo 2008).

Divergence of adaptive traits often results in genetic differentia-
tion and population structure that hinders effective characterization
of their genetic architecture (Myles et al. 2009; Brachi et al. 2011).
Genome-wide association studies (GWAS) in diverse natural pop-
ulations have been widely used to characterize genetic architecture
but are limited by a fundamental tradeoff when causative variants
(i.e., the oligogenic component) are confounded with polygenic
variation. Models without population and/or kinship terms partition
the colinear variance into the monogenic/oligogenic term (leading to
false positive associations) while models with population and/or
kinship terms partition colinear variation into polygenic terms
(leading to false negatives) (Bergelson and Roux 2010). In a nested
association mapping (NAM) population, controlled crosses between
the common parent and diverse founders breaks up population
structure, increasing power for QTL detection (Myles et al. 2009).
In addition, the larger population size in most NAM populations
mitigates the Beavis effect, the overestimation of QTL effect size
that occurs in small populations (Utz et al. 2000). NAM has greatly
facilitated the characterization of genetic architecture in species
where controlled crosses are feasible, including many major crops
(Buckler et al. 2009; Maurer et al. 2015; Bajgain et al. 2016; Bouchet
et al. 2017).

Inflorescence morphology is a key component of crop adaptation
and yield (Harlan and deWet 1972; Cooper et al. 2014). Homologous
variation of inflorescences among cereals has long been noted
(Vavilov 1922) and inflorescence morphology has been a valuable
system to investigate the evolutionary dynamics and molecular basis
of genetic architecture in plants (Hermann and Kuhlemeier 2011;
Zhang and Yuan 2014). Analysis of inflorescence mutants has
revealed regulatory networks with genes controlling hormonal bio-
synthesis, hormone transport, signal transduction, and transcrip-
tional regulation (Zhang and Yuan 2014). Comparative studies
indicate that components of inflorescence regulatory networks are
largely conserved across grass species, but that substantial variation in
ancestral regulatory networks exists within and among species
(Kellogg 2007; Barazesh and McSteen 2008; Tanaka et al. 2013;
Huang et al. 2017). However, since most inflorescence regulators
were identified via mutant screens, the role of these ancestral genes in
natural variation or adaptive divergence of inflorescence morphology
is not well understood (Brown et al. 2011; Crowell et al. 2016;
Wu et al. 2016). In addition, studies of natural variation may reveal
genes not yet identified via mutant analysis.

Sorghum is a source of food, feed, and bioenergy in many parts of
the world, especially important to smallholder farmers in semi-arid
regions (National Research Council 1996). Sorghum has diffused to
contrasting agroclimatic zones, and harbors abundant variation in
traits such as height, leaf architecture, and inflorescence morphology.
Variation in inflorescence morphology is thought to underlie yield
components (Brown et al. 2006; Witt Hmon et al. 2013) and local
adaptation to agroclimatic zones defined by precipitation gradients
(Harlan and de Wet 1972; Kimber et al. 2013). The five major
botanical races of sorghum are largely defined based on inflorescence
morphology, along with seed and glume shape (Harlan and de Wet
1972). For instance, guinea sorghums with long open panicles pre-
dominate in humid zones while durra sorghums with short compact

panicles predominate in arid zones (Kimber et al. 2013). A few studies
have mapped inflorescence traits in sorghum, but biparental mapping
was limited by low diversity and GWAS were limited by confounded
population structure (Brown et al. 2006; Morris et al. 2013; Witt
Hmon et al. 2013; Olatoye et al. 2018). However, the genetic
architecture of inflorescence morphology remains poorly understood
and none of the underlying natural variants have been cloned in this
species. In this study we took advantage of a global NAM resource
to provide a more comprehensive view of the genetic architecture
of inflorescence morphology in sorghum. Our findings suggest
that global sorghum inflorescence variation is under the control of
oligogenic, epistatic, and pleiotropic loci, consistent with the
Fisher-Orr model under disruptive selection.

MATERIALS AND METHODS

Plant materials and phenotyping
The sorghum NAM population was derived from a cross between an
elite U.S. common parent RTx430 and 10 diverse founders that
originated from different agroclimatic zones, thereby capturing a
wide genetic and morphological diversity (Supplementary Table 1,
Supplementary Figure 1) (Bouchet et al. 2017). Each diverse parent
and its RILs represent a family of 200–233 RILs making a total of
2220 RILs in the population. To represent a typical range of growing
conditions, field phenotyping experiments were conducted under
rainfed conditions in semi-arid (Hays, Kansas; Agricultural Research
Center; 38.86, -99.33) and humid-continental (Manhattan, Kansas;
Agronomy North Farm; 39.21, -96.59) environments for two years
(2014 and 2015). In Hays in 2015, the NAM RILs were evaluated at
two contrasting sites; an upland site that tends to be water-limited
(HD15) and a bottomland site that tends to be well-watered (HI15).
Each site-by-year was regarded as one environment (Table 1). In the
second year (2015), RILs were randomized within maturity blocks of
families in a row-column design based the first-year flowering data.
Each row (corresponding to a plot) was 3 m with 1 m alleys between
ranges.

