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Abstract

In ungulates, early embryonic development differs dramatically from that of mice and humans and is characterized by an extended 
period of pre- and peri-implantation development in utero. After hatching from the zona pellucida, the ungulate blastocyst will stay 
free in the uterus for many days before implanting within the uterine wall. During this protracted peri-implantation period, an 
intimate dialog between the embryo and the uterus is established through a complex series of paracrine signals. The blastocyst 
elongates, leading to extreme growth of extra-embryonic tissues, and at the same time, the inner cell mass moves up into the 
trophoblast and evolves into the embryonic disc, which is directly exposed to molecules present in the uterine fluids. In the peri-
implantation period, uterine glands secrete a wide range of molecules, including enzymes, growth factors, adhesion proteins, 
cytokines, hormones, and nutrients like amino and fatty acids, which are collectively referred to as histotroph. The identification, 
role, and effects of these secretions on the biology of the conceptus are still being described; however, the studies that have been 
conducted to date have demonstrated that histotroph is essential for embryonic development and serves a critical function during the 
pre- and peri implantation periods. Here, we present an overview of current knowledge on the molecular dialogue among embryonic, 
extraembryonic, and maternal tissues prior to implantation. Taken together, the body of work described here demonstrates the extent 
to which this dialog enables the coordination of the development of the conceptus with respect to the establishment of embryonic 
and extra-embryonic tissues as well as in preparation for implantation.
Reproduction (2020) 159 R151–R172

Introduction

In most mammals, the embryo develops in a dedicated 
environment, the uterus, which serves both nutritive 
and protective functions. As a consequence, the main 
activity of the first period of embryonic development 
is the production of extraembryonic tissues which are 
essential for placentation and for the survival of the 
embryo in utero. Early mammalian embryogenesis 
has been extensively studied in rodents and primates, 
with the mouse as the main reference species of the 
last several decades. These studies have identified the 
key principles that govern early development including 
morphogenesis, fate commitment, and pluripotency 
(Artus & Hadjantonakis 2012). From fertilization 
to the blastocyst stage, a conserved succession of 
morphogenetic events is observed in all mammalian 
species and occurs at a similar rate, lasting from 4.5 
days to 7–8 days. During this period, highly conserved 
developmental steps result in the differentiation and 
segregation of embryonic from extraembryonic tissues 
(although these tissues sometimes remain intermingled 

within the same cell layer, as in marsupials). At the end 
of this process, the resulting blastocyst is composed of 
three distinct cell populations: (i) the epiblast, which is 
pluripotent and forms the embryo proper, and two sets of 
extraembryonic tissues that are necessary for specialized 
interactions with the maternal uterus, (ii) the trophoblast 
or trophectoderm, an extra-embryonic layer that 
contributes to the fetal placenta, and (iii) the hypoblast or 
primitive endoderm, an extra-embryonic layer that gives 
rise to the visceral and parietal hypoblast (Acloque et al. 
2012). At this point, different developmental strategies 
evolved in different mammalian species, leading 
either to implantation (as in mice or humans) or to 
an extended period of pre-implantation development 
frequently associated with extreme growth of extra-
embryonic tissues and the initiation of gastrulation and 
morphogenesis (at the end of this process). This specific 
developmental window has been described in many 
ungulate species (Hue et al. 2012). During this period, 
the conceptus remains in contact with uterine fluids, 
through the external layers composed of the trophoblast 
and the epiblast.
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To date, little is known of the complex molecular dialog 
that occurs between the maternal uterus and the first 
three main cell populations of the conceptus. This dialog 
and its molecular dynamics are key to understanding 
the coordination of numerous crucial developmental 
processes, including the elongation of extra-embryonic 
tissues, visceral hypoblast formation, epiblast priming, 
initiation of gastrulation, primordial germ cell formation, 
left–right symmetry specification, and finally conceptus 
implantation. The aim of this review is to summarize the 
current state of knowledge of this ‘ménage à quatre’. We 
also examine how pluripotency is controlled in some 
ungulate species and why it remains so complicated to 
reproduce in vitro this amazing in vivo process.

Preimplantation development in ungulates and early 
lineage specification

Timing and early morphogenesis of an 
ungulate conceptus

During its journey from the oviduct to the uterus, 
the embryo undergoes a series of cleavage and 
morphogenetic events whose dynamics and timing vary 
depending on the species in question. The first noticable 
change in the embryo is a flattening of the blastomeres, 
giving it the appearance of a mulberry and thus the 
name morula. This process, referred to as compaction, 
results from an increase in intercellular adhesion and the 
acquisition of cell polarity. Compaction is also closely 
associated with the differentiation of the inner cell mass 
(ICM) from the trophectoderm (TE) in the mouse. In 
ungulates, this occurs around day 5, at the 16–32-cell 
stage in bovines (Van Soom et  al. 1997), pigs (Reima 
et al. 1993), and sheep (Bindon 1971). The second major 
morphogenetic event is the formation of the blastocyst, 
characterized by a fluid-filled cavity known as the 
blastocoel. This process of cavitation occurs around day 
6–7 in bovines (Van Soom et al. 1997) and day 7–8 in 
pigs (Reima et al. 1993) and sheep (Bindon 1971). The 
timing of these developmental processes is quite similar 
in all mammalian species – activation of the embryonic 
genome occurs between the 5-cell and the 16-cell 
stage – and the main molecular players and signaling 
pathways described in rodents and primates are also 
conserved in ungulates (Piliszek & Madeja 2018). The 
main differences that have been described among 
species so far mostly relate to variations in functional 
dynamics, which will be detailed later.

In most ungulates, after the blastocyst hatches from 
the zona pellucida, it remains free in the uterine tract for 
several days before implanting within the uterine wall. 
This protracted peri-implantation period distinguishes 
ungulate development from that of rodents and primates 
and is further characterized by the establishment of an 
intimate dialog between the embryo and the uterus 
through a complex series of paracrine signals (detailed 

in ‘Maternal influence on conceptus development’ 
section). During this period, which varies widely among 
species, the spherical blastocyst elongates into a tubular 
and filamentous form. In pigs, this process starts on 
day 10 and transforms a sphere 0.5–1 mm in diameter 
into a filamentous blastocyst 1000 mm long by day 
16. Interestingly, elongation of the blastocyst seems to 
be initially driven by cellular hypertrophy rather than 
cellular hyperplasia (Geisert et  al. 1982, reviewed in 
Bazer & Johnson 2014). As Rauber’s layer disappears, the 
ICM moves up into the trophectoderm and evolves into 
an embryonic disc which eventually starts to gastrulate 
(Fléchon et al. 2004, van Leeuwen et al. 2015).

The terminology used to describe the different layers 
that make up an ungulate blastocyst can sometimes 
be misleading, mostly because either similar terms are 
assigned to inequivalent cell layers or different terms 
are used to describe the same cell layer. As emphasized 
in Fig. 1 and according to Pfeffer  et  al. (2017), we 
propose the following terminology. The early blastocyst 
is composed of the trophoblast (TB) and the inner 
cell mass (ICM). After hatching, the three main cell 
populations of the blastocyst are the trophoblast (TB), 
the epiblast (EPI), and the hypoblast (HYPO). At the 
spherical stage, two main territories can be observed: (1) 
the embryonic disc, which includes the EPI, the visceral 
hypoblast (VH), and the disappearing Rauber’s layer (the 
equivalent of the polar trophectoderm in mice), and (2) 
the extra-embryonic parietal layers which include TB 
(external layer) and the parietal hypoblast (PH, internal 
layer). At the ovoid stage, TB can be subdivided into two 
types: the adjacent mural trophoblast (AMTB), located 
in close contact with the EPI, and the mural trophoblast 
(MTB) overlying the PH. As development progresses, 
the EPI also starts to differentiate through the formation 
of the posterior marginal zone of the epiblast (PMZE) 
which delineates the antero-posterior axis. The VH can 
also be subdivided into two regions: the anterior visceral 
hypoblast (AVH) overlying the EPI and the VH underlying 
the PMZE. We will use this terminology for this review.

