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11 Abstract

12 The definition of phytobiomes can be transposed to any agroecosystem and applies to 

13 any phase of crop cycles. Here, we study the crop establishment phase using a generic 

14 modeling framework to assess the potential role of phytobiomes on field crop 

15 establishment. We first developed a generic model called Crop Establishment SIMulator 

16 (CESIM) that takes into account cropping practices, seed and seedling characteristics, 

17 seedbed components (physical chemical and biological), and weather, as well as their 

18 interactions. All these variables were integrated in a qualitative aggregative hierarchical 

19 network to predict the quality of field crop establishment. CESIM has 38 basic (input 

20 variables) and 20 aggregated attributes (19 state variables and 1 output variable) for a 

21 total of 58 attributes. The prediction quality of the model was evaluated for a dataset of 

22 231 field observations across four states of Australia, and experimental results obtained 
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23 in the last 40 years. Accuracy of predictions of the final attribute (i.e. crop 

24 establishment) was 91% and explained 29% of variability of the dataset, as described by 

25 the quadratic weighted Cohen’s κ. CESIM represents a unique and original generic model 

26 capable of taking into account a large number of variables and their interactions to 

27 predict the quality of field crop establishment. This model is flexible, transparent, user-

28 friendly, and therefore is suitable both for academic and non-academic users. CESIM can 

29 be used across a wide range of situations not only to perform the ex-ante assessment of 

30 potential establishment quality of a given crop but also ex-post assessment.  

31 Keywords: damping-off, pre-emergence losses, post-emergence damage, seedling 

32 blight, seedbed components, seed germination, seedling emergence, soil-borne 

33 pathogens

34 Introduction 

35 Crop establishment is the very beginning phase of a crop cycle that consists of three sub-

36 phases: sowing-seed germination, seed germination-seedling emergence, and seedling 

37 emergence-early seedling growth (i.e. initial competition among plants; Aubertot et al. 

38 2020). Crop establishment is the most important phase of any crop cycle as the quality 

39 of crop establishment can directly affect crop productivity, both in terms of quantity and 

40 quality (Arvidsson et al. 2014; Känkänen et al. 2011; Villalobos et al. 2016). For example, 

41 a poor quality of crop establishment leads to several direct and indirect negative 

42 consequences for farmers including the need for re-sowing (additional costs), yield 

43 losses, and higher density of weeds with further problems owing to increased weed seed 

44 bank in the soil (Lamichhane et al. 2018).

45 Crop establishment is affected by four major groups of drivers and their interactions 

46 namely seed and seedling characteristics, seedbed components (physical, chemical and 
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47 biological) weather, and cropping systems (Lamichhane et al. 2018). Several studies 

48 have been carried out to understand the role of different factors on the quality of field 

49 crop establishment. However, these studies focused either on abiotic (Constantin et al. 

50 2015; Dürr and Aubertot 2000; Souty and Rode 1993), or biotic factors (Baker 1971; 

51 Burdon and Chilvers 1975; Grogan et al. 1980), and cropping practices (Farooq et al. 

52 2006; Leoni et al. 2013), without taking into account their overall impact and/or 

53 interactions. Therefore, there is a need to adopt “a systems-level approach” for a better 

54 understanding of these factors, their interactions and its overall impact on the quality of 

55 filed crop establishment (Lamichhane and Aubertot 2018). This approach is consistent 

56 with the definition of phytobiomes, which consist of plants, their environment, 

57 associated micro- and macroorganisms, and their interactions (Leach et al. 2017), as 

58 reported in the Phytobiomes Roadmap (Anonymous 2016). The phytobiome concept in 

59 turn is fully consistent with the definition of Agronomy, as provided by Sebillotte 

60 (Sebillotte 1974), who viewed Agronomy as “a systemic approach to agriculture” that 

61 led to the development of a more holistic direction considering the entire 

62 agroecosystem, with a particular attention to cropping systems. Therefore, from here on 

63 we use the term phytobiomes to indicate all these key determinants affecting crop 

64 establishment. 

65 Experimental approaches and regional agronomic diagnoses in commercial fields can be 

66 used to understand the effect of phytobiomes on field crop establishment. Nevertheless, 

67 both of these processes are time consuming and resource intensive. In addition, the limit 

68 of these approaches is that only a few variables can be studied at a time. In contrast, 

69 modeling allows taking into account all key factors affecting crop establishment, by 

70 integrating them into a same system over time. In particular, mechanistic models that 

71 simulate seed germination, seedling emergence and early seedling growth, as functions 
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72 of measured or estimated environmental variables seem to be the most promising 

73 approach to understand the quality of field crop establishment. However, mechanistic 

74 models  are difficult to develop as they require a detailed knowledge of the system, by 

75 integrating all factors and their interactions (Forcella et al. 2000). This is especially true 

76 to study the quality of field crop establishment, which is affected by a large number of 

77 factors and their interactions (Lamichhane et al. 2018). Several models have been 

78 developed and used to achieve this objective. However, all of them take into account 

79 only a few factors affecting field crop establishment (Finch-Savage et al. 2005; Jame and 

80 Cutforth 2004; Wang et al. 2009). The SIMPLE crop emergence model (Dürr et al. 2001) 

81 is the most robust mechanistic model developed so far to study the quality of crop 

82 emergence. However, this model does not take into account biotic factors affecting crop 

83 establishment (Lamichhane et al. 2017) and our knowledge is not still advanced 

84 sufficiently to integrate this part into a mechanistic model. In addition, the SIMPLE 

85 model can not benefit from expert knowledge. Development and use of simpler models 

86 that benefit from experimental and observational data, in addition to published scientific 

87 and technical litterature, existing simulation models, and expert knowledge, may be 

88 more useful to predict the quality of field crop establishment.

89 In order to do so, we propose a generic modeling framework called Crop Establishment 

90 SIMulator (CESIM). This framework is very simple in the way the modeled system is 

91 described, despite its complexity and the number of factors and processes involved, 

92 which would be very difficult to address using a mechanistic approach. Such a 

93 framework has been successfully developed and tested to predict risks of pest 

94 development on crops as a function of cropping practices, and abiotic and biotic 

95 environment (Aubertot and Robin 2013; Robin et al. 2013). CESIM is based on a simple 

96 qualitative hierarchical aggregative approach to represent the effects of various factors 
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97 affecting the quality of field crop establishment. The objectives of this study are three-

98 fold: i) present the basic principles of CESIM, ii) apply it to a concrete case as a proof of 

99 concept: simulation of establishment quality of subterranean clover (Trifolium 

100 subterraneum L.) in various Australian conditions, and iii) present a sensitivity analysis 

101 of the model (i.e. measure how the model output reacts to changes in input or 

102 aggregated attributes; Carpani et al. 2012) and assess its prediction quality.

103 Materials and methods

104 Basic principales of CESIM

105 Three sub-phases characterize the establishment phase of any crop, namely seed 

106 germination, seedling emergence, and early seedling growth (Aubertot et al. 2020). A 

107 conceptual scheme of CESIM, where crop establishment is the output variable is 

108 presented in Figure 1.  This scheme is an adaptation of a previously published scheme 

109 (Lamichhane et al. 2018), where four different components: cropping systems, seed and 

110 seedling characteristics, and seedbed components (physical, chemical and biological) 

111 were the input variables while seed germination and seedling emergence were the 

112 output variable. However, because CESIM goes beyond the seedling emergence phase 

113 and considers the quality of crop establishment as its output variable, we integrated into 

114 this scheme a fourth component represented by animal pests, especially the vertebrate 

115 ones. This is because vertebrate pests are often responsible for post-emergence damage 

116 of young seedlings (Dimitri et al. 2012; Firake et al. 2016; Nasu and Matsuda 1976). The 

117 term ‘‘cropping system’’ indicates ‘‘a set of management practices applied to a given, 

118 uniformly treated area, which may be a field, part of a field or a group of fields’’ 

119 (Sebillotte 1990). This includes many technical operations such as the choice of the crop 

120 sequence, cover cropping, cultivar, tillage or seedbed preparation practices, date, depth 
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121 and density of sowing etc. The term ‘‘system’’ is used here because these technical 

122 choices are interdependent (Meynard et al. 2003). Crop establishment can be seen as the 

123 result of hierarchical interactions among these components and the environement.