The NAM RILs were phenotyped at F6:7 and F6:8 generations for
upper primary branch length (UBL), lower primary branch length
(LBL), rachis length (RL), and rachis diameter (RD) (Supplementary
Figure 2). Three random panicles were collected from each plot after
physiological maturity and subsequently used for phenotyping. In-
florescence morphology traits were measured using barcode rulers
(1 mm precision) and barcode readers (Motorola Symbol CS3000
Series Scanner, Chicago IL, USA). RL was measured as the distance
from the apex of the panicle to the point of attachment of the lowest
rachis lower primary branch (Brown et al. 2006). RD was measured
using a digital Vernier caliper (0.1 mm precision) as the diameter
of the peduncle at the point of attachment of the bottommost
rachis lower primary branch. For UBL, three primary branches were
randomly detached from the apex of the panicle. For LBL, three
primary branches were randomly detached from the region closest to
the peduncle for two panicles (Supplementary Figure 2).

Genomic data analysis
Genotyping-by-sequencing of the NAM population and diverse
global germplasm was previously described (Bouchet et al. 2017;
Hu et al. 2019). Briefly, Illumina sequence reads were aligned to the
BTx623 reference genome version 3 using Burrow Wheeler Aligner
4.0 and SNP calling was done using TASSEL-GBS 5.0 (Glaubitz et al.
2014). For the current study, missing data imputation was done in
two stages using Beagle 4 (Browning and Browning 2013). The NAM
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population and the sorghum association mapping population (SAP)
GBS data were first extracted from the build. Filtering was conducted
to remove markers with (i) tri-allelic SNPs, (ii) missing data in more
than 80% of individuals, or (iii), 3% minor allele frequency prior to
imputation. The NAM population and sorghum association panel
(SAP; 334 accessions) (Casa et al. 2008) were imputed separately and
each germplasm set was filtered for MAF . 0.05. NAM RILs
with .10% heterozygosity were dropped from the analysis.

Phenotype and heritability analysis
Phenotypic data analysis was carried out using R programming
language and SAS (SAS Institute Inc., Cary, NC, USA). All traits
were tested for normality and the only trait (UBL) with significantly
skewed distribution was log transformed. Analysis of variance was
performed for each trait using aov function in R. The best linear
unbiased prediction (BLUP) of each trait was estimated using data
from five environments with lmer function in LME4 package in
R (Bates et al. 2015) with genotype, environment, and genotype-
environment interactions fitted as random effects (Wu et al. 2016).
The variance components used for broad sense heritability (H2)
were estimated using the maximum likelihood method by PROC
VARCOMP of the SAS software (SAS Institute Inc., Cary, NC, USA).
RIL-nested-within-family and RIL-nested-within-family by environ-
ment interaction were fit as random effects. The resulting variance
components were used to estimate the broad sense heritability (H2)
following equation 1 in (Hung et al. 2012) as:

H2 ¼
  ŝ2

RILðfamilyÞp

  ŝ2
RILðfamilyÞp þ  

ŝ2
env�RILðfamilyÞp

nenvlp

þ ŝ2
e

nplotp
[1]

where ŝ2
RILðfamilyÞp is the variance component of RILs nested within

family p, nenvlp is the harmonic mean of the number of environments
in which each RIL was observed, and nplotp the harmonic mean of the
total number of plots in which each RIL was observed. Pearson
pairwise correlation between traits was estimated using the residuals
derived from fitting a linear model for family and trait phenotypic
means:

y ¼ mþ gi þ eij [2]

where y is the vector of phenotypic data, m is the overall mean, gi is
the term for the NAM families, and eij is the residual.

Joint linkage mapping
Joint linkage analysis was performed using 92,391 markers and
2220 RILs. This approach is based on forward inclusion and back-
ward elimination stepwise regression approaches implemented in
TASSEL 5.0 stepwise plugin (Glaubitz et al. 2014). The family effect
was accounted for as a co-factor in the analysis. First, a nested joint

linkage (NJL) model was fitted where markers were nested within
families (Poland et al. 2011; Würschum et al. 2012). In addition, a
non-nested joint linkage model (JL), where markers were not nested
within families, was used due to its higher predictive power than NJL
(Würschum et al. 2012). Entry and exit Ftest values were set to 0.001
and based on 1000 permutations, the P-value threshold was set to
1.84 · 1026. The JL model was specified as:

                            y ¼   bo þ   af uf þ  
Xk

i¼1

xibi þ   ei   [3]

where b0 is the intercept, uf is the effect of the family of founder f
obtained in the cross with the common parent (RTx430), af is the
coefficient matrix relating uf to y, bi is the effect of the ith identified
locus in the model, xi is the incidence vector that relates bi to y and k is
the number of significant QTL in the final model (Yu et al. 2008).

Genome-wide association studies
GWAS was performed for all traits using 92,391 markers and
2220 RILs using BLUPs adjusted by environments. The multi-
locus-mixed model (MLMM) approach (Segura et al. 2012) imple-
mented in R was used for GWAS in the NAM population, as
described previously (Bouchet et al. 2017). The MLMM approach
performs stepwise regression involving both forward and backward
regressions, accounts for major loci and reduces the effect of allelic
heterogeneity. The family effect was fitted as a co-factor and a random
polygenic term (kinship relationship matrix) was also accounted for
in theMLMMmodel. Bonferroni correction with a = 0.05 was used to
determine the cut-off threshold for each trait association (a/total
number of markers = 5.4 · 1027).