TB/ICM specification

The first specifications in cell lineage in the mouse 
integrate various inputs including cell positioning, cell 
polarity, mechanical tensions, and metabolic constraints 
(Kim et al. 2018, White et al. 2018). These signals seem 
to be integrated by the Hippo signaling pathway which in 
turn regulates the expression of key lineage transcription 
factors (TFs); these establish a stable gene regulatory 
network that controls cell lineage specification and 
subsequent cell fate determination (Nishioka et al. 2009). 
Cell polarization at the time of compaction is one of the 
key determinants and asymmetric cell division generates 
polar and apolar cells on the basis of inheritance of 
the apical domain (polar cell) (Johnson & Ziomek 
1981). While apolar cells tend to be located inside the 
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Figure 1 Schematic representation of blastocyst stages in pigs and bovines. The terminology used to identify the different cell layers and tissues is 
explained for each stage. The timeline depicts, for each species (pig, bovine, mouse, and human), the developmental time needed to reach a 
given blastocyst stage.
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developing embryo, polar cells remain outside, facing 
the external environment. The apical domain sequesters 
some components of the Hippo signaling pathway, 
including AMOT, an activator of LATS kinases, so that 
the pathway is inactive in polar cells (Hirate et al. 2013, 
Leung & Zernicka-Goetz 2013). This absence of Hippo 
signaling activity leads to the nuclear localization of 
Yes-associated protein (YAP) which, by interacting with 
the transcription factor TEAD4, drives the expression of 
TB-specific genes. Conversely, the active Hippo pathway 
in apolar cells leads to the phosphorylation of YAP and 
its consequent cytoplasmic localization, which prevents 
its interaction with TEAD4 and eventually blocks the 
commitment of these cells toward the TB lineage.

In other mammals, the Hippo signaling pathway 
is likely to be a similarly major driver of TB/ICM 
specification. Comparable signaling machinery has been 
described in pigs (Emura et al. 2016, Liu et al. 2018) and 
bovines (Home et al. 2012, Ozawa et al. 2012, Sakurai 
et al. 2016). As in the mouse, ROCK inhibition in pig 
embryos promotes Hippo signaling activity, suppressing 
CDX2 (Caudal type Homeobox 2) expression, a key 
transcription factor for TB specification and maintenance 
(Kono  et  al. 2014, Liu  et  al. 2018). However, the 
reverse effect was reported in bovines, which suggests 
a certain degree of variability among species (Negrón-
Pérez et  al. 2018). Despite this difference, alterations 
in YAP or AMOT expression affect bovine blastocyst 

formation and the number of CDX2-positive cells is 
negatively correlated with TEAD4 expression level 
(Sakurai et al. 2016, Negrón-Pérez et al. 2018). While 
the functional link between cell polarization, activity of 
the Hippo signaling pathway, and CDX2 expression is 
conserved between mice and pigs and, by extension, 
other mammals, the molecular kinetic for TB lineage 
determination differs among species from that described 
in the mouse (Liu et al. 2018).

In the mouse, the Hippo pathway regulates key 
TB-specific genes as Cdx2, Gata2, and Gata3, which 
encode transcription factors that are involved in 
setting up the TB genetic program (Ralston  et  al. 
2010). In particular, CDX2 appears to be critical for TB 
maintenance rather than TB specification (Strumpf et al. 
2005). Similarly, in pigs, CDX2 is necessary for TB cell 
proliferation and the maintenance of cell polarity (Bou 
et al. 2017), and in bovines, for TB maintenance at later 
embryonic stages (Berg  et  al. 2011, Goissis & Cibelli 
2014, Sakurai et al. 2016).

GATA2 and GATA3 (GATA-binding proteins 2 and 
3) are also involved in mouse TB maintenance (Ray 
et  al. 2009, Ralston  et  al. 2010, Home et  al. 2017). 
Interestingly, these GATA-TFs also regulate TB markers 
in the bovine trophoblast CT-1 cell line, which suggests 
a conserved role in TB biology. However, they also act 
on species-specific targets and this role is exemplified by 
their regulation of Interferon tau expression in bovines, 
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which is critical to pregnancy recognition in ruminants 
(Bai et  al. 2011). However, to date, no analysis has 
been reported that assesses the function of GATA2 and 
GATA3 in the early embryo in ungulates. Additional TFs 
have also been identified as regulators of TB physiology 
by Pfeffer (2018) and Piliszek and Madeja (2018); these 
studies highlighted both common and species-specific 
TB regulators.

In addition to Hippo signaling, the specification of TB/
ICM cell lineages appears to be regulated by multiple 
other pathways, including Wnt signaling. Indeed, at 
least two studies have examined the effect of modulation 
of Wnt signaling activity on early bovine embryonic 
development (Denicol et al. 2013, Madeja et al. 2015). 
Denicol et  al. (2013) reported that activation of Wnt 
reduced numbers of TB and ICM cells, while treatment 
with DKK1, a Wnt inhibitor, had no major effect on 
blastocyst formation. In contrast, Madeja et  al. (2015) 
showed that Wnt activation upregulated pluripotent 
markers at the expense of TB markers. In addition, 
Wnt signaling played a role in trophoblast stem cell 
maintenance in vitro, likely through the regulation 
of YAP/TAZ activity (Wang et  al. 2019). This study 
suggested the presence of essential cross-talk between 
Wnt and Hippo signaling pathways. Interestingly, DKK1 
was reported to regulate blastocyst elongation during 
the peri-implantation period (Tribulo et al. 2019). Taken 
together, these studies highlight the important role(s) 
of the Wnt pathway in TB cell biology, specifically in 
promoting self-renewal and cell differentiation.

Another pathway that seems to be involved in early 
ungulate embryonic development is JAK/STAT signaling. 
For example, STAT5 is expressed during early bovine 
embryogenesis (Flisikowski et  al. 2015) and some 
STAT1 and STAT3 SNPs were found to be associated 
with improved embryonic survival (Khatib et al. 2009). 
Lastly, inhibition of JAK1/2 affects formation of the ICM 
but not the TB (Meng et  al. 2015). Several questions 
still remain to be answered, including which upstream 
signal(s) regulate(s) JAK/STAT, which genes are targeted, 
and whether cross-talk exists with Hippo signaling.

An aspect of ungulate development that appears to 
be unique relates to the fate of the TB. At the hatched 
blastocyst stage, TB can be subdivided into two spatially 
distinct tissues: TB that covers the blastocoel cavity, 
and the polar trophoblast, also known as Rauber’s layer 
(RL). In rodents and primates, the polar trophoblast 
contributes to the post-implantation development of 
the fetal part of the placenta; in ungulates, instead, this 
function is fulfilled by the mural trophoblast. Indeed, one 
characteristic of ungulate early embryonic development 
is the disappearance of the RL, occurring around days 
9–11 in pigs (Sun et  al. 2015), days 10–12 in horses 
(Enders  et  al. 1988), and day 14 in bovines (Maddox-
Hyttel et al. 2003, van Leeuwen et al. 2015). After RL 
disintegration, the EPI is completely devoid of TB and 
thus directly exposed to uterine fluids. RL disappearance 

is thought to occur via apoptosis rather than as the result 
of a difference in proliferative rate with the EPI (Enders 
et al. 1988, Maddox-Hyttel et al. 2003). The role of RL 
loss during early embryonic development is still under 
debate, but it has been linked to the formation of the 
anterior visceral hypoblast and the emergence of the 
primitive streak (van Leeuwen et al. 2015).

EPI/HYPO specification

The ICM eventually differentiates into two distinct cell 
lineages, EPI and HYPO. In the mouse, their formation 
results from a sequence of events that was originally 
studied through the dynamic expression of EPI- and 
HYPO-specific TFs (Artus & Chazaud 2014). NANOG 
(EPI) and GATA6 (HYPO) are initially expressed in all 
blastomeres at the morula stage (Plusa et al. 2008). Their 
expression is progressively restricted and eventually 
becomes mutually exclusive, so that ICM cells express 
only the EPI or the HYPO genetic program. By the mid-
blastocyst stage, the ICM is a mixture of EPI and HYPO 
progenitors organized in a salt-and-pepper pattern 
(Chazaud et al. 2006). Once specified, EPI and HYPO 
cells reorganize so that HYPO cells lie in contact with 
the blastocoel cavity, encapsulating the EPI. This cell-
sorting process is likely to involve cell adhesion, active 
migration, positioning information, epithelialization, 
and selective apoptosis of mispositioned cells (Gerbe 
et  al. 2008, Plusa et  al. 2008, Meilhac et  al. 2009). 
Whether this succession of steps is conserved in other 
mammals remains to be clarified. However, based on 
expression studies, this pattern seems to be replicated in 
ungulates, although with different kinetics, as reported 
from studies of bovines (Khan et al. 2012, Kuijk et al. 
2012), pigs (Ramos-Ibeas et al. 2019), and horses (Choi 
et al. 2015).