124 Implementation of CESIM

125 The development of CESIM was implemented using the DEXi software 

126 (https://kt.ijs.si/MarkoBohanec/dexi.html). The underlying approach (called DEX 

127 method) initially aimed at qualitative hierarchical multi-attribute decision modeling and 

128 support, where a complex decision problem was broken down into smaller and less 

129 complex sub-problems (Bohanec 2003). In the field of agronomy, this tool was applied 

130 to the assessment of sustainability of agroecosystems (Craheix et al. 2015; Pelzer et al. 

131 2012; Sadok et al. 2009). In addition, the DEXi software has also been used to implement 

132 qualitative simulation models focusing on pest management (Aubertot and Robin 2013; 

133 Robin et al. 2013; Robin et al. 2018). The sub-problems are hierarchically structured 

134 into a tree of attributes that represents the ‘‘skeleton’’ of the model. Terminal nodes of 

135 the tree, i.e. leaves or basic attributes, represent input variables of the model, which 

136 must be specified by the user. The root node represents the main output, in our case it is 

137 the quality of crop establishment. The root node and internal nodes of the model are 

138 aggregated attributes. All the attributes in the model are qualitative (ordinal or nominal) 

139 and not quantitative variables. They take only discrete symbolic values usually 

140 represented by words. In the DEX method, the aggregation of values of the tree is 

141 defined by ‘‘utility functions’’ based on a set of ‘‘if-then’’ aggregation rules. Here, we 

142 renamed these functions ‘‘aggregating tables’’ as they are not related to the concept of 

143 ‘‘utility’’ in decision theory (Aubertot and Robin 2013).

144 CESIM structure
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145 As for building any DEXi model (Bohanec 2003), CESIM was designed in three steps: i) 

146 identification and organization of the attributes, ii) definition of attribute scales, and iii) 

147 definition of aggregating tables.

148 Identification and organization of the attributes

149 CESIM aims at predicting the quality of any crop establishment in a given field based on 

150 a range of input variables. The spatial scale considered is the field while the temporal 

151 scale considered is a single growing season. Nevertheless, some input variables include 

152 the entire crop sequence (up to the preceding crops) as it affects the seedbed physical, 

153 chemical and biological characteristics. The hierarchical structure of the model is 

154 presented in Figure 2, which represents the breakdown of factors affecting the quality 

155 of crop establishment into specific explanatory variables, represented by lower-level 

156 attributes. CESIM has 58 attributes in total, including 38 basic and 20 aggregated 

157 attributes. The 38 basic attributes represent input variables of the model and are 

158 presented as the terminal leaves of the tree. The levels of the basic attrubutes are 

159 aggregated into higher levels according to aggregating tables. The aggregated attributes 

160 are internal nodes, which represent state variables or the output variable of CESIM, and 

161 they are determined by lower-level basic attributes (Bohanec et al. 2007). The 

162 importance of some basic attributes may differ not only from one crop species to 

163 another, but also within a given crop, depending on the growth phase considered. This 

164 means that some of basic attributes will have a higher impact than others on the final 

165 output (i.e. the quality of crop establishment). For example, seedbed chemical 

166 components such as organic matter, or inorganic nutrients, do not have any impact on 

167 seed germination which relies on seed reserves (autotrophic phase). In contrast, they 

168 markedly affect seedling growth, especially after emergence. Likewise, emergence losses 

Page 7 of 46



8

169 due to soil-borne animal pests can be more important for maize, oilseed rape or sugar 

170 beet but less important for soybean or sunflower (BSV 2016; Furlan et al. 2020; 

171 Lamichhane et al. 2020). Likewise, post-emergence seedling damage due to vertebrate 

172 pests maybe very high for sunflower (Sausse et al. 2016) or soybean (Firake et al. 2016) 

173 but less relevant for wheat. Similarly, crop compensation capacity is high for crops such 

174 as soybean and wheat through ramification and tillering capacity. In contrast, crops such 

175 as maize or sunflower do not have this capacity and thus exposed to higher pre-or post 

176 emergence failure. At the same time, the importance of the same basic attribute on the 

177 same crop may differ depending on production situations (Aubertot and Robin 2013). 

178 For example, a diversified cropping system is less favorable for soil-borne pathogens to 

179 cause pre- or post-emergence damping-off disease than monocropping or less-

180 diversified cropping system (Abdel-Monaim and Abo-Elyousr 2012; Hwang et al. 2008; 

181 Lamichhane et al. 2017). Likewise, the risk of post emergence damage due to vertebrate 

182 pests depends on a number of factors including the field, landscape and regional 

183 characteristics (Bayani et al. 2016; Sausse and Lévy 2020). Therefore, none of the basic 

184 attributes can be omitted from the model structure due to the generic nature of CESIM. 

185 However, we excluded weeds as their impact on crop growth, development and yield 

186 become important only after the crop establishment phase (provided that a crop is sown 

187 in weed-free conditions) when they are sufficiently developed to compete with crops for 

188 light and nutrients (Chauhan and Johnson 2011; Chauhan and Opeña 2013).  

189 Definition of the Attribute Scales

190 The choice of ordinal or nominal scales for basic and aggregated attributes represents 

191 the second step of a DEXi model design. To this objective, sets of discrete values were 

192 defined for the attributes of the model and described by symbolic value scales 
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193 expounded by words. These values were explicated based on the literature knowledge 

194 as well as expertise when deemed necessary. CESIM uses no more than a three-grade 

195 scale value (i.e. ‘‘Unfavourable’’, ‘‘Moderately favourable’’, ‘‘Favourable’’) for the 

196 aggregated and basic attributes, which alludes to crop establishment. The value 

197 ‘‘Favourable’’ means that the attribute is favourable to seed germination, seedling 

198 emergence, stand uniformity (i.e. the uniformity of emerged seedlings in terms of 

199 growth stage including height, biomass, stem diameter etc.), and finally to crop 

200 establishment.

201 Different values for basic attributes can be specified using quantitative data, which are 

202 subsequently converted into qualitative values. For example, the seed mass, seedbed 

203 temperature or moisture can be converted into qualitative values using literature 

204 references or expertise. This conversion takes into account not only the regional context 

205 but also the crop in question. For instance, a relatively low seedbed moisture could be 

206 classified as "Moderately favorable" for oilseed rape or wheat (quite tolerant to water 

207 stress in the seedbed) but ‘‘Unfavorable’’ for soybean (very sensitive to water stress in 

208 the seedbed) establishment (Dürr et al. 2015; Lamichhane et al. 2020). In contrast, other 

209 attributes, such as ‘‘crop rotation’’ or ‘‘crop residue management’’, can be directly 

210 described qualitatively.

211 For seed and seedling attributes, all characteristics provided by seed suppliers, and 

212 when available, those obtained by experimental results and from expertise can be used.  

213 Likewise, for the seedbed physical, chemical and biological characteristics, the 

214 information can be retrieved from field experiments. Information related to weather 

215 attributes, such as rainfall and evapotranspiration can be either measured using sensors 

216 or recovered from nearby meteorological stations. Figure 3 reports the scales which are 
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217 ordered from unpromising values to the propitious ones for crop establishment. All 

218 these characteristics are clearly noticeable in the DEXi software as detrimental, neutral 

219 and favorable values to the end user are, by convention, coloured in red, black and 

220 green, respectively. 

221 Any initial quantitative or qualitative input attribute values can be converted into 

222 qualitative appreciation, based on two to three scales. These scales are defined relying 

223 on available information in the literature, models or expertise. For the same attribute, a 

224 two-value scale (‘‘Unfavourable’’, and ‘‘Favourable’’) was used for the seed germination 

225 and seedling emergence phase (e.g. Temperature, Moisture, etc.) while a three-value 

226 scale (‘‘Unfavourable’’, ‘‘Moderately favourable’’, and ‘‘Favourable’’) was used after 

227 seedling emergence (Fig. 3). This is because seed germination is indeed strongly 

228 affected by a relatively high or low level of seedbed temperature or moisture that have 

229 an important impact on seedling growth and the stand uniformity that together 

230 determine the final crop establishment (Constantin et al. 2015). 