For comparison with NAM, GWAS was performed in the SAP
using general linear model (GLM) and compressed mixed linear
model (CMLM) with the GAPIT R package (Lipka et al. 2012) to
match a previous study (Morris et al. 2013). The GLM (naive model)
did not account for population structure and was specified as:

    y ¼ Saþ   e [4]

where y is the vector of phenotypes, a is a vector of SNPs effects, and e
is the vector of residual effects, and S is the incident matrix of 1s and
0s relating y to a. The CMLM model (full model) accounted for
population structure and polygenic background effects (kinship) was
specified as:

y ¼ Saþ Qv þ Zuþ   e [5]

where y is the vector of phenotype, and u is a vector of random genetic
background effects. X, Q, and Z are incident matrices of 1s and 0s
relating y to b and u (Yu et al. 2006). The phenotypic data in the
SAP used for GWAS is from a previous study (Brown et al. 2008;

n■ Table 1 Summary of field experiments using the nested association mapping population

Location Climatea Year Precipitation (mm)b Code

Manhattan, KS Humid Continental 2014 698 MN14
Hays, KS (Upland) Semi-Arid 2014 639 HA14
Manhattan, KS Humid Continental 2015 998 MN15
Hays, KS (Bottomland) Semi-Arid 2015 513 HI15
Hays, KS (Upland) Semi-Arid 2015 513 HD15
a
Koppen-Geiger climate classification for the location.

b
Annual precipitation, for October of the prior year to October of the given year. (National Oceanic and Atmospheric Administration, U.S. Department of Commerce.)
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Morris et al. 2013). A custom script was used to identify QTL that
overlapped within a 50 kb window (a conservative LD window with
regards to LD decay in sorghum NAM and SAP) (Hu et al. 2019)
between the NAM and GWAS (GLM or CMLM) mapping results
for LBL and RL.

Effect size and allele frequency estimation
Allele frequencies at the SNPs were calculated using snpStats package
in R (Clayton 2014). The additive effect size of QTL within and across
families were estimated as the difference between the mean of the two
homozygous classes for each QTL divided by two. The additive effect
of each QTL was estimated relative to RTx430. The sum of squares
of QTL divided by the total sum of squares gave the proportion of
variance explained. To estimate within-family variation explained by
each QTL, a regression model was fit with terms for family and QTL
nested within family as fixed effects (Würschum et al. 2012):

yijkl ¼ mþ gi þ vjk þ eijkl [6]

where yijkl is the phenotype, gi is the family term, vjk is the term for
QTL nested within family, and eijk is the residual.

Grass homologs search around identified loci and
enrichment analysis
A set of known genes that control inflorescence morphology in
grasses was compiled from literature consisting of 20 maize genes,
eight rice genes, and one foxtail millet gene; in addition two sorghum
genes that control plant architecture were included (number of genes
= 30; Supplementary File 1). Based on this candidate gene set,
138 sorghum homologs (orthologs and paralogs) were downloaded
from Phytozome 12, which uses mutual best hit and Hidden Markov
Model peptide profiles to identify putative homologs (Goodstein et al.
2012). To identify putative orthologs, the most similar homolog was
identified, then orthology was confirmed based on synteny using the
“Gene Ancestry” synteny viewer in Phytozome and (for maize genes)
the Classical Maize Genes browser (Schnable and Freeling 2011). For
four genes where the most similar homolog does not have synteny
evidence, the homology type is denoted as “Most similar homolog” in
Supplementary File 1. All putative orthologs mentioned in the text are
most similar and syntenic with the knownmaize, rice, or foxtail millet
gene. A custom R script was used to search for homologs within
150 kb window upstream and downstream of each association, based
on the LD decay rate in the NAM population (Hu et al. 2019).
Enrichment analysis of a priori genes around identified QTL was
performed using chi square test to compare observed colocalization
frequency with colocalization of QTL with random genes from the
sorghum genome version 3.1 gff3 file on Phytozome. Descriptions of
expression patterns for candidate genes are based on the Phytozome
gene expression atlas, which covers 47 RNA sequencing profiles for
various tissues and treatments.

Geographic analysis of SNPs at inflorescence QTL
For three inflorescence morphology QTL that colocalized with
sorghum orthologs of maize or rice inflorescence genes, the geo-
graphic distribution of the SNP alleles was investigated. Allelic data
for the targeted SNPs was extracted from GBS SNP data for global
georeferenced sorghum accession (number of accession = 2,227;
number of SNP = 431,691) (Hu et al. 2019). The alleles were then
plotted on a global geographic map with national boundaries based
on the geographic coordinates of each georeferenced accession.
Climatic association test was performed for targeted SNPs between

the annual mean precipitation and allelic variation in georeferenced
global accessions using both the naive model (GLM) and the mixed
model that accounted for kinship only.