In the mouse, the specification of EPI and HYPO cells is 
accompanied by a progressive loss of plasticity (Chazaud 
et al. 2006, Grabarek et al. 2012). Interestingly, HYPO 
formation is associated with the sequential expression 
of different markers, which is assumed to represent the 
activation of a lineage-specific genetic program. These 
markers are, successively, GATA6 (8-cell), PDGFRα 
(16-cell), SOX17 (32-cell), GATA4 (64-cell), and SOX7 
(sorted PrE cells) (Plusa et al. 2008, Artus et al. 2011). 
The role of these factors remains to be determined in 
other mammals. In this situation, cell fate specification 
of a bi-potential ICM cell can be viewed as a process 
in which one genetic program is shut down while the 
other is maintained. This mechanism must be tightly 
regulated temporally and perhaps spatially and requires 
the regulation of transcriptional activity as well as of 
protein stability (Bessonnard et al. 2017).

In mammals, EPI/HYPO formation seems to be strictly 
regulated by receptor tyrosine kinase (RTK) signaling. 
In rodents in particular, EPI/HYPO specification is 
controlled by fibroblast growth factor (FGF) signaling, 
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and this process has been largely characterized through 
gain- and loss-of-function experiments (Chazaud et al. 
2006, Nichols et al. 2009, Yamanaka et al. 2010, Kang 
et  al. 2013, 2017, Krawchuk et  al. 2013, Molotkov 
et  al. 2017). There is abundant evidence, however, to 
suggest that the role of FGF signaling in EPI/HYPO cell-
fate decisions is not confined to rodents. In bovines, 
the inhibition of specific FGF signal transducers like 
the mitogen-activated protein kinase (MEK) and FGF 
receptor (FGFR) has different outputs. Indeed, inhibition 
of MEK but not FGFR biases cell-fate decisions toward 
EPI, while the addition of FGF4 promotes development 
into HYPO (Kuijk et  al. 2012). Similar observations 
were reported in ovine blastocysts (Moradi et al. 2015). 
However, in humans, MEK inhibition does not affect 
EPI/HYPO specification (Kuijk et al. 2012, Roode et al. 
2012). These observations suggest that (i) other input 
signals regulate MEK activity and (ii) one or multiple 
additional downstream effectors control the EPI/HYPO 
genetic program. For example, platelet-derived growth 
factor (PDGF) signaling is critical in regulating HYPO 
cell survival through the PI3K-mTOR pathway in mice 
(Artus et al. 2010, Bessonnard et al. 2019).

Functional interactions at work between the three 
main blastocyst tissues during elongation

The extraembryonic and embryonic tissues that make 
up the blastocyst are frequently defined according 
to their future fate, by their eventual contributions 
to the placenta and extraembryonic membranes or 
to the embryo proper. However, much experimental 
evidence, old and new, suggests that these tissues also 
have functional interactions during preimplantation 
development, in particular to harmonize and 
synchronize their reciprocal development and growth. 
It is likely that these interactions are necessary for the 
proper development of each of the three main tissues 
that make up the blastocyst.

Experimental evidence from trophoblastic vesicles

To our knowledge, only a few studies have demonstrated 
the importance of interactions between extraembryonic 
and embryonic tissues for conceptus elongation and 
survival in ungulates. The earliest studies were carried out 
using novel (at the time) cellular tools, the trophoblastic 
vesicles (TV) developed by Gardner and Johnson (1972). 
TVs consist of fragments of blastocysts that are devoid 
of EPI cells. Depending on the embryonic stage from 
which they are derived, TVs can be composed either 
of TB cells only or both TB and parietal hypoblast (PH) 
cells. TVs can be cultured in vitro and transferred into 
synchronized recipient females. In a pioneering study, 
Surani and Barton (1977) delayed implantation by 

transferring murine blastocysts or TVs into progesterone-
treated ovariectomized females. In that environment, 
the embryos remained in a period of quiescence that 
resembled diapause. Following estradiol injection, both 
blastocysts and TVs were able to resume implantation, 
indicating that implantation does not require the 
presence of an ICM. Interestingly, while the number of 
cells increased in quiescent embryos from 60 to 120, 
this number remained unchanged in TVs, an indication 
that paracrine signals from the ICM regulate TB cell 
proliferation. Likewise, co-culture of single bovine 
blastocysts with TVs improved their development in 
vitro, further evidence of the existence of paracrine 
signals between the TB and ICM (Camous et al. 1984, 
Pool et al. 1988, Mori et al. 2012).

In the ovine model, TVs can be maintained in vitro for 
up to 20 days, but do not proliferate or elongate (Fléchon 
et al. 1986). However, they do elongate when transferred 
into recipient females, but to a lesser extent than control 
embryos. These data demonstrate that the embryonic 
disc is not necessary for TB elongation but suggest again 
that paracrine signals and direct interactions between 
the embryonic disc and extra-embryonic parietal tissues 
may be important for the survival, coordinated growth, 
and morphogenesis of the conceptus during elongation 
(see also Hue et al. 2007).

In elongating pig embryos, several paracrine signals 
have been identified between the EPI and TB, and 
involve both the FGF and BMP signaling pathways 
(Valdez Magaña  et  al. 2014). EPI cells express FGF4, 
which acts through FGFR2 on adjacent mural TB cells 
to activate MAPK phosphorylation. In parallel, BMP4 
is produced by the extraembryonic mesoderm and 
HYPO cells and interacts with BMPR2 expressed in 
TB cells. These molecular dialogs between embryonic 
and extraembryonic tissues appear to be evolutionarily 
conserved, as they play important roles also in early 
embryogenesis in the mouse (Goldin & Papaioannou 
2003, Graham et  al. 2014, Kurowski et  al. 2019). 
However, several aspects still remain to be clarified in 
ungulates, including (i) the precise origin of the paracrine 
signals required during elongation, (ii) the mechanisms 
of molecule delivery, and (iii) the effects of these signals 
on their target cells.

The use of trophoblastic vesicles may help to 
answer these questions if future studies can take 
into consideration their cell composition. Indeed, in 
previous studies, TVs derived either from equine (Ball 
et  al. 1989) or ovine blastocysts (Fléchon et  al. 1986) 
were composed of numerous cell types that have not 
been fully characterized. But another complementary 
strategy could be the use of medium- and high-
throughput transcriptomic technologies, which have 
already shed some light on various aspects of ungulate 
preimplantation development.
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Evidence from early transcriptomic studies: 
differences between developmental stages

An indispensable tool in elucidating differences among 
developmental stages has been the use of transcriptomic 
profiling, which has helped to identify important cellular 
processes triggered in TB and HYPO during elongation.

In sheep and cattle, comparisons of gene expression 
between ovoid, tubular, and early filamentous stages 
confirmed that a key molecular transition occurs 
between the ovoid and tubular stages with the initiation 
of elongation (Cammas et al. 2005, Degrelle et al. 2005). 
By integrating multiple independent transcriptomic 
studies of different stages of elongation (Ushizawa et al. 
2004, Hue et al. 2007, Mamo et al. 2011), researchers 
were able to identify key differentially expressed genes 
(DEGs) whose functions are linked to cell proliferation, 
cellular growth and differentiation and connective tissue 
formation (Hue et al. 2012). Interestingly, one recurring 
function of trophoblast DEGs is an association with lipid 
metabolism. This particularity of ungulate blastocysts, 
which has not been reported from mice or humans, 
seems to be linked to the fact that the elongation process 
in ungulates is coupled with a long preimplantation 
period. During this time, the conceptus relies only on 
its own resources and uterine histotroph to meet its 
significant resource demands for cell growth and cell 
proliferation. For example, for bovine blastocysts, the 
wet weight of the conceptus can increase by a factor 
of 20 between gestational days 16 and 19 (Lewis 
et  al. 1982). A recent transcriptomic comparison 
between ovoid, tubular, and filamentous bovine 
blastocysts clearly highlighted important changes in 
lipid metabolism and fatty acid biosynthesis during 
elongation, together with alterations in arachidonic acid 
metabolism and prostaglandin synthesis and transport 
(Ribeiro et al. 2016a). This confirms the importance of 
lipids as a key element during early embryogenesis for 
many aspects of cell biology, including cell growth and 
phospholipid membrane synthesis, energy production, 
and intercellular signaling (see review by Ribeiro et al. 
2016b). Similar observations have been made in ovine or 
porcine conceptuses undergoing elongation (Charpigny 
et  al. 1997, Blomberg et  al. 2006, Waclawik et  al. 
2013, Brooks et al. 2015). In ruminants, the regulatory 
factor PPARG (peroxisome proliferator-activated 
receptor gamma) has proven to be an integral aspect 
of this process: it plays a significant role in governing 
prostaglandin synthesis and lipid metabolism and is 
required for conceptus elongation (Brooks et al. 2015, 
Ribeiro et al. 2016b) and likely for TB differentiation as 
well (Degrelle et  al. 2011). A recent gene expression 
analysis presented evidence for a similar function for 
PPARG in the extra-embryonic layers in pigs (Blitek & 
Szymanska 2019).