231 Definition of Aggregating Tables 

232 The choice of aggregating tables that determine the aggregation of attributes in the tree 

233 and their interactions is the third step in the design of a DEXi model. A set of ‘‘if-then’’ 

234 rules determine the value of the considered attribute, for each aggregated attribute in 

235 the model, as a function of the values of its immediate descendants in the model. The 

236 rules that correspond to a single aggregated attribute are assembled together and easily 

237 represented in tabular form. Each table defines a mapping of all value combinations of 

238 lower-level attributes into the values of the aggregate attribute. Figure 4 presents 

239 decision rules that correspond to the ‘‘seed germination’’ aggregated attribute and 

240 define the value of this attribute for the 12 possible combinations of the three seed 
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241 characteristics, the 2 levels of seedbed characteristics, and the 2 levels of seed predation. 

242 For example, if seed and seedbed characteristics are favorable and the seed predation 

243 rate is low, then the ‘‘seed germination’’ will be high and thus favorable to crop 

244 establishment (Fig. 5).

245 All CESIM aggregating tables have been generated using literature, experimental data,  

246 and expert knowledge when deemed necessary. Other aggregating tables of the model 

247 are reported in Supplementary Figures S1-S4.

248 Evaluation of the prediction quality of CESIM: the establishment of subterranean 

249 clover establishment in Australia as a case study

250 Description of the Dataset

251 A detailed description of the dataset used to test the prediction quality of the model is 

252 presented in Supplementary Table S1. The quality of subterranean clover 

253 establishment over the last four decades has been severely affected across Western 

254 Australia (Burnett et al. 1994; Foster et al. 2017; O’Rourke et al. 2009), which has 

255 encouraged research to investigate the key underlying causes. Soil-borne pathogens 

256 have been reported to cause severe economic losses thereby threatening the viability of 

257 this forage crop (Barbetti et al. 2007; Barbetti et al. 1986; Wong et al. 1985a) and four 

258 major soil-borne pathogens: namely Phytopthora clandestina (Simpson et al. 2011; You 

259 et al. 2005; You and Barbetti 2017), Pythium irregulare (Wong et al. 1984; Wong et al. 

260 1985b; You et al. 2017), Rhizoctonia solani (Maughan and Barbetti 1983; Wong et al. 

261 1985a; You et al. 2008; You and Barbetti 2017) and Aphanomyces trifolii (Ma et al. 2008; 

262 You et al. 2016; 2018) have been reported to cause root rot of subterranean clover. The 

263 severity of the disease caused by these soil-borne pathogens mainly depends on 

264 cropping system (e.g. cultivar choice) or seedbed soil and weather characteristics (e.g. 
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265 soil texture, structure, moisture, temperature and rainfall; (Barbetti and MacNish 1984; 

266 Hochman et al. 1990; Wong et al. 1985a, 1985b; You et al. 2017; You and Barbetti 2017). 

267 In addition, there are also other components affecting the quality of subterranean clover 

268 establishment, such as the impact of animal pests like nematodes (Barbetti et al. 2007; 

269 Pung et al. 1988). 

270 Research conducted over the last four decades in Australia focused on a number of 

271 issues spanning from ecology and epidemiology of damping-off disease caused by soil-

272 borne pathogens (Barbetti et al. 1986; Sivasithamparam, 1993; Wong et al. 1984, 1985b, 

273 1985a; You et al. 2008) to identification and deployment of available host resistance 

274 (Nichols et al. 2014, 2013; You et al. 2005; You et al. 2016), use of mineral nutrients 

275 (O’Rourke et al. 2012), soil and plant management (Smiley et al. 1986). More recent 

276 research has been aimed at better understanding of soil and weather effects and their 

277 interactions with cropping practices and the overall impact on disease development and 

278 levers towards better disease management (You and Barbetti 2017; You et al. 2017; You 

279 et al. 2018). All this research conducted across Australia in the last four decades allowed 

280 us to generate an important amount of primary knowledge on how different factors and 

281 their interaction may affect the quality of subterranean clover establishment. This 

282 dataset thus represents an unprecedented opportunity for modeling frameworks. 

283 The required datasets had to provide information for input attributes of CESIM 

284 (description of seed, seedling and seedbed characteristics, cropping practices, climate) 

285 and its output (crop establishment) which was challenging. Therefore, the predictive 

286 quality of CESIM was tested using two kinds of dataset : i) that originating from an 

287 Australia-wide survey that was carried out in 2014 to identify the quality of 

288 subterranean clover establishment across four states (SA, NSW, VIC & WA) in Australia, 
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289 and ii) that generated from different greenhouse and field trials conducted in Australia 

290 over the last four decades.

291 Although the model structure considers different levels of crop rotation or cropping 

292 practices, out dataset included only a low level of variability for some of the input 

293 variables. For example, subterranean clover is an annual pasture crop that naturally 

294 reseeds each growing season and therefore no crop rotation data were included in our 

295 dataset. Likewise, although most field crops are subjected to seed treatment 

296 (Lamichhane et al. 2020b) no seed treatment was performed for subterranean clover for 

297 two reasons. First, this crop is considered a low-value crop and second, given that 

298 damping-off disease limiting the establishment and productivity of this crop is most 

299 often caused not only by one soil-borne pathogen but by a pathogen complex. In such a 

300 case, fungicide seed tratment is not effective in managing the disease (You et al. 2020). 

301 Nevertheless, all data used to assess the prediction quality of the model included 

302 information corresponding to the real field situations. In total, we used data collected 

303 across 231 production situations. All these data were transformed into qualitative 

304 values and used as input basic attributes to feed CESIM-Subterranean clover.

305 Converter

306 As for any other DEXi-based models (Robin et al. 2018), CESIM-subterranean clover is 

307 based on qualitative attributes and aggregative tables with nominal or quantitative 

308 variables. The latter are generally available for users dealing with their specific 

309 situations. A converter was designed to transform these variables into ordinal ones 

310 using specific regional references adapted to the local pedo-climatic situations and 

311 cropping practices. A detailed description of the converter used to this aim is presented 

312 in Supplementary Table S2.
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313 Simulations with DEXi

314 The qualitative final attribute value (final rate of crop establishment) is calculated by 

315 DEXi. The estimation consists of calculating all aggregated attribute values according to: 

316 (i) the structure of the tree; (ii) the considered simulation unit, defined as a set of input 

317 variables (basic attribute values); and (iii) the aggregating tables for the aggregation of 

318 attributes. 

319 Evaluation of the Predictive Quality of CESIM-Subterranean clover

320 CESIM was evaluated for its ability to predict crop establishment classes. To this aim, 

321 quantitative observed values of crop establishment were transformed into ordinal 

322 values, using the same discrete categories as the model (i.e., 0 to 40, 40 to 60, 60 to 80, 

323 and 80 to 100%). Each of the observed crop establishment percentages was related to a 

324 value simulated by the model using the corresponding observed input attributes. To 

325 assess the predictive quality of the model, a confusion matrix was computed as a table 

326 layout, where each column represents the instances in a predicted class, while each row 

327 represents the instances in an observed class. Accuracy (proportion of correctly 

328 predicted situations) is a widely used performance metric. However, it cannot be the 

329 only statistical criterion to consider since our dataset was unbalanced. Both Matthews 

330 Correlation Coefficient (MCC) (Matthews 1975) and Cohen’s quadratic weighted κ 

331 (Cohen 1960; Fleiss and Cohen, 1973) correct this bias, but the former is prefered for 

332 unbalanced cases (Delgado and Tibau 2019). Matthews Correlation Coefficient (MCC) is 

333 a special case of Pearson Correlation Coefficient and leads to similar interpretations 

334 (Matthews, 1975). It takes into account true and false positives and negatives and is 

335 generally regarded as a balanced measure, which can be used even if the classes are of 

336 very different sizes. We also used the Cohen’s quadratic weighted κ because it can be 
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337 interpreted as the proportion of variability explained by the model (Fleiss and Cohen, 

338 1973). The dataset used only had two classes of crop establishment quality: Low 

339 (=<40%), Moderately low (41-60%). Two additional statistics for binary classifiers were 

340 therefore also considered (Agresti 2002): the sensitivity (measurement of the 

341 proportion of situations with actual low crop establishment correctly predicted), and the 

342 specificity (measurement of the proportion of situations with moderately low crop 

343 establishment quality correctly predicted). These computations were carried out using 

344 Mathematica 10.1.0.0 (Wolfram Research 2015).

345 Sensitivity analysis

346 Sensitivity analysis was conducted using the automatic procedure integrated into the 

347 DEXi software (Bohanec 2009), which computes the standardized local and global 

348 weights of each attribute as a function of the aggregative tables using a linear regression 

349 method (Bohanec 2009). Previous studies that used DEXi-based models performed 

350 sensitivity analysis to measure the behaviour of the model output to changes in 

351 parameters or other input values (Carpani et al. 2012; Robin et al. 2018).  These weights 

352 are important as they are comparable to a sensitivity analysis for quantitative models 

353 (Robin et al. 2018). The higher the weight, the more influential the attribute. The ‘‘local’’ 

354 and ‘‘global’’ weights are calculated in two different ways. ‘‘Local’’ weights are assigned 

355 to each aggregated attribute individually so that the sum of weights of its immediate 

356 descendants in the hierarchy equals 100%. The ‘‘global’’ weights are determined at a 

357 given level of aggregation and signify the importance of each attribute on the value of 

358 the output attribute. The ‘‘global’’ weights are computed by multiplying the local weight 

359 of a given attribute at a given level of aggregation, by local weighting of its ascendants. 