Data availability
Phenotype and genotype data are available at FigShare: https://
figshare.com/s/ae874edd86775a9d1b1d. File S1 contains detailed de-
scriptions of QTL information, a priori gene list and a priori genes
that colocalized with QTL. File S2 contains heatmap of QTL effects
within NAM families. File S3 contains detailed description of asso-
ciations that colocalized between NAM, GLM, and CMLM and
results of association of inflorescence QTL alleles with precipitation
for both GLM and MLM. The NAM population seeds are avail-
able from the USDA National Plant Germplasm System (https://
www.ars-grin.gov/). Raw sequencing data for the NAM population
are published (Bouchet et al. 2017) and available in the NCBI Sequence
Read Archive under project accession SRP095629 and on Dryad Digital
Repository (https://doi:10.5061/dryad.gm073). R scripts and Linux shell
scripts are available at https://github.com/marcbios/Sorghum-
Inflorescence-Nested-Association-Mapping. Supplemental material
available at figshare: https://doi.org/10.25387/g3.11356274.

RESULTS

Variation of inflorescence morphology in the
NAM population
Phenotypic measurements were collected for four inflorescence
morphology traits across five environments (Table 1; Figure S2),
representing over 198,000 observations. The number of RILs in each
family ranged from 202 in the Segaolane family to 233 in the SC265
family (Supplementary Table 1). Significant genotypic differences
were observed for all four inflorescence traits (Table 2). The broad-
sense heritability estimates for all four traits were high, ranging from
0.59 to 0.92. The SC265 and SC283 families had the longest lower
branches (mean across RILs of 99 mm). The SC283 family had the
longest upper branches (mean across RILs of 64 mm). The SC265 and
Segaolane families had the longest rachis, with mean lengths of
316 mm and 305 mm, respectively. The largest rachis diameters
were observed in the Ajabsido, Macia, and SC35 families (a mean of
�9.5 mm across RILs in each family). Phenotypic variation distri-
bution within families showed that in some families the mean trait
value of the RILs was greater than the mean of either parent (Figure
1). The highest trait-by-trait phenotypic correlations were for RL and
LBL (r = 0.71; P-value , 0.01). By contrast, UBL and LBL had a low
positive correlation (r = 0.19; P-value , 0.01), and RL had no
correlation with either UBL or RD (Figure 2).

QTL variation in the NAM population
A total of 116,405 SNPs were obtained after SNP calling, imputation,
and filtering (minimumMAF = 5%). After filtering for 0.96 inbreeding

n■ Table 2 Mean, range, and broad sense heritability (H2) for lower
branch length (LBL), upper branch length (UBL), rachis length (RL),
and rachis diameter (RD)

Traita Range (mm) Mean (mm) H2

LBL��� 267 – 176 82 0.86
UBL� 7 – 170 48 0.85
RL��� 111 – 465 274 0.92
RD��� 3.8 – 13.5 8.3 0.59
a
Significant genotypic differences given by �, ��, ��� at 0.05, 0.01 and 0.001,
respectively.
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coefficient, a total of 92,391 markers were identified. Significant QTL
associations were observed for all traits when using MLMM, JL, and
NJL models (Figure 3, Supplementary Figure 3–4). MLMM identified
nine significant associations in total for all traits. The JL model
identified 81 QTL, while the NJL model identified 40 QTL across
all traits (Supplementary File 1 and Supplementary Table 2). Allele

frequencies at the QTL ranged from 0.05 to 0.48 (Supplementary File
1). The proportion of within-family variation explained by all QTL
(i.e., an estimate of the oligogenic component) varied substantially
among traits, with 12%, 37%, 31%, and 21% of variation explained by
QTL for UBL, LBL, RL, and RD, respectively. Within-family and
across-family effects of each QTL for NJL and JL models were

Figure 1 Phenotypic distribution of sorghum inflorescence morphology. Phenotypic distribution of line means for each recombinant inbred line
(RIL) family and each of the inflorescence traits, (A) lower branch length, (B) upper branch length, (C) rachis length, and (D) rachis diameter. Blue lines
indicate mean trait value for the common parent (RTx430), green lines indicatemean trait values for each of the other parents (listed on the left), and
red triangles indicate the mean trait value across the RILs for each family.

Figure 2 Pairwise correlation among inflorescence
morphology traits. Pearson correlation (upper diag-
onal) between residuals of the regression of the
family on the best linear unbiased predictors (BLUPs)
of lower branch length (LBL), upper branch length
(UBL), rachis length (RL), and rachis diameter (RD).
Significance at 0.001 (���) is noted. BLUPs were
estimated across five environments (site-by-year).
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estimated relative to RTx430 (Supplementary File 2). LBL QTL
qSbLBL7.5960 explained the largest proportion of variation (4.6%)
among all QTL identified in this study (Table 3).

QTL colocalization and enrichment with a priori
candidate genes
To assess the overall role of variation at ancestral inflorescence
regulators, we performed colocalization and enrichment analysis
between the QTL and a set of a priori candidate genes containing
sorghum homologs of rice, maize, and foxtail millet genes (n = 138).

NAMQTLwere significantly enriched for colocalization with a priori
candidate genes (2-fold enrichment; P-value , 0.001). Of 123 unique
QTL, 28 colocalized with a priori genes. Among the QTL that overlapped
with a priori candidate genes, two QTL were inside the gene, three QTL
were ,15 kb from the gene, 16 unique QTL were 15–100 kb from the
gene, and eight unique QTL were 100–150 kb from the genes (Table 4
and Supplementary File 1). Overall, 24 genes colocalized with inflores-
cence QTL, while 114 a priori candidate genes (of 138) did not overlap
with any inflorescence QTL (Supplementary File 1).