An important limitation of these studies is that they 
compare gene expression profiles acquired from whole 

embryos. This provides functional information on the 
molecular dynamics among developmental stages but 
does not clarify precisely the specific functions and 
connections between the cell populations that make up 
the conceptus. One way to better answer this question 
would be to isolate each subpopulation and analyze its 
transcriptome profile independently or, better yet, to 
characterize the blastocyst at the single-cell level during 
the preimplantation period.

Evidence from dissection-based transcriptomic studies: 
compartmentalization of layer functions

Using dissection-based strategies multiple studies have 
recently performed transcriptomic analyses of equine 
(Iqbal et  al. 2014), pig (Bernardo et  al. 2018), and 
bovine embryos (Hosseini et al. 2015, Zhao et al. 2016, 
Pfeffer et  al. 2017, Bernardo et  al. 2018). These have 
provided new insights into the signaling pathways that 
are potentially active in the blastocysts of these three 
species. Specifically, Iqbal et  al. (2014) compared the 
transcriptome of ICM and TB using bisected D7 equine 
blastocysts, while Bernardo et al. (2018) characterized 
the transcriptomes of the EPI from three mammalian 
species (mouse, cattle, pigs) at three equivalent stages: 
ICM, early epiblast, and late epiblast. Hosseini et  al. 
(2015) characterized ICM and TB isolated from in vivo-
produced D7.5 expanded bovine blastocysts, while Zhao 
et al. (2016) used immunopurified TB and ICM cells from 
in vitro-produced D7 bovine blastocyst and Pfeffer et al. 
(2017) compared the transcriptomes of the late epiblast 
and the embryonic disc (including early epiblast and the 
underlying hypoblast) of bovine embryos.

The latter studies used the mouse model as a reference 
for identifying developmental stages and tissues. Taken 
together, these studies enable us for the first time to (1) 
identify shared and species-specific molecular players 
that govern pluripotency at these three stages and (2) 
highlight the differences between mice and ungulates 
with respect to pluripotent tissues. By looking at 
orthologous genes shared among the different species, 
Bernardo et  al. (2018) first observed that the mouse 
EPI (regardless of the stage under examination) is quite 
divergent from that of pigs or cattle, which are more similar 
to each other transcriptionally. A similar observation 
was made by Hosseini et  al. (2015) in a comparison 
of the transcriptomic profile of bovine ICM to that of 
humans and mice. In addition, Bernardo  et al. observed 
that the three species’ ICM profiles were distinct from 
those of early and late epiblasts, but differences between 
ICM and EPI were much more pronounced in mice 
than in ungulates. These results suggest two intriguing 
hypotheses: that the current definition of naive and 
primed states of pluripotency could merely represent a 
particularity of rodents or that naive pluripotency could 
be a very labile and transient state in ungulates. Both 
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studies also confirmed the molecular similarity between 
early and late epiblast, supporting the existence of a 
stable and unique primed-like pluripotent state that is 
maintained during elongation in equine, pig, and cattle 
embryos. Indeed, most of the molecular players known 
to regulate primed pluripotency in the EPI of mammalian 
embryos are expressed in the embryonic disc of pig and 
bovine embryos.

NODAL signaling, which is thought to sustain primed 
pluripotency in humans and mice (Vallier et al. 2005, 
Brons et  al. 2007), is active in both bovine and pig 
blastocysts (Blomberg et al. 2008, Alberio et al. 2010, 
Hosseini et al. 2015). The studies highlighted above 
confirmed the expression of GDF3 in the ICM of horse 
embryos (Iqbal et al. 2014) and the strong expression of 
NODAL and GDF3, together with their receptors and 
transducers, in the bovine embryonic disc (EPI + HYPO) 
(Pfeffer et al. 2017) and in pig EPI cells (Bernardo et al. 
2018). Instead, genes necessary for the JAK/STAT3 
pathway, which has been described as a key feature of 
naive pluripotency (Hall et al. 2009, van Oosten et al. 
2012), are downregulated between the ICM and early 
epiblast stages (Eckert & Niemann 1998, Alberio et al. 
2010, de Ruijter-Villani et al. 2015, Pfeffer et al. 2017, 
Bernardo et  al. 2018). The same was also observed 
for WNT signaling, which is known to maintain naive 
pluripotency by inducing the nuclear translocation of 
TCF3 and is apparently inactive in the EPI of pig and 
bovine blastocysts (Pfeffer et  al. 2017, Bogliotti et  al. 
2018) but active in bovine TB (Zhao et al. 2016).

Interestingly, BMP signaling is also active in EPI 
of pig, equine and bovine embryos. In mice, BMP 
signaling has been shown to support the maintenance 
of pluripotency through the activation of Id1 and Id3 
(Ying et al. 2003). In ungulates, BMP4 is expressed in 
EPI at all stages, but with notable variability. BMP2 is 
also strongly expressed in the ICM of equine blastocysts 
(Iqbal et al. 2014) and in the embryonic disc at the ovoid 
stage in pigs (Valdez Magaña et  al. 2014) and cattle 
(Pfeffer et al. 2017). These results suggest a synergistic 
action of these two molecules to regulate the balance 
between pluripotency and differentiation of embryonic 
cells in mice and ungulates. Altogether, although many 
questions remain, the work that has been done to date 
confirms the biological importance of NODAL and BMP 
signaling pathways in the primed epiblast in mammals.

Looking beyond the embryonic disc, Pfeffer et  al. 
(2017) tried to analyze the flow of molecular information 
between embryonic and extra-embryonic tissues by 
dissecting the four main tissues of the bovine ovoid 
blastocyst (embryonic stage 5 at D14 post fertilization, 
Van Leeuwen et  al. 2015) and comparing their 
transcriptomic profiles. Pathway analysis confirmed 
the functional proximity of HYPO and EPI within the 
embryonic disc, while the parietal hypoblast (PH) was 
less similar and occupied an intermediate position. 
The transcriptome of the TB, instead, was quite unique, 

demonstrating specific enrichment for biological 
functions linked with steroid biosynthesis. This was 
consistent with an earlier study of equine blastocysts, 
in which genes that were overexpressed in TB with 
respect to other tissues were specifically associated with 
biological processes related to lipid biosynthesis, ion 
transport, and Golgi vesicle transport (Iqbal et al. 2014). 
By performing a detailed analysis of the genes encoding 
signaling molecules and their respective receptors, 
Pfeffer et  al. (2017) confirmed that the four tissues 
should be theoretically able to transactivate each of the 
signaling pathways analyzed. Indeed, while the bovine 
TB expressed only a few signaling molecules (including 
FGF2, PDGFA, and vascular-endothelial growth factor 
VEGFA/VEGFB), molecules secreted by either the 
underlying HYPO (FGF10, Indian Hedgehog, Insulin-
like growth factor IGF2, Angiopoietin, or WNT11) or the 
adjacent embryonic disc (NODAL, GDF3, or BMPs) may 
also act on TB through a paracrine action (Fig. 2).

Unfortunately, the challenges inherent in performing 
microdissection – namely, the limited amount of 
biological material obtained and possible contamination 
with adjacent tissues – have limited our ability to 
produce an accurate, dynamic molecular atlas of the 
developing blastocyst.

Evidence from single-cell studies

Recent developments in single-cell transcriptomics 
have opened new dimensions through the resolution of 
spatial cellular heterogeneity and the ability to capture 
cellular changes over time. Single-cell transcriptomes 
from whole embryos and tissues could help to identify 
cell–cell interactions, such as those between fetal and 
maternal cells during placentation in humans (Vento-
Tormo et al. 2018) or to clarify cell lineages and inter-
cellular signaling (Deng et al. 2014, Petropoulos et al. 
2016, Mohammed et al. 2017, Rivron et al. 2018, Stirparo 
et al. 2018). Indeed, by combining blastoid culture and 
single-cell transcriptomic studies, Rivron et  al. (2018) 
were able to describe the molecular exchange between 
TB, HYPO and EPI of mouse blastocysts. They showed 
that paracrine signals emitted by the EPI, including IL11, 
FGF4, BMP4, and NODAL together with autocrine 
signals such as IL11, WNT6, and WNT7B, are necessary 
for TB development and in utero implantation.