360 Only standardized values are presented since non standardized weights calculated by 
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361 DEXi do not take into account the number of classes in the scales used and prevent the 

362 structural bias they induce (Bohanec, 2009).

363 Results

364 Sensitivity analysis

365 Table 1 reports the weights of each of the 58 attributes of the model, providing an 

366 overview of the model’s structure. CESIM has 5 levels of aggregation (Fig. 3), the fifth 

367 one being the leaves (i.e. the model input basic attributes). For example, the output 

368 attribute “Final percentage of establishment” is defined at a level of 40% by the attribute 

369 “Seedling emergence”; 20% by the attribute “Stand uniformity”, and 40% by the 

370 attribute “Crop compensation capacity”. As a proof of the complexity of the underlying 

371 processes at stake, the most influential input attribute (leaves), after the attribute “Crop 

372 compensation capacity” (40%), is only 4% (attribute “Seed predation”). 

373 Evaluation of the Predictive Quality of CESIM-Subterranean clover

374 The relatively high number of observed situations in the dataset (231) allowed an 

375 acceptable evaluation of the CESIM-Subterranean clover predictive quality. The accuracy 

376 of the confusion matrix (Fig. 5) revealed that the model correctly predicted 91.3% of the 

377 observations (sum of the italic numbers reported in the diagonal of the matrix in green). 

378 However, the MCC (0.342) revealed a fair agreement as confirmed by the Cohen’s κ 

379 criterion (0.297) (Landis and Koch, 1977). The model has a good sensitivity (0.62), and 

380 an excellent specificity (0.92). As expected, the predictive quality of the model was 

381 excellent for the lowest crop establishment class (i.e. the most frequently observed class 

382 in the dataset): 92% of the observed values between 0 and 40% were correctly 
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383 simulated (as described by the specificity). Consequently, the overall predictive quality 

384 of CESIM-Subterranean clover considered as satisfactory.

385 Discussion

386 Complexity of the crop establishment phase and the need for multidisciplinary research 

387 The quality of crop establishment under field conditions is affected by several factors 

388 and their interactions, depending on cropping practices and production situations 

389 (Lamichhane et al. 2018). For example, drought represents the most important limiting 

390 factor to cover crop establishment in Southern France (Constantin et al. 2015), while 

391 soil-borne pathogens are the major limiting factor for the establishment of forage crops 

392 across Southern Australia (Barbetti et al. 2007; Foster et al. 2017; You and Barbetti, 

393 2017; You et al. 2018).  However, in both cases, these abiotic and biotic factors interact 

394 not only among them but are also under the influence of cropping practices that finally 

395 determine the quality of crop establishment. Focusing only on some of the factors 

396 determining the quality of crop establishment may not allow development of sustainable 

397 solutions. This is especially true taking into account the complexity behind the crop 

398 establishment phase requiring knowledge and expertise from agronomy, 

399 phytopathology, entomology, weed science, soil science and soil microbial ecology. The 

400 modeling framework proposed herein is a telling example that highlights how a complex 

401 issue can be disentagled into more simple problems and how all this can be addressed 

402 using a broader approach integrating literature knowledge and experise (notably from 

403 scientific specialists, but also from farmers and agricultural advisers). 

404 Potentials of CESIM generic modeling framework
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405 Despite the availability of a rich dataset on factors affecting the establishment quality of 

406 subterranean clover, no modeling framework has been developed to date undertaking a 

407 system approach. A small part of this dataset has been recently used to develop 

408 generalized linear models and boosted regression trees (You et al. 2017, 2018), but 

409 these models did not take into account all key factors and their interactions. In addition, 

410 although these generalized linear models may have parameters with biological 

411 significance at discretion of the « experts » tuning, or creating a model, this was not 

412 taken into account in these recent works. On the other hand, a quantitative modeling 

413 approach, such as the use of mechanistic models, is not realistic yet to study this 

414 complex system. This is because they need precise quantitative data on each variable of 

415 the model and their interactions although they can still provide a good range of 

416 uncertainty around an estimation even without being fully calibrated (e.g. good 

417 sensitivity and uncertainty analysis procedures help targeting the right parameters to 

418 accomplish it). Overall, a quantitative approach may lead to models difficult to use due 

419 to the challenge to provide input variables. Also, propagation errors is a common pitfall 

420 of complex machanistic models. However, these issues can be overcome by using a 

421 qualitative generic modeling framework. The dataset and knowledge available on the 

422 agroecosystems with subterranean clover allowed us to test the prediction quality of a 

423 complex generic model such as CESIM, which is not yet possible for other crops due to 

424 incomplete data availability.

425 CESIM represents the first model that takes into account all key abiotic and biotic 

426 factors, as well as cropping practices affecting the establishment quality of a given crop. 

427 The example of modeling framework reported herein is innovative because it allows 

428 aggregation of key information from different sources (i.e., technical and scientific 

429 literature, expert knowledge, experimental data or data from field diagnoses). In this 
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430 way, a high level of complexity can be addressed given that it deals with qualitative 

431 variables (sometimes derived from quantitative variables). Such a qualitative 

432 framework is very appropriate, while modeling complex systems for which a high 

433 precision level is not necessarily a pre-requisite. The DEXi software thus offers a 

434 relevant environment for organizing the available knowledge and developing models. In 

435 addition, DEXi-based models allow a high level of generality (Aubertot and Robin 2013; 

436 Robin et al. 2018). A major innovation of CESIM is its flexibility and adaptability as the 

437 model promptly integrates any variables at any time with the possibility of adjusting 

438 certain scales or aggregative rules. In addition, the simple and user-friendly DEXi 

439 interface is another key advantage of this approach that represents a powerful 

440 communication and educational tool. Finally, as for any DEXi-based model, CESIM can be 

441 used across a wide range of situations not only to perform the ex-ante assessment of 

442 potential establishment quality of a given crop but also ex-post assessment, taking any 

443 possible changes in cropping practices, seed and seedling as well as seedbed 

444 characteristics thereby facilitating decision making process. 

445 Limits of CESIM generic modeling framework

446 One of the limits of the CESIM approach is a high number of attributes and scales used in 

447 the model. This is due, in part, to the fact that the crop establishment phase is composed 

448 of three sub-phases (seed germination, seedling emergence and crop uniformity). This 

449 means that the same attributes and their related variables repeat several times within 

450 these sub-phases. For instance, seedbed characteristics such as moisture and 

451 temperature appear throughout all three sub-phases. Likewise, seedbed physical, 

452 chemical and biological characteristics appear along two phases (seedling emergence 

453 and seedling uniformity). All this makes the model structure quite complicated. In 
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454 addition, the scales used for each of the attributes that repeat throughout different sub-

455 phases are not necessarily the same. This would further increase the complexity of 

456 aggregative tables, which would be more difficult to complete. This could be due to 

457 many factors including: i) lack of knowledge in the literature, ii) lack of consistency in 

458 experimental and observational results, or iii) lack of consensus among experts on the 

459 potential effects of different factors, given that attributes and scales were selected from 

460 literature, experimental data, and expert knowledge. As a consequence, the model may 

461 not be able to integrate these factors. An example, is the effect of seedbed temperature 

462 and moisture on disease severity index. Because different soil-borne pathogens, 

463 including oomycetes (Simpson et al. 2011; You and Barbetti, 2017; You et al., 2017), and 

464 true fungi (You and Barbetti 2017; You et al. 2016), affect the establishment quality of 

465 subterranean clover, the ranges of soil moisture and temperature triggering their 

466 epidemics could be different. In addition, most often these pathogens are subjected to 

467 synergistic interactions that lead to disease complexes. However, while this latter 

468 information is not precisely integrated into the model due to poor knowledge and 

469 expertise available to date, model inputs representing the outcomes of such synergistic 

470 interactions were integrated into this CESIM approach and well-represented by 

471 variables such as ‘‘seed germination ability” and ‘‘crop compensation ability”.