Comparison of NAM and diversity panel GWAS
NAM provides an independent approach to validate GWAS QTL
from diversity panels and assess the relative performance of GWAS

models. We compared the inflorescence loci identified in the NAM
with GWAS QTL for LBL and RL identified in the SAP, identifying
colocalization (within 50 kb) between NAM QTL SNPs and top 5%
SNP associations in the GLM or CMLM (Figure 4 and Supplemental
File 2). For LBL, the comparison revealed 26 overlaps between NAM
vs. GLM, and 20 overlaps between NAM vs. CMLM. For RL, the
comparison revealed 17 overlaps for both NAM vs. GLM and NAM
vs. CMLM. To identify gene candidates that are supported by
multiple mapping approaches, a priori candidate genes were cata-
loged in overlapping NAM and GWAS QTL (Supplementary File 3).
For LBL, five a priori candidate genes colocalized with overlapping
NAM and GLM QTL, while two a priori candidate genes colocalized
with overlapping NAM and CMLMQTL. Similarly for RL, six a priori
candidate genes colocalized with overlapping NAM and GLM QTL,
and six genes colocalized with overlapping NAM and CMLM QTL.

Geographic distribution of allele and environment-
marker associations
For three NAM QTL that were near a priori candidate genes, we
investigated the SNP allele distribution in global georeferenced
accessions (Figure 5). Strong geographic patterns were observed
for SNP alleles associated with inflorescence morphology variation,
though the patterns differed among SNPs (Figure 5 A, C, and E).

Figure 3 QTL mapping for inflores-
cence morphology using joint linkage
model. Genome positions of loci asso-
ciated with (A) upper branch length, (B)
lower branch length, (C) rachis length,
and (D) rachis diameter. A priori can-
didate genes that colocalize with QTL
within 150 kb are noted as follows.
Green text indicates putative sorghum
orthologs of a priori candidate genes
while brown text indicates paralogs.
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The LBL-associated C allele (S10_56303321) near the sorghum
ortholog of APO1 was predominant in Horn of Africa, Yemen,
southern Africa, southern India, and China. The T allele was pre-
dominant in west and central Africa. For the UBL-associated SNP
(S3_4750709) near ramosa2, the C allele was predominant in most of
Africa and India, while the G allele was predominant in Nigeria,
Sierra Leone, and China. For the LBL-associated SNP (S7_59751994)
near YUCCA5 (i.e., the sparse inflorescence1 paralog), one allele was
predominant in west Africa and India, while the other allele was
predominant in southeastern Africa. Based on GLM the differenti-
ation of the alleles across precipitation gradient (considering annual
precipitation as a proxy) was nominally significant, but weak, for all
three SNPs (Figure 5 B, D, and F). None were significantly differ-
entiated under a MLM that accounted for kinship (File S3).

DISCUSSION

Genetic architecture of inflorescence adaptation
Nested association mapping can help characterize the genetic archi-
tecture of adaptive traits while avoiding some pitfalls of GWAS. This
sorghum NAM study provides a high-powered dissection of genetic
architecture for global variation in inflorescence morphology, a key

trait for adaptation across agroclimatic zones (Harlan and de
Wet 1972; Olatoye et al. 2018). Our study identified many new loci
(Table 3) and provided more precise mapping of known loci (Brown
et al. 2006). Among the known QTL is LBL QTL (qSbLBL7.5975),
which appears to be pleiotropic with RL (as qSbRL7.5975). Previous
linkage mapping studies identified association around this same Dw3
region for QTL associated with rachis length and primary branch
length (Brown et al. 2006; Shehzad and Okuno 2015) and YUCCA5
was proposed as a candidate gene for the branch length QTL (Brown
et al. 2008).

The preponderance of moderate and large effect QTL for four
inflorescence morphology traits suggests a predominantly oligogenic
trait architecture for inflorescence variation in global sorghum di-
versity (Supplementary Table 2, Supplementary Figure 3-4, Supple-
mentary File 1-2). Note, a PVE estimate that would be considered
“small effect” (e.g., 1%) in a typical biparental study (e.g., 100–300
RILs) may be better characterized as “moderate effect” in a NAM
population, given the denominator is phenotypic variance across
many diverse families and thousands of RILs. In previous studies of
sorghum inflorescence in biparental populations, large effect loci
(explaining up to 19% of the variance) were found, but effect size
of these loci may have been upwardly biased due to the Beavis effect

n■ Table 3 Inflorescence QTL that explain > 1.5% of variation across the NAM population