To date, only a few single-cell gene expression studies 
have been performed on ungulate species, and only on 
pig and bovine blastocysts (Negrón-Pérez et  al. 2017, 
Wei et al. 2017, 2018, Ramos-Ibeas et al. 2019).

In ruminants, two independent groups recently 
reported single-cell qPCR analyses on in vitro-produced 
blastocysts (Negrón-Pérez et al. 2017, Wei et al. 2017). 
Both studies used a set of genes known to be linked 
in mammals with early embryonic development (cell 
fate, pluripotency, signaling pathways). They isolated, 
respectively, 96 and 67 cells from the morula stage to 
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the expanded blastocyst. From these datasets, they were 
able to discriminate among the three main cellular 
populations of the blastocyst. While the bovine EPI 
expressed known markers of core pluripotency from 
mice and humans (NANOG, SOX2, POU5F1, NR5A2), 
most of the prototypical hypoblast markers were not 
hypoblast-specific in bovine blastocysts and were also 
expressed either in TB cells (GATA6), in EPI (GSC and 
HNF4A), or in both (FN1). Markers that were indeed 
largely hypoblast specific included SOX17 and GATA4, 
together with PDGFRA. Bovine TB cells specifically 
expressed or overexpressed TB-specific transcription 
factors known from humans and mice (CDX2, GATA3, 
GRHL1, GRHL2, MSX2, TFAP2A) and genes that control 
cell–cell interactions (KRT8, PECAM1, DAB2, ATP12A). 
While these two studies helped to identify blastomere-
specific gene expression and early lineage specification 
in bovine blastocysts, the numbers of genes and cells 
analyzed (a total of 17 cells for epiblast, 51 for hypoblast, 
and 95 for TE) were too limited to go deeper into the 
molecular interactions among these three tissues.

In pigs, two studies also addressed similar questions, 
one with single-cell qPCR on in vitro-produced pig 
blastocysts (Wei et al. 2018) and the other with mRNA-
seq sequencing on a panel of cells isolated from in vivo-
derived pig conceptuses at several developmental stages 
(morula, early blastocyst, late blastocyst (hatched), and 
spherical blastocyst; Ramos-Ibeas et  al. 2019). The 
first interesting comparison to be made from these 
two publications is the difference between blastocysts 
produced in vitro and those produced in vivo. Among 
the blastocysts produced in vitro, there was no clear 

transcriptomic segregation between HYPO and EPI 
even at the late blastocyst stages; instead, segregation 
was quite evident between hypoblast and epiblast in 
late blastocysts produced in vivo. These results provide 
evidence that in vitro-produced blastocysts 8 days after 
fertilization are not as mature as those developed in vivo 
and that culture conditions seem to be inadequate at 
this stage.

The two studies confirmed the presence of specific 
markers for TB (GATA2, GATA3, DAB2, CDX2) and EPI 
(POU5F1, SOX2, NANOG, KLF4) that are conserved 
among mammals in early blastocysts. In addition, Ramos-
Ibeas  et al. reported specific markers for the pig hypoblast 
in hatched and spherical blastocysts (PDGFRA, GATA4, 
GATA6, COL4A1, NID2, RSPO3). The genes POU5F1, 
KLF4, GATA6, and PDGFRA were also expressed in the 
morula and ICM of early blastocysts, which supports 
the shared origin of HYPO and EPI cells from the ICM. 
This latter study also investigated the signaling pathways 
active in the different cell layers and their importance 
for cell commitment to different lineages. To do this, 
they first performed differential gene expression analysis 
between cell groups to identify DEGs associated with 
known signaling pathways. Then, they cultured pig 
embryos with inhibitors of these previously identified 
candidate pathways. Using this two-step approach, they 
observed a switch in the dependence on JAK/STAT, PI3K, 
and TGFβ pathways for the maintenance of pluripotency 
in epiblast cells. While JAK/STAT and PI3K seem to be 
necessary at the morula and early blastocyst stages, 
NODAL signaling is preponderant later in the EPI. PI3K 
also seems to be important for TB development in early 

Figure 2 Representation of molecular flows among different embryonic, extra-embryonic, and maternal tissues. AAs, amino acids; EPI, epiblast; 
IFNs, interferons; PGs, prostaglandins; PH, parietal hypoblast; RBPs, retinol-binding proteins; TB, trophoblast; SLC, solute carrier transporters; 
UT, uterus; VH, visceral hypoblast.
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blastocysts. Unlike reports from cattle, these authors 
did not observe a particular effect of WNT inhibition 
on these cells but they did confirm the dependence on 
MAPK signaling in the ICM for the formation of HYPO 
(see also ‘EPI/HYPO specification’ section).

This study did not pay particular attention to 
peroxisome proliferator-activated receptor (PPAR) 
signaling, even if the DEG analysis clearly highlighted 
its activity in both the hypoblast and epiblast of hatched 
and spherical blastocysts (Ramos-Ibeas et  al. 2019). 
PPARs are nuclear receptor proteins that are able to 
dimerize with RXR to control gene expression; they 
are particularly relevant because their main ligands 
are free fatty acids and eicosanoids, of which the latter 
group is produced by the oxidation of arachidonic 
acid or other polyunsaturated fatty acids and includes 
prostaglandins and leukotriens. The importance of 
prostaglandins during elongation has been extensively 
documented in ungulates (Dorniak et al. 2011, Brooks 
et  al. 2015). Together with gene expression studies 
in cattle (Ribeiro et  al. 2016, Pfeffer et  al. 2017), this 
work confirms the importance of the embryonic and 
parietal extra-embryonic tissues (HYPO and TB) for the 
synthesis of PPAR ligands from fatty acids present in the 
uterine fluids.

Taken together, all the studies discussed here highlight 
the interdependence that exists among the tissues of the 
conceptus (TB, EPI, HYPO) to ensure its development 
and survival. Importantly, these studies also suggest that 
these tissues, through the production and secretion of 
many different molecules (Table 1), interact strongly 
with the maternal uterine environment (ovary and 
endometrium), constituting an inseparable ‘ménage 
à quatre’.

Maternal influence on conceptus development

Evidence of maternal effects on 
conceptus development

Current limits of embryo culture

Efforts to optimize in vitro embryo production and 
reduce differences between in vitro- and in vivo-
produced embryos in many different species (mouse, 
human, rabbit, cattle, pig, sheep) have led to a deep 
appreciation for the extent of the maternal influence on 
conceptus development. While the quality of oocytes 
and the conditions of in vitro maturation or fertilization 
undoubtedly matter (Smith et al. 2009, Leroy et al. 2015), 
the maternal influence on the developmental phase 
that precedes implantation and placental formation is 
unmistakable and appears to derive mostly from the 
molecular crosstalk at work within the maternal tract. 
This effect arises first in the oviduct (from one cell to 
early blastocyst stage, especially in horses due to a 
longer stay therein, Smits et al. 2016), and then moves 
into the uterus (from early blastocyst to implantation). 

For decades, efforts have been made to establish in 
vitro systems that mimic the oviduct environment to 
produce blastocysts from different species (Smits et al. 
2012, Fowler et al. 2018, Hamdi et al. 2018). Instead, 
in vitro development of older stages has only succeeded 
in human and mice through cultures in enriched media 
(Hsu 1973) or, recently, the establishment of embryoids/
gastruloids (Govindasamy et  al. 2019). In livestock 
species, embryonic discs have been successfully cultured 
for a few days with no effect on gastrulation patterns 
but extra-embryonic tissues have failed to elongate in 
vitro despite their good in vitro survival in most species 
(Hochereau-de Reviers & Perreau 1993, Wianny et al. 
1997, Valdez Magaña et al. 2014, Stankova et al. 2015, 
see also ‘Experimental evidence from trophoblastic 
vesicles’ section).