472 Certain values of the basic indicators are difficult to estimate objectively. For instance, 

473 the role of beneficial organisms in the soil, in particular that of antagonist 

474 microorganisms, in reducing negative impact of soil-borne pathogens is very difficult for 

475 users to measure. Consequently, we did not include this variable into the model. 

476 Nevertheless, this variable is somehow well-represented in the model by the variable 

477 “organic matterˮ, as soil organic matter has been reported to be directly correlated to 

478 disease suppressiveness due to the induction of physicochemical and biological changes 
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479 in soils (Campos et al. 2016; Vida et al. 2020). This means that the higher the soil organic 

480 matter in the soil, the lower the risk of disease development due to soil-borne 

481 pathogens. Likewise, the variable “crop rotationˮ, which has been reported to enhance 

482 disease suppressive potential in soils when diversified (Peralta et al. 2018) is also 

483 integrated into the model, which to some extent represent the role of beneficial 

484 microorganisms. Another variable difficult to measure for users is “seed latently infected 

485 by seed-borne pathogensˮ which depends on the seed quality and thus belongs to seed 

486 characteristics. Although we did not include this variable into the model, this 

487 characteristic is already well-represented by the variable “seed germination abilityˮ and 

488 “seed treatmentˮ. Indeed, the higher the percentage of latent seed infection in a given 

489 seed lot, the lower the germination ability, if the seeds are not treated. Finally, we did 

490 not include host resistance or tolerance into the model as a variable, neither for pre-

491 emergence nor for post emergence. This is because the variables “seedling 

492 characteristicsˮ and “crop compensation abilityˮ represent host resistance/tolerance 

493 pre-and post-emergence, respectively. This is more realistic than including specific host 

494 resistance as a variable for two reasons: first, no crop cultivar is fully resistant to all soil-

495 borne pathogens causing damping-off (Lamichhane et al. 2017) and a cultivar resistant 

496 to one soil-borne pathogen can be susceptible to another soil-borne pathogen or to a 

497 specific race of a given pathogen (Nichols et al. 2014; You et al. 2005). Second, a 

498 resistant cultivar can rapidly become susceptible due to multiple resistance-breaking as 

499 for example was the case for new races of P. clandestina (You et al. 2005). In general, the 

500 variable “crop compensation abilityˮ also includes any potential pre- or post-emergence 

501 losses due to abiotic or biotic stresses via ramification, tillering, inderminate or semi-

502 determinate growth to ensure a good coverage of the seedbed.
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503 In a qualitative model such as CESIM, the basic attribute values need to be defined 

504 qualitatively, and some of them have to be originated from quantitative values with 

505 simple transformation. This operation can be time consuming, in some cases, especially 

506 when the number of attributes is high. In addition, such a procedure raises questions 

507 about the precision of the model although the precision is not the main objective of such 

508 qualitative models (Aubertot and Robin 2013; Robin et al. 2018). 

509 The results obtained when assessing the predictive quality of CESIM rely not only on the 

510 model itself, but also on the diversity of the dataset. The more representative the data 

511 are of a range of soil, weather, cropping systems and crop establishment, the more 

512 robust the evaluation. Although a relatively large dataset (i.e. 231 situations) was used 

513 to represent all these variabilities, the dataset did not cover a wide range of situations. 

514 For instance, there was no variability in seed treatment (all non-treated seeds), 

515 germination ability (all medium), seed predation (all low), evapotranspiration (all 

516 favorable), seedbed structure (all favorable), sowing density (all favorable), crop 

517 rotation (all unfavorable), sowing depth (all average), and vertebrate pests (all 

518 favorable). In addition, although four classes of the crop establishment quality was 

519 defined in the model, the dataset contained only low (<40%) and moderately low (41-

520 60%) classes while the other two classes (moderately high ; 61-80% and high >80%) 

521 were not represented in the dataset. Soil-borne pathogens, in interaction with pedo-

522 climatic factors, cropping practices and production situations, cause devastating losses 

523 of subterranean clover across Australia (Barbetti et al. 1986, 2007). Disease 

524 management is extremely challenging for different reasons. First, host resistance is 

525 available to specific soil-borne pathogens but not to all soil-borne pathogen complexes 

526 (You et al. 2005). Likewise, while chemical seed treatment is generally effective against 

527 individual pathogens it is ineffective to pathogen complexes (You et al. 2020). Due to 

Page 22 of 46



23

528 permanent nature of annually self-regenerating subterranean clover forages, there is no 

529 crop rotation and, most often, farmers systematically tend to renovate semi-permanent 

530 forages by making new sowings into pre-existing clover fields that have severely 

531 declined. This makes the clover establishment extremely challenging, as newly planted 

532 cultivars often fail to successfully establish within existing forage systems due to 

533 competition from surviving seedbank. In addition, resowing new cultivars into a field 

534 already infected by soil-borne pathogens can fail due to pre- and post-emergence 

535 damping-off from soil-borne pathogen complexes. All this explains the frequently low to 

536 moderately low crop establishment rates in the dataset. This did not allow us to test the 

537 predictive quality of the model for relatively high or high rates of crop establishment.
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539 Perspectives

540 Here, for the first time, we developed a qualitative modeling framework based on a 

541 systems approach, that assesses the role of phytobiomes on field crop establishment. 

542 Development of such a model was a challenging task that has been achieved. The next 

543 step should focus on its improvement, in particular, to increase its predictive quality. To 

544 this objective, two approaches can be used : i) optimization of the model by modifying 

545 the aggregative tables (equivalent to parameter optimization for quantitative models; 

546 Aubertot and Robin 2013), and ii) improvement of the dataset used herein to test the 

547 prediction quality of the model. The latter can be done including those situations where 

548 the establishment quality of subterranean clover is high to very high in three different 

549 ways as suggested previously (Robin et al. 2018): i) setting up specific experiments, (ii) 

550 performing agronomic diagnoses in commercial fields, and (iii) integrating data from 

551 other countries. Also, the use of other simulation models could be considered in order to 

552 generate data, provided that their quality of prediction is sufficient.

553

Page 24 of 46



25

555 Acknowledgements

556 We thank Gauthier Quesnel for his kind support and interaction on the model evaluation 
557 part, as well as Marie-Hélène Robin and David Camilo Corrales for their suggestions on 
558 the DEXi-based modeling approach. We also thank Kunmei Guo, Dr He Bo, John Quealy, 
559 Kevin Foster, Daniel Kidd, Peter Skinner, Paul Wilson, Robert Creasy, and Bill Piasini 
560 from the University of Western Australia for their technical support with collection of 
561 some data used in this modelling study. This work was partly supported by the FAST 
562 project (Faisabilité et Evaluation de Systèmes de Cultures Economes en pesticides en 
563 l’Absence répétée de Semences Traitées) funded by the French Agency for Biodiversity, 
564 by credits from the royalty for diffuse pollution, attributed to the funding of the 
565 Ecophyto plan. A thank also goes to Institut National Polytechnique of Toulouse (INPT) 
566 for providing a short-term visiting Professor grant that allowed M. J. Barbetti to come in 
567 France and work with the first and last author.  