QTL code MAFa PVEb Traitc Gene colocalizationd QTL colocalizatione

qSbUBL3.0475 0.18 3.8 UBL Yes (ra2 ortholog) Brown et al. 2006
qSbUBL3.0476 0.26 3.2 UBL Yes (ra2 ortholog) Brown et al. 2006
qSbUBL2.6719 0.43 2.1 UBL
qSbUBL3.0734 0.23 1.8 UBL Yes (ra1 paralog)
qSbUBL6.4606 0.11 1.7 UBL
qSbUBL3.5243 0.05 1.6 UBL
qSbRL10.4877 0.39 2.6 RL
qSbRL3.6985 0.32 2.5 RL
qSbRL6.4280 0.23 2.2 RL
qSbRL4.5134 0.16 1.8 RL
qSbRL7.5975 0.18 3.0 RL Yes (Dw3/YUCCA5) Brown et al. 2006
qSbRL1.7845 0.36 1.7 RL
qSbRL1.2156 0.38 1.5 RL
qSbRL3.6936 0.44 1.5 RL
qSbRL6.4277 0.32 1.5 RL
qSbLBL7.5975 0.18 4.4 LBL Yes (Dw3/YUCCA5) Brown et al. 2006
qSbLBL7.5960 0.18 4.6 LBL
qSbLBL7.5663 0.23 4.3 LBL
qSbLBL7.5692 0.18 3.6 LBL
qSbLBL4.5244 0.1 3.1 LBL
qSbLBL4.4933 0.41 2.8 LBL
qSbLBL4.6693 0.05 2.6 LBL
qSbLBL4.6210 0.17 2.5 LBL
qSbLBL4.5005 0.47 2.3 LBL
qSbLBL2.6358 0.26 2.2 LBL
qSbLBL7.5995 0.43 1.8 LBL Yes (Dw3) Brown et al. 2006
qSbLBL10.5188 0.13 1.8 LBL
qSbLBL2.6358 0.43 1.7 LBL Yes (IPA1 paralog)
qSbLBL4.5421 0.3 1.7 LBL
qSbLBL3.7019 0.37 1.6 LBL
qSbLBL7.5707 0.34 1.6 LBL
qSbLBL9.4934 0.38 1.6 LBL
qSbLBL3.7019 0.37 1.5 LBL
a
MAF: Minor allele frequency.

b
PVE: Proportion of variation explained.

c
Lower branch length (LBL), upper branch length (UBL), rachis length (RL), and rachis diameter (RD).

d
Denotes if there is a colocalization with a priori candidate gene (within 150 kb from QTL). Details on colocalized genes are provided in Table 4.

e
Denotes if there is a colocalization with a QTL from a previous biparental linkage study (Brown et al. 2006) or GWAS (Morris et al. 2013).
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(Xu 2003). The population size of the NAM (2200 RILs) used in this
study should provide a more robust estimation of QTL effect size,
which are expected to be accurate with population sizes.1000 (King
and Long 2017). In maize, effect size distribution of loci associated
with ear and tassel traits has been linked to strong directional
selection during maize domestication (Brown et al. 2011; Xue
et al. 2016). In sorghum, the moderate to large effect loci identified
here may reflect selection toward multiple contrasting fitness optima
during the adaptation to contrasting agroclimatic zones, consistent
with the Fisher-Orr model under disruptive selection (Orr 2005;
Tenaillon 2014).

Epistasis may be reflected in asymmetric transgressive variation
(Rieseberg et al. 1999; Gaertner et al. 2012). The shift of the RIL
means from themid-parent value in some families, and some strongly
skewed trait distributions in NAM RILs, suggest that epistasis may
be pervasive (e.g., UBL in SC283 family or RD in SC1103 family;
Figure 1). These results support previous findings of pervasive
epistasis for inflorescence and plant morphology traits in a diallel
population in sorghum (Ben-Israel et al. 2012). Further evidence for
epistatic interactions of additive QTL can be provided by opposite
allelic effects of QTL across families (Buckler et al. 2009; Peiffer et al.
2014). Consistent with a hypothesis of gene-by-genetic background

n■ Table 4 Details on QTL that colocalize with a priori candidate genes

QTL IDa MAFb PVEc Traitd Gene Name Sorghum IDe % Simf Homology Proximity (kb)g

qSbLBL7.5975 0.18 4.4 LBL YUCCA5h Sobic.007G163200 62 Paralog In gene
qSbRL7.5975 0.18 3.0 RL YUCCA5h Sobic.007G163200 62 Paralog In gene
qSbUBL3.0475 0.18 3.8 UBL Ramosa2 (ra2)h Sobic.003G052900 92.7 Ortholog 38
qSbUBL3.0476 0.26 3.2 UBL Ramosa2 (ra2)h Sobic.003G052900 92.7 Ortholog 32
qSbLBL2.6358 0.26 2.2 LBL Ideal Plant Architecture (IPA1) Sobic.002G247800 64.3 Paralog In gene
qSbUBL3.7343 0.23 1.8 UBL Ramosa1 (ra1) Sobic.003G084400 14.3 Paralog 87
qSbLBL7.5995 0.43 1.8 LBL Dwarf3 (Dw3)h Sobic.007G163800 Known gene 131
qSbLBL2.6348 0.43 1.7 LBL Ideal Plant Architecture (IPA1) Sobic.002G247800 64.3 Paralog 101
qSbRL1.2067 0.45 1.4 RL TAWAWA1 (TAW1) Sobic.001G219400 70.1 Ortholog 112
qSbRL1.7649 0.42 1.4 RL sparse inflorescence1 (spi1) Sobic.001G495850 70.4 Paralog 70
qSbUBL4.5850 0.31 1.4 UBL BRANCH ANGLE DEFECTIVE 1 (BAD1) Sobic.004G237300 11.6 Paralog 15
qSbRL10.5631 0.42 1.2 RL Aberrant Panicle Organization (APO1)i Sobic.010G220400 89.9 Ortholog 58
qSbRL1.6301 0.1 1.1 RL DENSE AND ERECT PANICLE (OsDEP1) Sobic.001G341700 14.8 Paralog 101
qSbRD6.5177 0.22 1.0 RD indeterminate floral apex1 (ifa1) Sobic.006G160800 38.2 Paralog 95
a
Quantitative trait loci identification (QTL ID)

b
MAF: minor allele frequency.