Diapause: when the maternal environment controls the 
onset of blastocyst development

Scientific interest began to focus on the in vivo maternal 
influence on embryonic tissues following reports that 
mouse embryonic stem (ES) cells were more easily 
derived from females in diapause (Evans & Kaufman 
1981, Kaufman et  al. 1983), a state of embryonic 
dormancy controlled by signals from the uterus (Renfree 
& Fenelon 2017). In ungulates, the roe deer is the 
only species in which naturally occurring embryonic 
diapause has been studied. During this diapause, which 
lasts for 5 months, the TB and the EPI exhibit a minimum 
proliferation rate, do not differentiate, and display unique 
structural features including a lack of mitochondria, 
ribosomes, Golgi apparatus, and endoplasmic reticulum 
(Aitken et al. 1975). In parallel, the endometrium also 
presents specific and dynamic ultrastructures, indicating 
that endometrial glands also play a major role in 
diapause induction and the subsequent reactivation of 
embryonic development (Aitken et al. 1975). Recently, 
characterizations of the proteome of uterine fluids at 
different times during and after diapause highlighted the 
importance of polyamine biogenesis and degradation 
during roe deer diapause and the importance of the 
regulation of cell–cell adhesion during this process (van 
der Weijden et al. 2019). Hormonal regulation is also 
associated with exit from diapause in roe deer, but this 
remains poorly characterized; data from the existing 
literature are contradictory regarding levels of estrogen, 
progesterone, and prolactin during and after diapause 
(Aitken 1974, Lambert et al. 2001, Korzekwa et al. 2019, 
van der Weijden et al. 2019).

Natural diapause serves as a clear indicator of 
the importance of the maternal environment in 
controlling the timing of embryonic development 
before implantation. This observation has also been 
confirmed with experimental data. Diapause has been 
induced by (i) the transfer of embryos from a non-
diapausing species to the uterus of a diapausing species  
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(ferret embryo to mink uterus; sheep embryo to mouse 
uterus) or (ii) the addition of uterine luminal fluids (ULF) 
from a diapausing species to a culture of blastocysts from 
a non-diapausing species (mouse ULF to rabbit embryos; 
wallaby ULF to non-diapausing mouse embryos) 
(Ptak et al. 2012, Fenelon et al. 2017). Reactivation of 
diapaused embryos is inducible as well through the use 
of ULF, co-culture with uterine cells (mink), or transfer 
to a reactivated uterus. So far, the uterine signals that 
reactivate development are understood better than 
those that induce diapause (Renfree & Fenelon 2017), 
but the control of polyamine synthesis seems to be a 
key conserved factor for the induction and maintenance 
of and exit from diapause (Lefevre et al. 2011, Fenelon 
et al. 2017, van der Weijden et al. 2019). However, the 
maternal factors that control diapause and embryonic 
receptivity to these signals might not be universally 
identical: pig embryos transferred to diapaused rat uteri 
degenerated, whereas sheep embryos transferred to 
diapaused mouse uteri did not, and furthermore, some 
were even able to elongate when transferred back to 
sheep uteri (Ptak et al. 2012, Geisert et al. 2017).

Experimental evidence in vivo and ex vivo

So far, the maternal influence on extra-embryonic 
tissues in vivo has been described through its effects on 
the regulation of elongation processes in ungulates or 
on capsule formation in equids. Blastocysts as well as 
trophoblastic vesicles do not elongate in vitro but do 
so in vivo once transferred to the uteri of synchronized 
recipients (Heyman  et  al. 1984, Fléchon et  al. 1986). 
When there is a reduced density of glands in the uterus, 
or no glands at all (such as in the sheep uterine gland 
knockout model UGKO), elongation is reduced or 
abolished (Gray et  al. 2001, Spencer & Gray 2006). 
Scientific efforts have thus focused primarily on 
uterine secretions, but a few studies have examined 
physical constraints on embryo elongation. Cultures 
of bovine and porcine embryos using capillaries or 
hydrogels demonstrate only limited elongation in vitro 
(Vejlsted  et  al. 2006, Hue et  al. 2007, Miles et  al. 
2017) and equine embryos, which do not elongate but 
instead expand into spherical vesicles, are protected 
by a capsule that needs the uterus to form and can 
withstand myometrial forces (Quinn et al. 2007, Stout 
2016). Beside the role of physical forces, another open 
question is whether uterine secretions act directly or 
indirectly on extra-embryonic tissues. In pigs, priming 
from mesoderm cells is needed through BMP signaling 
before trophoblast cells can respond to specific uterine 
signals like FGF signaling (Valdez Magaña et al. 2014). 
Nonetheless, recent work has indicated that uterine 
secretions have many more functions beyond those 
involved in developmental progress, including the 
coordination of on-time implantation (mouse) or stromal 
decidualization (Kelleher et al. 2018, 2019).

Interplay between maternal and conceptus tissues to 
drive late blastocyst development

During pregnancy, maternal uterine secretions (or 
histotroph) contain a variety of proteins, amino acids, 
carbohydrates, lipids, ions, and extracellular vesicles, 
which are produced by the uterine glandular epithelium 
(GE) and the luminal epithelium (LE) or transported 
from the serum to the uterine cavity by the luminal 
epithelium. Developing conceptuses, instead, produce 
signals for MRP (maternal recognition of pregnancy), 
stimulate endometrial receptivity, and secrete proteins, 
lipids, and extracellular vesicles that contribute to 
the ULF. Together, the multitude of factors involved in 
communication between maternal tissues and those 
of the conceptus contribute to create an interplay of 
formidable temporal and spatial complexity. Below, 
we focus on the secretions from both sets of tissues 
and their consequences for embryonic and extra-
embryonic development.

Uterine secretions

Studies of the metabolome and proteome of uterine 
fluids have been reported for several species, including 
cattle, horses, pigs, and sheep (Li et al. 2007, Forde et al. 
2014a,b, Bastos et al. 2019, reviewed in Spencer et al. 
2019). In addition, transcriptomic studies have revealed 
specific secretory functions for the epithelial and 
stromal components of the uterus (Bauersachs & Wolf 
2012, Zeng et al. 2018). These secretions result from the 
action of regulatory pathways on the endometrium that 
initiate with priming of ovarian origin (estrogens then 
progesterone). Additional stimulations, such as those 
from the conceptus, can also modulate the composition 
of these secretions (Groebner et al. 2011, Gibson et al. 
2017), together with other environmental factors like 
the physiological status (Satterfield et  al. 2010, Forde 
et  al. 2014a, Beyer et  al. 2019) and the diet of the 
mother (Chartrand et al. 2003, Giller et al. 2018, Crouse 
et al. 2019).

The release of histotroph components in the ULF 
can occur either by direct secretion or in extracellular 
vesicles. Extracellular vesicles (originating from both 
LE and GE) contain a multitude of mRNAs, miRNAs, 
proteins, and lipids, as well as surface receptors/ligands, 
with a composition that varies based on cell type (Burns 
et al. 2014, 2016). The number and content of maternal 
extracellular vesicles are controlled with progesterone 
(Burns et  al. 2018) but extracellular vesicles can also 
be produced by the conceptus itself and act either on 
conceptus cells, to facilitate implantation (Desrochers 
et  al. 2016), or on endometrial cells (LE, GE; Kusuma 
et al. 2016, Nakamura et al. 2016).

Amino acids and carbohydrates are essential 
components for the development of early embryos (Booth 
et al. 2005, Thompson et al. 2016) and fetuses (Wu et al. 
2008), as illustrated by the infertile phenotype of UGKO 
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sheep (Spencer et  al. 2019). During early pregnancy 
in ewes, there is a marked increase in the abundance 
of most amino acids, including arginine (Arg), leucine 
(Leu), glutamine (Gln), glutamic acid (Glu), methionine 
(Met), serine (Ser), and histidine (His), as well as glucose, 
calcium, and sodium (Bazer et al. 2015), reflecting their 
importance for survival and growth of the conceptus. 
Interestingly, in addition to glucose, fructose is the most 
abundant hexose sugar in the uterine fluids of ungulate 
mammals, but its role in the growth and development 
of the conceptus remains imperfectly understood 
(Kim et  al. 2012). The composition of amino acids 
and carbohydrates in ULF also reflects the expression 
levels of their respective transporters in endometrial 
and conceptus cells, as shown in studies of cattle and 
pigs (Forde et al. 2014b, Bazer et al. 2015, Steinhauser 
et al. 2016).

As an example, concentrations of Arg and glucose in 
ULF of ewes increase significantly between D10 and 
D15 of pregnancy; these molecules are transported from 
maternal blood to uterine lumen through the activity 
of specialized transporters, SLC2A1 and SLC5A1 for 
glucose and SLC7A2B for arginine. Of these, the 
expression of SLC5A1 is induced in the endometrium (LE, 
GE) by progesterone, while SLC2A1 and SLC5A11 are 
induced by P4 and IFN-tau (Gao et al. 2009a). Similarly, 
in pigs, luminal cells express AKR1B1 and SORD, two 
enzymes that are necessary to convert glucose into 
fructose, and endometrial cells also express the fructose 
transporter SLC2A8 during the peri-implantation period 
(Steinhauser et al. 2016). Similar observations have been 
reported for other amino-acid transporters (Gao et  al. 
2009b,c, Satterfield et al. 2010, Bazer et al. 2015) and 
nutrient-sensing pathways (Gao et al. 2009d). As a result, 
the concentration of amino acids and carbohydrates 
varies in time in the ULF during early pregnancy and 
is dependent on the expression of transporters in the 
conceptus and/or uterus (Gao et al. 2009a, Forde et al. 
2014a, Bazer et al. 2015, Gibson et al. 2018).