Page 25 of 46



26

569

570 Literature cited
571
572 Abdel-Monaim, M.F., and Abo-Elyousr, K.A.M. 2012. Effect of preceding and 
573 intercropping crops on suppression of lentil damping-off and root rot disease in 
574 New Valley – Egypt. Crop Prot. 32 : 41–46. 
575 Agresti, A. 2002. Categorical Data Analysis. 2nd ed. Wiley Series in Probability and 
576 Mathematical Statistics. Wiley, Hoboken, NJ. 
577 https://doi.org/10.1002/9780470594001.
578 Anonymous 2016. Phytobiomes: A Roadmap for Research and Translation. American 
579 Phytopathological Society, St. Paul, MN. www.phytobiomes.org/roadmap.
580 Arvidsson, J., Etana, A., and Rydberg, T. 2014. Crop yield in Swedish experiments with 
581 shallow tillage and no-tillage 1983–2012. Eur. J. Agron. 52: 307–315. 
582 Aubertot, J.-N., Deguine, J.-P., Lamichhane, J.R., Robin, M.-H., Sarthou, J.-P., and Steinberg, 
583 C. 2020. Vers une protection agroécologique des cultures en phase d’implantation, 
584 in: Réussir l’implantation Des Cultures. pp. 107–134 (in French).
585 Aubertot, J.-N., and Robin, M.-H. 2013. Injury Profile SIMulator, a Qualitative Aggregative 
586 Modelling Framework to Predict Crop Injury Profile as a Function of Cropping 
587 Practices, and the Abiotic and Biotic Environment. I. Conceptual Bases. PLoS One 
588 8(9): e73202. 
589 Baker, R. 1971. Analyses involving inoculum density of soil-borne plant pathogens in 
590 epidemiology. Phytopathology 61: 1280–1292.
591 Barbetti, M., You, M.P., Li, H., Ma, X., and Sivasithamparam, K. 2007. Management of root 
592 diseases of annual pasture legumes in Mediterranean ecosystems - a case study of 
593 subterranean clover root diseases in the South-Wesf of Western Australia. 
594 Phytopathol. Mediterr. 46: 239-258
595 Barbetti, M.J., and MacNish, G.C. 1984. Effects of cultivation and cultural practices on 
596 subterranean clover root rot. Aust. J. Exp. Agric. Anim. Husb. 24: 550–554.
597 Barbetti M.J., Sivasithamparam K., and Wong, D. 1986. Root rot of subterranean clover. 
598 Rev Plant Pathol 65: 287–295.
599 Bayani, A., Tiwade, D., Dongre, A., Dongre, A.P., Phatak, R., and Watve, M. 2016. 
600 Assessment of Crop Damage by Protected Wild Mammalian Herbivores on the 
601 Western Boundary of Tadoba-Andhari Tiger Reserve (TATR), Central India. PLoS 
602 One 11: e0153854. 
603 Bohanec, M. 2015. DEXi: Program for Multi-Attribute Decision Making, User’s Manual, 
604 Version 5.00. IJS Report DP-11897, Jožef Stefan Institute, Ljubljana, Slovenia. 
605 http://kt.ijs.si/MarkoBohanec/pub/DEXiManual500.pdf.
606 Bohanec, M. 2009. DEXi: Program for Multi-Attribute Decision Making, Version 3.02. 
607 Online publication. Jozef Stefan Institute, Ljubljana, Slovenia.
608 Bohanec, M. 2003. Decision support., in: Mladeniæ D, Lavrae` N, Bohanec M, M.S. (Ed.), 
609 Data Mining and Decision Support: Integration and Collaboration. Kluwer Academic 
610 Publishers, pp. 23–35.
611 Bohanec, M., Cortet, J., Griffiths, B., Žnidaršič, M., Debeljak, M., Caul, S., Thompson, J., and 
612 Krogh, P.H. 2007. A qualitative multi-attribute model for assessing the impact of 
613 cropping systems on soil quality. Pedobiologia (Jena). 51: 239–250. 
614 BSV 2016. Résultats de l’enquête dégâts de mouche (géomyze) sur maïs en Bretagne. 
615 Bulletin de Santé vegetal (in French).
616 Burdon, J.J., and Chilvers, G.A. 1975. Epidemiology of damping-off disease (Pythium 
617 irregulare) in relation to density of Lepidium sativum seedlings. Ann. Appl. Biol. 81: 

Page 26 of 46



27

618 135–143. 
619 Burnett, V.F., Coventry, D.R., Hirth, J.R., and Greenhalgh, F.C. 1994. Subterranean clover 
620 decline in permanent pastures in north-eastern Victoria. Plant Soil 164: 231–241. 
621 Campos, S.B., Lisboa, B.B., Camargo, F.A.O., Bayer, C., Sczyrba, A., Dirksen, P., Albersmeier, 
622 A., Kalinowski, J., Beneduzi, A., Costa, P.B., Passaglia, L.M.P., Vargas, L.K., and 
623 Wendisch, V.F. 2016. Soil suppressiveness and its relations with the microbial 
624 community in a Brazilian subtropical agroecosystem under different management 
625 systems. Soil Biol. Biochem. 96: 191–197. 
626 Carpani, M., Bergez, J.E., and Monod, H. 2012. Sensitivity analysis of a hierarchical 
627 qualitative model for sustainability assessment of cropping systems. Environ. 
628 Modell. Softw. 27–28: 15–22.
629 Chauhan, B.S., and Johnson, D.E. 2011. Row spacing and weed control timing affect yield 
630 of aerobic rice. F. Crop. Res. 121: 226–231. 
631 Chauhan, B.S., and Opeña, J. 2013. Implications of plant geometry and weed control 
632 options in designing a low-seeding seed-drill for dry-seeded rice systems. F. Crop. 
633 Res. 144: 225–231. Cohen, J. 1960. A Coefficient of Agreement for Nominal Scales. 
634 Educ. Psychol. Meas. 20: 37–46. 
635 Constantin, J., Dürr, C., Tribouillois, H., and Justes, E. 2015. Catch crop emergence success 
636 depends on weather and soil seedbed conditions in interaction with sowing date: A 
637 simulation study using the SIMPLE emergence model. F. Crop. Res. 176: 22–33. 
638 Craheix, D., Bergez, J.-E., Angevin, F., Bockstaller, C., Bohanec, M., Colomb, B., Doré, T., 
639 Fortino, G., Guichard, L., Pelzer, E., Méssean, A., Reau, R., and Sadok, W. 2015. 
640 Guidelines to design models assessing agricultural sustainability, based upon 
641 feedbacks from the DEXi decision support system. Agron. Sustain. Dev. 35: 1431–
642 1447. 
643 Delgado, R., and Tibau, X.-A. 2019. Why Cohen’s Kappa should be avoided as 
644 performance measure in classification. PLoS One 14, e0222916.
645 Dimitri, G., Yuri, V., Albores-Barajas, N., Emilio, B., Lorenzo, V., and Cecilia, S. 2012. Feral 
646 Pigeons: Problems, Dynamics and Control Methods, Integrated PestManagement 
647 and Pest Control Current and Future Tactics Dr. Sonia Soloneski(Ed.), ISBN: 978-
648 953-51-0050-8, InTech,.
649 Dürr, C., and Aubertot, J.-N. 2000. Emergence of seedlings of sugar beet (Beta vulgaris L.) 
650 as affected by the size, roughness and position of aggregates in the seedbed. Plant 
651 Soil 219: 211–220. 
652 Dürr, C., Aubertot, J.N., Richard, G., Dubrulle, P., Duval, Y., and Boiffin, J. 2001. SIMPLE: a 
653 model for SIMulation of PLant Emergence predicting the effects of soil tillage and 
654 sowing operations. Soil Sci. Soc. Am. J. 65: 414–442. 
655 Dürr, C., Dickie, J.B., Yang, X.-Y., and Pritchard, H.W. 2015. Ranges of critical temperature 
656 and water potential values for the germination of species worldwide: Contribution 
657 to a seed trait database. Agric. For. Meteorol. 200: 222–232. 
658 Farooq, M., Barsa, S.M.A., and Wahid, A. 2006. Priming of field-sown rice seed enhances 
659 germination, seedling establishment, allometry and yield. Plant Growth Regul. 49: 
660 285–294. 
661 Finch-Savage, W.E., Rowse, H.R., Dent, and K.C. 2005. Development of combined 
662 imbibition and hydrothermal threshold models to simulate maize (Zea mays) and 
663 chickpea (Cicer arietinum) seed germination in variable environments. New Phytol. 
664 165: 825-838 
665 Firake, D.M., Behere, G.T., and Chandra, S. 2016. An environmentally benign and cost-
666 effective technique for reducing bird damage to sprouting soybean seeds. F. Crop. 