c
Proportion of variation explained (PVE) .=1.0%

d
Lower branch length (LBL), upper branch length (UBL), rachis length (RL), and rachis diameter (RD).

e
Sorghum homolog.

f
Percentage similarity of sorghum gene to reference gene.

g
Proximity of SNP from joint linkage mapping QTL to nearest a priori candidate gene.

h
Gene identified previously by Brown et al. 2006.

i
Gene identified previously by Morris et al. 2013.

Figure 4 Comparison of joint linkage in a NAM
population vs. genome-wide association in a diver-
sity panel. Manhattan plot for the comparison of
genome-wide association approaches for (A) lower
branch length and (B) rachis length using general
linear model (GLM) in gray, compressed mixed linear
model (CMLM) in yellow, and NAM joint linkage (JL)
model in red. Broken lines in purple and blue note
colocalization between NAM and GLM (50 kb window),
and between NAM and CMLM (50 kb window), re-
spectively. GLM and CMLM were carried out in the
sorghum association panel (SAP, n = 334) and NAM
(n = 2200).
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epistasis, inflorescence morphology QTL showed opposed allelic
effects across families for 63% (82/131) of QTL (Supplementary File
2). Other QTL (16%) identified had consistent allelic effects in all
families. These loci may influence inflorescence variation additively
across multiple botanical races, or may reflect rare variants in the
common parent. Further analyses to map interacting loci will be
needed to characterize the role of epistasis in sorghum inflorescence
variation (Chen et al. 2019).

Genetic correlation among traits due to linkage or pleiotropy can
limit or promote adaptive evolution (Lynch and Walsh 1998). LBL
and RL had high phenotypic correlation (r = 0.71, P-value , 0.001)
and had two major effect QTL that were in common (qSbLBL7.5975/
qSbRL7.5975 and qSbLBL10.5630/qSbRL10.5631) (Figure 3). Given
the large size of the NAM population, and concomitant high mapping
resolution, if these QTL colocalizations are not due to pleiotropy then
linkage must be very tight (e.g., ,2 cM). In maize, mutations in the
YUCCA-family gene sparse inflorescence1 led to drastic reduction in
both inflorescence rachis length and branch length (Gallavotti et al.
2008), suggesting pleiotropy as a parsimonious explanation for the
genetic correlation of LBL and RL. By contrast, the two branch length
traits (LBL and UBL) had relatively low phenotypic correlation (0.24)
and lack of colocalization between QTL, suggesting that they are
largely under independent genetic control. Studies of the underlying
molecular network (e.g., mutant analysis, spatiotemporal expression
dynamics) should provide further insight on the basis of pleiotropic
vs. independent genetic control (Eveland et al. 2014).

Studies have shown evidence of local adaptation across agro-
climatic zones for several sorghum traits (Lasky et al. 2015; Olatoye
et al. 2018; Wang et al. 2020). For sorghum inflorescence, there is

evidence from phenotypic correlations of clinal adaptation across a
regional precipitation gradient (Olatoye et al. 2018). In this study, we
observed differing global geographic distribution of the alleles at
inflorescence QTL that colocalized with a priori genes regulating
inflorescence branch traits like lower branch length and upper branch
length (Figure 5). This finding is similar to previous reports (based on
GWAS and geographic allele distribution in a smaller georeferenced
panel) suggesting the spread of multiple alleles influencing inflores-
cence traits (Morris et al. 2013). However, the inflorescence QTL
alleles were not strongly associated with annual mean precipitation
across global precipitation zones (Figure 5). This suggests that the
variation at these selected genes may not underlie clinal adaptation of
inflorescence to the global precipitation gradient.

Our comparison of NAM and GWAS QTL suggests that naive
GWAS models (GLM) can contain valuable associations signals for
adaptive traits that may be missed in mixed model association. This
inference is based on the finding that the number of a priori candidate
genes that colocalized with NAM vs. GLM overlaps was higher than
the number that colocalized with NAM vs. CMLM overlaps (Figure 4
and Supplementary File 1). While nominal GLM P-values are often
inflated, the top associations in simple GLM may reflect true QTL
that are not identified in MLM because they are colinear with
polygenic variance and accounted for by the polygenic term
(Bergelson and Roux 2010; Vilhjálmsson and Nordborg 2013).