As a consequence of the increase in available amino 
acids, polyamines – a specific product of amino-
acid biosynthesis – are also detected in significant 
quantities in ULF. Polyamine synthesis required Arg, 
Pro, and L-Ornithine together with the enzyme ornithine 
decarboxylase (ODC1), leading to the production of 
putrescine, spermidine or spermine (Lefevre et al. 2011). 
Polyamine levels in ULF are probably dynamically 
regulated by a balance between biosynthesis and 
catabolism and by transport between intra- and 
extra-cellular environments (Persson 2009). Indeed, 
fluctuations in polyamine levels during diapause in 
roe deer and mice have been linked with increased 
expression of ODC1 and SMS (spermine synthase) in 
the luminal stroma (Zhao et al. 2012, van der Weijden 
et al. 2019).

Histotroph also contains lipids and lipid mediators 
such as prostaglandins (PGs) or lysophosphatidic 

acid (LPA). In ruminants, retinol and lipids have been 
detected in uterine fluids during diestrus, whereas 
studies of the conceptus at the onset of elongation have 
noted transporters and binding proteins for fatty acids 
(SLCs) or retinol (RBP4) (Ulbrich et al. 2009, Liszewska 
et al. 2012, Mullen et al. 2012). In pigs and horses, the 
histotroph also contains small-lipid-transport proteins 
such as RBP, uterocalin, and uteroglobin, with the last 
delivering lipids to the conceptus via the hydrophilic 
capsule glycan (Stallings-Mann et  al. 1993, Suire 
et al. 2001, Quinn et al. 2007, Waclawik et al. 2013, 
Jeong et al. 2016). The active transfer of lipids from the 
endometrium to the conceptus was proposed decades 
ago by Boshier et al. (1987) but has only recently been 
supported by studies documenting extracellular vesicle 
formation and uptake (Mulcahy et  al. 2014, Mathieu 
et al. 2019).

Conceptus secretions

Through its secretions, the conceptus contributes to the 
MRP (which mostly relies on the inhibition of luteolysis), 
but also prepares the intimate cellular dialogue between 
the TB and the endometrium that is necessary for 
implantation (Vento-Tormo et al. 2018, Biase et al. 2019). 
The production of prostaglandins by TB appears to be 
indispensable for this purpose in many ungulate species 
(Brooks et al. 2014), while other molecules appear to be 
more species specific, such as estrogens and IL1B2 in 
pigs (Ka et al. 2018) or IFN-tau in ruminants.

IFN-tau is produced by the ruminant conceptus and 
is known for its combined effects on the endometrium 
as well as on extra-uterine cells or tissues including 
PBMC, liver, and corpus luteum (Hansen et  al. 2017, 
Imakawa et al. 2018, Passaro et al. 2018). In pregnant 
sheep, IFN-tau loss-of-function experiments using anti-
sense oligonucleotides resulted in embryonic growth 
retardation and malformations (Brooks & Spencer 2015). 
Strikingly, loss of the type I IFN receptor has no effect on 
embryonic elongation (Brooks & Spencer 2015), which 
suggests that IFN-tau may act indirectly on conceptus 
elongation, potentially through its direct effects on 
endometrial cells.

Although IFN-tau has not been detected in non-
ruminant ungulates, other mediators for the recognition 
of pregnancy have been identified in pigs. From the ovoid 
stage, the porcine blastocyst produces estrogens and 
IL1B2 (Perry et al. 1973, Spencer et al. 2004, Mathew 
et al. 2015) which act synergistically to drive endometrial 
functions and conceptus development. IL1B2 secreted 
by the conceptus is necessary for elongation and 
endogenous estrogen production and could help 
inhibit luteolysis by promoting estrogen production 
by endometrial cells (Mathew et  al. 2015, Whyte 
et  al. 2018). However, the direct effect of conceptus-
derived estrogens remains unclear. CYP19A1-null pig 
embryos, which do not produce endogenous estrogen, 
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elongate and implant normally but fail to survive 30 
days past elongation, supporting the hypothesis that 
conceptus-derived estrogens may instead be necessary 
after implantation for embryonic and fetal development 
(Meyer et al. 2019).

Effects of maternal secretions on 
blastocyst development

The conceptus requires histotroph for its development 
and utilizes specific molecular and cellular mechanisms 
to take up histotroph from the ULF. This is exemplified 
by the activation of the endosome-lysosome system in 
TB together with the increased expression of numerous 
transporters for amino acids, glucose, and fatty acids, 
as shown by numerous transcriptomic studies (see 
previous sections). Specific cellular structures can also 
contribute, such as multivesicular bodies, which arise 
from endocytosis and phagocytosis and can be observed 
in the mural trophoblast of mouse blastocysts just prior 
to implantation (Fu et al. 2014).

Variations in histotroph composition can also 
affect conceptus development and survival. Prior to 
implantation, the conceptus experiences exponential 
growth that is fueled by the increased levels of amino 
acids, glucose, and fructose in ULF (Bazer et al. 2015). 
TB, HYPO, and EPI cells express numerous transporters 
and enzymes that enable them to take up and metabolize 
these resources, but also to potentially secrete them to 
other tissues (extra-embryonic, embryonic, or maternal).

Amino acids such as Arg can regulate key signaling 
pathways, including the mTOR pathway which connects 
physiological and metabolic functions (Zhang et  al. 
2017). An increase in Arg and fructose in the ULF of 
pregnant gilts (between days 12 and 15 post-estrus) 
and ewes (between days 10 and 16 of pregnancy) is 
associated with an increase in cell migration and cell 
proliferation of primary trophoblastic cells in vitro, 
through their synergistic activation of the mTOR-RPS6K 
pathway (Kim et  al. 2011, 2012, 2013). Interestingly, 
Arg also affects TB cell proliferation and motility 
through regulation of levels of nitric oxide (NO) and 
polyamines. Arg is converted into NO by nitric oxide 
synthase, and knockdown of this protein in ovine TB 
cells using morpholino antisense oligonucleotides 
delayed conceptus development and growth (Wang 
et al. 2014). Similarly, NO pathway inhibition in ovine 
TB cells reduced cell proliferation and migration, while 
its activation increased cell proliferation and migration 
(Wang et al. 2015). Arg can also be used as a substrate 
for polyamine biosynthesis, a process which requires 
the ornithine decarboxylase ODC1. Embryos of ODC1-
knockout mice are not viable due to apoptotic cell loss 
in the ICM, but the phenotype can be rescued by the 
addition of polyamine (putrescine) in the drinking water 
(Pendeville et  al. 2001). Similarly, supplementation 
of the culture medium with polyamines (spermine or 

spermidine) increases the survival rate of pig or mouse 
blastocysts (Muzikova & Clark 1995, Cui & Kim 2005) 
and increases the proliferation and motility of ovine TB 
cells (Kim et al. 2011).

Different amino acids have been reported to affect 
epiblast development at different times of development: 
during the period of ICM/EPI proliferation (threonine) 
and during germ-layer commitment (glutamine, proline) 
(Moussaieff et  al. 2015a). In human embryonic stem 
cells (ESCs), elevated glutamine levels are required to 
maintain high levels of the intracellular antioxidant 
glutathione, which protects the pluripotency factor OCT4 
from cysteine oxidation. Depletion of glutamine leads to 
increased ROS levels and eventually to rapid degradation 
of OCT4 and consequent ESC differentiation (Marsboom 
et al. 2016). Similarly, in pig blastocysts, as pluripotent 
cells commit to the embryonic germ layers, glycolytic 
flux decreases and oxidative phosphorylation increases; 
together, these lead to the increased production of ROS, 
with the concomitant risk of DNA damage and increased 
degradation of pluripotency factors (Ramos-Ibeas et al. 
2019). It is likely that elevated levels of glutamine 
protect epiblast cells from the effects of high ROS levels 
also in ungulates, which would be consistent with the 
report that glutamine and glycine levels peak on day 14 
in the ULF of pregnant mares (Beyer et al. 2019).