Page 27 of 46



28

667 Res. 188: 74–81. 
668 Fleiss, J.L., and Cohen, J. 1973. The equivalence of weighted kappa and the intraclass 
669 correlation coefficient as measures of reliability. Educ. Physchol. Meas. 33: 613-619.
670 Forcella, F., Arnold, R.L.B., Sanchez, R., and Ghersa, C.M. 2000. Modeling seedling 
671 emergence. F. Crop. Res. 67: 123–139. Foster, K., You, M.P., Nietschke, B., Edwards, 
672 N., and Barbetti, M.J. 2017. Widespread decline of subterranean clover pastures 
673 across diverse climatic zones is driven by soilborne root disease pathogen 
674 complexes. Crop Pasture Sci. 68: 33–44.
675 Furlan, L., Benvegnù, I., Chiarini, F., Loddo, D., and Morari, F. 2020. Meadow-ploughing 
676 timing as an integrated pest management tactic to prevent soil-pest damage to 
677 maize. Eur. J. Agron. 112: 125950. 
678 Grogan, R.G., Sall, M.A., and Punja, Z.K. 1980. Concepts for modelling root infection by 
679 soilborne fungi. Phytopathology 70: 361–363.
680 Hochman, Z., Osborne, G.J., Taylor, P.A., and Cullis, B. 1990. Factors contributing to 
681 reduced productivity of subterranean clover (Trifolium subterraneum L.) pastures 
682 on acidic soils. Aust. J. Agric. Res. 41: 669–682.
683 Hwang, S.F., Ahmed, H., and Turnbull, G.D. 2008. Effect of crop rotation on canola 
684 seedling blight and soil pathogen population dynamics. Can. J. Plant Pathol. 30: 369.
685 Jame, Y.W., Cutforth, and H.W. 2004. Simulating the effects of temperature and seeding 
686 depth on germination and emergence of spring wheat. Agric. For. Meteorol. 124: 
687 207-218. 
688 Känkänen, H., Alakukku, L., Salo, Y., and Pitkänen, T. 2011. Growth and yield of spring 
689 cereals during transition to zero tillage on clay soils. Eur. J. Agron. 34: 35–45. 
690 Lamichhane, J.R., and Aubertot, J.-N. 2018. A conceptual framework to better understand 
691 interactions between seedbed abiotic and biotic factors under the influence of 
692 cropping systems and their overall impact on field crop establishment, in: 
693 International Phytobiomes Conference. 4th-6th December. Montpellier, France.
694 Lamichhane, J.R., Constantin, J., Schoving, C., Maury, P., Debaeke, P., Aubertot, J.-N., and 
695 Dürr, C. 2020a. Analysis of soybean germination, emergence, and prediction of a 
696 possible northward establishment of the crop under climate change. Eur. J. Agron. 
697 113: 125972. 
698 Lamichhane, J.R., Debaeke, P., Steinberg, C., You, M.P., Barbetti, M.J., and Aubertot, J.-N. 
699 2018. Abiotic and biotic factors affecting crop seed germination and seedling 
700 emergence: a conceptual framework. Plant Soil 432: 1–28. 
701 Lamichhane, J.R., Dürr, C., Schwanck, A.A., Robin, M.-H., Sarthou, J.-P., Cellier, V., Messéan, 
702 A., and Aubertot, J.-N. 2017. Integrated management of damping-off diseases. A 
703 review. Agron. Sustain. Dev. 37: 10. https://doi.org/10.1007/s13593-017-0417-y
704 Lamichhane, J.R., You, M.P., Laudinot, V., Barbetti, M.J., and Aubertot, J.N. 2020b. 
705 Revisiting sustainability of fungicide seed treatments for field crops. Plant Dis. 104: 
706 610–623. 
707 Landis, J.R., and Koch, G.G. 1977. The Measurement of Observer Agreement for 
708 Categorical Data. Biometrics 33: 159–174. 
709 Leach, J.E., Triplett, L.R., Argueso, C.T., and Trivedi, P. 2017. Communication in the 
710 Phytobiome. Cell 169: 587–596. 
711 Leoni, C., de Vries, M., ter Braak, C.J.F., van Bruggen, A.H.C., and Rossing, W.A.H. 2013. 
712 Fusarium oxysporum f.sp. cepae dynamics: in-plant multiplication and crop 
713 sequence simulations. Eur. J. Plant Pathol. 137: 545–561. 
714 Ma, X., Li, H., O’Rourke, T., Sivasithamparam, K., and Barbetti, M.J. 2008. Co-occurrence of 
715 an Aphanomyces sp. and Phytopththora clandestina in subterranean clover pastures 

Page 28 of 46



29

716 in the high rainfall areas of the lower south-west of Western Australia. Australas. 
717 Plant Pathol. 37: 74–78. 
718 Matthews, B.W. 1975. Comparison of the predicted and observed secondary structure of 
719 T4 phage lysozyme. Biochim. Biophys. Acta - Protein Struct. 405: 442–451. 
720 Maughan, R.D., Barbetti, M.J. 1983. Rhizoctonia root rot of white clover. Australas. Plant 
721 Pathol. 12: 13–14.
722 Meynard, J.M., Doré, T., and Lucas, P. 2003. Agronomic approach: Cropping systems and 
723 plant diseases. Comptes Rendus - Biol. 326: 37-46.
724 Nasu, H., and Matsuda, L. 1976. The damage to soybean by pigeons and doves and 
725 itscontrol methods. Agr. Hort. 51: 563–566.
726 Nichols, P.G.H., Foster, K.J., Piano, E., Pecetti, L., Kaur, P., Ghamkhar, K., and Collins, W.J., 
727 2013. Genetic improvement of subterranean clover (Trifolium subterraneum L.). 1. 
728 Germplasm, traits and future prospects. Crop Pasture Sci. 64: 312–346. 
729 Nichols, P.G.H., Jones, R.A.C., Ridsdill-Smith, T.J., and Barbetti, M.J. 2014. Genetic 
730 improvement of subterranean clover (Trifolium subterraneum L.). 2. Breeding for 
731 disease and pest resistance. Crop Pasture Sci. 65: 1207–1229.
732 O’Rourke, T.A., Ryan, M.H., Scanlon, T.T., Sivasithamparam, K., and Barbetti, M.J. 2012. 
733 Amelioration of root disease of subterranean clover (Trifolium subterraneum) by 
734 mineral nutrients. Crop Pasture Sci. 63: 672–682.
735 O’Rourke, T.A., Scanlon, T.T., Ryan, M.H., Wade, L.J., McKay, A.C., Riley, I.T., Li, H., 
736 Sivasithamparam, K., and Barbetti, M.J. 2009. Severity of root rot in mature 
737 subterranean clover and associated fungal pathogens in the wheatbelt of Western 
738 Australia. Crop Pasture Sci. 60: 43–50.
739 Pelzer, E., Fortino, G., Bockstaller, C., Angevin, F., Lamine, C., Moonen, C., Vasileiadis, V., 
740 Guérin, D., Guichard, L., Reau, R., and Messéan, A. 2012. Assessing innovative 
741 cropping systems with DEXiPM, a qualitative multi-criteria assessment tool derived 
742 from DEXi. Ecol. Indic. 18: 171–182.
743 Peralta, A.L., Sun, Y., McDaniel, M.D., and Lennon, J.T. 2018. Crop rotational diversity 
744 increases disease suppressive capacity of soil microbiomes. Ecosphere 9: e02235. 
745 https://doi.org/10.1002/ecs2.2235
746 Pung, S.H., Barbetti, M.J., and Sivasithamparam, K. 1988. Association of Meloidogyne 
747 arenaria with root rot of subterranean clover in Western Australia. New Zeal. J. Exp. 
748 Agric. 16: 91–96. 
749 Robin, M.-H., Bancal, M.-O., Cellier, V., Délos, M., Felix, I., Launay, M., Magnard, A., Olivier, 
750 A., Robert, C., Rolland, B., Sache, I., and Aubertot, J.-N. 2018. IPSIM-Web, An Online 
751 Resource for Promoting Qualitative Aggregative Hierarchical Network Models to 
752 Predict Plant Disease Risk: Application to Brown Rust on Wheat. Plant Dis. 102: 
753 488–499. 
754 Robin, M.-H., Colbach, N., Lucas, P., Montfort, F., Cholez, C., Debaeke, P., and Aubertot, J.-
755 N. 2013. Injury Profile SIMulator, a Qualitative Aggregative Modelling Framework 
756 to Predict Injury Profile as a Function of Cropping Practices, and Abiotic and Biotic 
757 Environment. II. Proof of Concept: Design of IPSIM-Wheat-Eyespot. PLoS One 8: 1–
758 13. https://doi.org/10.1371/journal.pone.0075829
759 Sadok, W., Angevin, F., Bergez, J.-E., Bockstaller, C., Colomb, B., Guichard, L., Reau, R., 
760 Messéan, A., and Doré, T. 2009. MASC, a qualitative multi-attribute decision model 
761 for ex ante assessment of the sustainability of cropping systems. Agron. Sustain. 
762 Dev. 29: 447–461. 
763 Sausse, C., Lecomte, V., Martin-Monjaret, C., Raimbault, J., and Vogrincic, C. 2016. Dégâts 
764 d’oiseaux et petits gibiers – Synthèse de l’enquête Terres Inovia (in French).