Evidence of variation in ancestral regulatory networks
Conserved regulatory networks underlying inflorescence develop-
ment have been identified by comparative mutant and QTL studies
(Kellogg 2007; Zhang and Yuan 2014). However, it is not yet known

Figure 5 Global geographic allele dis-
tribution at some inflorescence QTL
discovered in the NAM population.
Global geographic and precipitation
gradient distribution of alleles atSNP
S10_56303321 associated with lower
branch length thatcolocalized thesorghum
ortholog of rice Aberrant Panicle Or-
ganization1 (A-B), SNP S3_4750709
associated with lower branch length
that colocalized the sorghum ortholog
of maize ramosa2 (C-D), and SNP
S7_59751994 associated with upper
branch length that colocalized the
sorghum ortholog of maize sparse
inflorescence1 (E-F).Dashed lines in den-
sity plots represent the mean of each
distribution.
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whether variation in these ancestral regulatory networks underlies
local adaptation of inflorescence morphology. The enrichment of
sorghum homologs of grass inflorescence genes at inflorescence QTL
suggests that a substantial proportion of sorghum inflorescence
variation is due to polymorphism in ancestral regulatory networks
that have been elucidated in maize and rice. Still, many of the
observed QTL did not colocalize with a priori candidate genes
(see Table 3), so may be due to genes not previously implicated in
inflorescence development. We note that the QTL mapping and gene
colocalization studies presented here can generate hypotheses on
potential causative genes but not test these hypotheses. Further
functional studies, such as fine mapping, mutant analysis, and gene
expression analysis, will be required to test hypotheses on potential
causative genes (Murphy et al. 2014; Jiao et al. 2016).

Some of the a priori candidate genes that colocalized with in-
florescence QTL were sorghum homologs of hormone transporters or
biosynthesis enzymes that regulate inflorescence development. One
example is at qSbLBL7.5975/qSbRL7.5975, which was centered on the
intragenic region of YUCCA5 (Sobic.007G163200; putative flavin
monooxygenase auxin biosynthesis gene) (Figure 3, Supplementary
Figure 3-4). This YUCCA5 gene is a paralog of maize auxin bio-
synthesis gene sparse inflorescence1 (Spi1; 62% similar to maize
Spi1) (Figure 3B). However, the sorghum YUCCA5 gene has little to
no expression in the tissues/treatments assayed in the Phytozome
expression atlas. The peak SNP for this QTL is also 70 kb from
the canonical sorghum height gene and auxin efflux transporter
Dw3 (Sobic.007G163800), which could another candidate to con-
sider (Figure 3B and 3C).

Several other a priori candidate genes under QTL are homologs of
transcription factors that regulate gene expression during inflores-
cence meristem differentiation in cereals. For instance, the top UBL
QTL (qSbUBL3.0475) colocalized with the sorghum ortholog of
maize ramosa2 (ra2) encoding a C2H2 zinc-finger transcription
factor (Sobic.003G052900, 92.7% similarity to maize ra2). In maize
and sorghum, the ra2 transcript is expressed in a group of cells that
predicts the position of axillary meristem formation in inflorescence
(Bortiri et al. 2006; Eveland et al. 2014). The QTL qSbUBL4.5850
colocalized with a putative TCP transcription factor (Sobic.004G237300;
15 kb from the gene) that is a paralog of maize tassel development gene
Branch Angle Defective1 (BAD1; 12% similar) (Bai et al. 2012).
While this distant paralog of BAD1 is unlikely to have the same
function, the expression of Sobic.004G237300 is highest in peduncle
and upper internode at floral initiation stage, suggesting it may be
an interesting candidate for further study.

An LBL and RL QTL (qSbLBL10.5630/qSbRL10.5631) colocalized
with the sorghum ortholog of rice Aberrant Panicle Organization1
(APO1) (Sobic.010G220400, 90% similar to rice APO1; 58 kb away)
(Figure 3B and 3C). In rice, APO1 encodes an F-box protein that
regulates inflorescence meristem fate (Ikeda et al. 2007). Sorghum
APO1 was also tagged (inside the gene) by a top branch length-
associated SNP in a previous GWAS using the SAP (Morris et al.
2013), strongly suggesting this gene underlies variation for inflo-
rescence compactness. Another RL QTL (qSbRL1.2067) colocalized
with the sorghum ortholog of rice TAW1 (TAWAWA1) gene
(Sobic.001G219400, 70% similar to rice TAW1). Based on the
Phytozome expression atlas, sorghum TAW1 transcript is highest
in peduncle and internode at floral initiation. Given that TAW1
regulates development of the rice inflorescence meristem (Yoshida
et al. 2013), the findings suggest the hypothesis that TAW1 con-
ditions natural variation for inflorescence morphology in grasses
more generally.

Prospects for genome-wide dissection and prediction of
inflorescence morphology
This study provided a large-scale characterization of the genome
regions that influence inflorescence morphology variation across
global sorghum diversity. It is likely that additional variation in
inflorescence morphology is yet to be discovered in sorghum, since
at least �30% of global variation was not captured in the 11 NAM
founder parents (Bouchet et al. 2017). Therefore, increasing the
number of families in the NAM resource should be beneficial for
both increased mapping resolution and allelic diversity. Although
this may increase phenotyping burden, the use of high-throughput
phenotyping platforms could overcome this challenge (Crowell
et al. 2016).

For sorghum breeding programs globally, obtaining locally-
adaptive inflorescence morphology is essential. In field-based phe-
notypic selection, inflorescence morphology is directly observable
prior to pollination. However, a shift to rapid-cycling genomics-
enabled breeding in controlled conditions (Watson et al. 2018)
would require accurate marker selection or genome prediction of
inflorescence morphology along with other agronomic traits. Since
the NAM founders originated from diverse agroclimatic zones, the
genotype-phenotype map we developed should be relevant for
sorghum breeding and genetics programs globally.
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