In addition to their direct effects on cell metabolism 
and cell growth, deficiencies in amino acids can 
also impact the epigenome of the conceptus. These 
deficiencies can affect (1) the pool of available methyl 
groups used for DNA, RNA, and histone methylation 
(serine, methionine; Zglejc-Waszak et  al. 2019), (2) 
the pool of acetyl-CoA and SAM used for histone 
acetylation (threonine; Moussaieff et al. 2015b), and (3) 
the pool of residues that are substrates for methylation 
and acetylation (arginine, lysine, and histidine residues; 
Bazer et al. 2015).

Lipid metabolism is also a determining factor in the 
growth and development of the conceptus (Barnwell 
et al. 2016, Ribeiro et al. 2016b). Transcriptomic studies 
have documented the intake and metabolism of lipids 
by the conceptus to produce prostaglandins and energy, 
and these seem to be key functions of parietal extra-
embryonic layers (Ribeiro et  al. 2016b, Pfeffer et  al. 
2017, Ramos-Ibeas  et  al. 2019). Lipids could also be 
essential for the viability of the conceptus by promoting 
pluripotency in EPI, based on reports that fatty acid 
synthesis and LPA-mediated signaling promote human 
and mouse pluripotency in vitro (Kime et al. 2016, Wang 
et al. 2017). Among well-known intracellular sensors for 
fatty acids and their derivatives, PPARs are key players 
during ungulate blastocyst development (see ‘Evidence 
from single-cell studies’ section), and PGs are precursors 
for or direct ligands of PPARs. Indeed, PG production by 
the conceptus plays a key role in regulating blastocyst 
growth (Stout 2016) and endometrium functions (Dorniak 
et al. 2012, Spencer et al. 2013, Kaczynski et al. 2016). 

Blastocyst development in ungulates R163

� Reproduction (2020) 159 R151–R172https://rep.bioscientifica.com

Downloaded from Bioscientifica.com at 08/05/2020 08:01:07AM
via Inra

https://rep.bioscientifica.com


However, PGs are also secreted by the endometrium 
and regulate conceptus elongation (Dorniak et  al. 
2011) and luteolysis (Ford & Christenson 1991, Brooks 
et  al. 2014). Altogether, the roles of lipid metabolism, 
PPAR signaling, and PG in the interplay between the 
conceptus and the uterus are clearly complex and as 
yet incompletely resolved (Ulbrich et al. 2009, Sandra 
et al. 2017).

In sum, the answer to the question of whether 
the histotroph determines blastocyst cell fate and 
differentiation in ungulate species remains elusive, even 
though metabolic fluxes (or switches) are clearly ‘linked 
to cell identity just as gene expression, epigenetics, and 
morphology are’ (Cliff & Dalton 2017). In ungulates, 
further studies are still needed to explore the effects of 
nutrient composition on sensing and signaling between 
ULF and the ICM/epiblast, and comparisons involving 
diapause would be particularly illuminating (Boroviak 
et al. 2015).

Uterine nutrients as a potential trade-off in conceptus 
growth and development

As the uterus senses and drives conceptus development 
(Sandra et  al. 2011), the embryo senses nutrient 
availability and responds to its environment, in vitro 
or in vivo, to compensate (Picone et al. 2011, Bertoldo 
et al. 2015, Fleming et al. 2015).

The importance of such a trade-off prior to embryonic 
implantation was described in mice, using pregnant 
females fed a low-protein diet (LPD) from fertilization 
to implantation. Surprisingly, the total pool of amino 
acids in blastocysts from LPD-fed and control mothers 
were similar, despite the decreased concentration of 
many free amino acids in the ULF of LPD-fed mothers 
and a reduction in mTORC1 signaling in embryonic 
cells (Eckert et al. 2012). These results clearly support 
the existence of compensatory mechanisms that 
rely on endocytosis or phagocytosis and that are 
stimulated in the TB and parietal HYPO (Bevilacqua 
et  al. 2010, Sun et  al. 2014, Fleming et  al. 2015). 
Similar experiments using a low-fat/protein diet would 
be of particular interest, to determine whether similar 
compensatory mechanisms exist for lipid transport and 
intake from uterine fluids and to evaluate the long-
term consequences.

Nowadays, it is clear that early nutrient 
deficiencies are detrimental to neonatal and/or adult 
health (Chavatte-Palmer et  al. 2018, Duranthon & 
Chavatte-Palmer 2018). Still, much work remains to 
be done beyond straightforward characterizations 
of ULF composition in order to understand how the 
environment of the conceptus affects embryonic and 
extraembryonic tissues (proliferation/differentiation/
pluripotency) across livestock species and in  
time – beyond the blastocyst stage and prior 
to placentation.

Concluding remarks

The molecular dialog between the conceptus and 
maternal tissues that takes place prior to implantation is 
slowly becoming better known. Rapid advances in the 
field of transcriptomics, proteomics, and metabolomics 
are certain to provide a clearer view of the molecular 
landscape behind the pre- and peri-implantation 
embryonic development of ungulates. In parallel, 
international initiatives such as the Functional Annotation 
of Animal Genomes project (FAANG, Giuffra et  al. 
2019) help in providing genomic tools and reference 
annotation maps for use in predicting the functioning 
of complex biological systems. Together with the recent 
revolution in single-cell-omics (Kelsey et al. 2017) and 
spatial transcriptomics (Rodriques et al. 2019), we expect 
to soon have more precise maps of cell–cell interactions 
and cell–cell communications as well as progress in 
data integration and prediction. Paracrine signaling will 
however remain a complex issue which will have to be 
validated experimentally in order to decipher the extent 
to which cell–cell communications are involved in cell 
lineage specification.

This new knowledge will provide a solid framework 
for improved understanding of the biology of blastocyst 
development in ungulates. In particular, it could help 
in evaluating the contributions of epigenetic factors to 
embryogenesis during the preimplantation period. In 
mammals, rapid modifications of the epigenome occur 
before implantation and disturbance of this drastic 
reprogramming can also affect the developmental 
competence of ungulate embryos (Young & Beaujean 
2004, Chung et al. 2017, Eckersley-Maslin et al. 2018, 
Duan et al. 2019). However, in ungulates, less is known 
about how epigenetic factors drive blastocyst formation 
and elongation, and the extent to which the maternal 
organism contributes to this type of regulation. Since the 
discovery that exosomes secreted by the endometrium 
contain epigenetic factors like miRNAs or lncRNAs 
(Burns et al. 2016, Gross et al. 2017), it is highly possible 
that this molecular dialog also acts at an epigenetic 
level. Indeed, miRNA levels are highly dynamic before 
and during elongation (Berg & Pfeffer 2018), and some 
have been associated with developmental competence 
in bovine preimplantation embryos (Lin et al. 2019).

Advances in this field could also be applied to 
provide molecular cues for the production of lines of 
true epiblast stem cells (EpiSCs), ESCs, eXtra-embryonic 
ENdoderm stem cells (XEN), and trophoblast stem cells 
(TS) for these species, and to improve culture conditions 
for embryos and organoids. The recent development 
of human TB and endometrium organoids (Turco et al. 
2017, Turco et  al. 2018) and mice embryoids (Rivron 
et al. 2018) are good examples of novel experimental 
approaches that could be adapted to ungulates.

Moreover, the possibility of obtaining elongating 
spherical and ovoid blastocysts from in vitro-produced 
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embryos or organoids, together with recent advances 
in genome editing technologies, would provide 
efficient tools for fine-scale dissection of the molecular 
mechanisms and signaling pathways that are relevant for 
elongation, implantation, maintenance of pluripotency, 
and early embryonic cell-fate commitment and 
differentiation in non-rodent species.

Such 3D cellular models are not only well suited for 
investigations of animal biology at the molecular level, 
but are also complementary to examinations of living 
farm animals: they enable us to reduce the complexity 
of traits through intermediate phenotypes, to perform 
medium- and large-scale studies, and to reduce the 
need for animal experimentation in agreement with 
the 3R (Replace, Reduce, Refine) guidelines. This 
virtuous circle, fed by these descriptive and functional 
approaches and whose success has been demonstrated 
for humans and mice, is now close to being accessible 
for livestock and ungulate species.

In addition to better understanding specific features 
of ungulate early embryonic development, these studies 
confirm the growing potential of ungulate species as 
alternative models to rodents for the investigation of 
biological mechanisms or pathologies that are not easily 
transposable from mice to humans. For example, recent 
works have highlighted interest in working with pig 
blastocysts to better understand the mechanisms that 
drive the induction of primordial germ cells in non-
rodent mammals (Kobayashi et al. 2017) or in using the 
ovine model to study implantation failure in humans 
(Barry & Anthony 2008).
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