Page 29 of 46



30

765 Sausse, C., and Lévy, M. 2020. Dégâts d’oiseaux au tournesol: situation internationale et 
766 perspectives. OCL, In press (in French).
767 Sebillotte, M. 1990. Système de culture, un concept opératoire pour les agronomes, in: 
768 Combe, L., Picard, D. (Eds.), Les Systèmes de Culture. INRA, Versailles, pp. 165–196 
769 (in French).
770 Sebillotte, M. 1974. Agronomie et agriculture, analyse des tâches de l’agronome. Cah. 
771 ORSTOM, série Biol. 24, 3–25 (in French).
772 Simpson, R.J., Richardson, A.E., Riley, I.T., McKay, A.C., McKay, S.F., Ballard, R.A., Ophel-
773 Keller, K., Hartley, D., O’Rourke, T.A., Li, H., Sivasithamparam, K., Ryan, M.H., and 
774 Barbetti, M.J. 2011. Damage to roots of Trifolium subterraneum L. (subterranean 
775 clover), failure of seedlings to establish and the presence of root pathogens during 
776 autumn-winter. Grass Forage Sci. 66: 585–605 
777 Sivasithamparam, K. 1993. Ecology of root-infecting pathogenic fungi in Mediterranean 
778 environments. Adv. Plant Pathol. 10: 245–279.
779 Smiley, R.W., Taylor, P.A., Clarke, R.G., Greenhalgh, F.C., and Trutmann, P. 1986. 
780 Simulated soil and plant management effects on root rots of subterranean clover. 
781 Aust. J. Agric. Res. 37: 633–645.
782 Souty, N., and Rode, C. 1993. Emergence of sugar beet seedlings from under different 
783 obstacles. Eur. J. Agron. 2: 213–221. 
784 Vida, C., de Vicente, A., and Cazorla, F.M. 2020. The role of organic amendments to soil 
785 for crop protection: Induction of suppression of soilborne pathogens. Ann. Appl. 
786 Biol. 176: 1–15. 
787 Villalobos, F.J., Orgaz, F., and Fereres, E. 2016. Sowing and Planting, in: Villalobos, F.J., 
788 Fereres, E. (Eds.), Principles of Agronomy for Sustainable Agriculture. Springer 
789 International Publishing, Cham, pp. 217–227. 
790 Wang, H., Cutforth, H., McCaig, T., McLeod, G., Brandt, K., Lemke, R., Goddard, T., and 
791 Sprout, C. 2009. Predicting the time to 50% seedling emergence in wheat using a 
792 Beta model. NJAS - Wageningen J. Life Sci. 57: 65-71 
793 Wolfram Research, I. 2, 2015. Mathematica, version 10.1.0.0 (Mac OS X x86 platform). 
794 Wolfram Research, Inc., Champaign, IL.
795 Wong, D.H., Barbetti, M.J., and Sivasithamparam, K. 1985a. Pathogenicity of Rhizoctonia 
796 spp. associated with root rots of subterranean clover. Trans. Br. Mycol. Soc. 85: 
797 156–158. 
798 Wong, D.H., Barbetti, M.J., and Sivasithamparam, K. 1985b. Fungi associated with root rot 
799 of subterranean clover in Western Australia. Aust. J. Exp. Agric. 25: 574–579.
800 Wong, D. H., Barbetti, M.J., and Sivasithamparam, K. 1984. Effects of soil temperature and 
801 moisture on the pathogenicity of fungi associated with root rot of subterranean 
802 clover. Aust. J. Agric. Res. 35: 675–684.
803 You, M. P., Barbett, M. J., and Nichols, P.G.H. 2005. New sources of resistance identified in 
804 Trifolium subterraneum breeding lines and cultivars to root rot caused by Fusarium 
805 avenaceum and Pythium irregulare and their relationship to seedling survival. 
806 Australas. Plant Pathol. 34: 237–244. 
807 You, M. P., and Barbetti, M.J. 2017. Severity of phytophthora root rot and pre-emergence 
808 damping-off in subterranean clover influenced by moisture, temperature, nutrition, 
809 soil type, cultivar and their interactions. Plant Pathol. 66: 1162–1181. 
810 You, M. P., and Barbetti, M.J. 2017. Environmental factors determine severity of 
811 Rhizoctonia damping-off and root rot in subterranean clover. Australas. Plant 
812 Pathol. 46: 357–368. 
813 You, M. P., and Barbetti, M.J., Sivasithamparam, K., 2005. Characterization of 

Page 30 of 46



31

814 Phytophthora clandestina races on Trifolium subterraneum in Western Australia. 
815 Eur. J. Plant Pathol. 113: 267–274. You, M. P., Guo, K., Nicol, D., Kidd, D., Ryan, M.H., 
816 Foster, K., and Barbetti, M.J. 2017. Cultivation offers effective management of 
817 subterranean clover damping-off and root disease. Grass Forage Sci. 72: 785-793 
818 You, M.P., Lamichhane, J.R., Aubertot, J.-N., and Barbetti, M.J. 2020. Understanding why 
819 Effective Fungicides against Individual Soilborne Pathogens are Ineffective with 
820 Soilborne Pathogen Complexes. Plant Dis. 104: 904–920. 
821 You, M.P., Lancaster, B., Sivasithamparam, K., and Barbetti, M.J. 2008. Cross-
822 pathogenicity of Rhizoctonia solani strains on pasture legumes in pasture-crop 
823 rotations. Plant Soil 302: 203–211. 
824 You, M.P., O’Rourke, T.A., Foster, K., Snowball, R., and Barbetti, M.J. 2016. Host 
825 resistances to Aphanomyces trifolii root rot of subterranean clover: first opportunity 
826 to successfully manage this severe pasture disease. Plant Pathol. 65: 901–913. 
827 You, M.P., Rensing, K., Renton, M., and Barbetti, M.J. 2018. Critical factors driving 
828 Aphanomyces damping-off and root disease in clover revealed and explained. Plant 
829 Pathol. 67: 1374-1387.
830 You, Ming P, Rensing, K., Renton, M., and Barbetti, M.J. 2017. Modeling Effects of 
831 Temperature, Soil, Moisture, Nutrition and Variety As Determinants of Severity of 
832 Pythium Damping-Off and Root Disease in Subterranean Clover. Front. Microbiol. 8: 
833 2223. https://doi.org/10.3389/fmicb.2017.02223.
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862

Page 31 of 46



32

863
864
865
866 Figure legends :
867
868 Figure 1. Conceptual framework that highlights how each component of phytobiomes 
869 and their interactions affect field crop establishment (adapted from Lamichhane et al. 
870 2018). Four major components of phytobiomes namely cropping system, seed and 
871 seedling characteristics, seedbed components (physical chemical and biological), and 
872 weather as well as their interactions affect seed germination, seedling emergence and 
873 crop establishment. Post emergence seedling damage can be caused by soil-borne pests 
874 and pathogens (internal component of the seedbed) or by animal pests coming from 
875 outside (external component of the seedbed, such as birds, wild animals etc.). Air-borne 
876 pathogens are not included as their impact on crop growth and development is 
877 important only after the crop establishment phase and that all key pathogens affecting 
878 the crop establishment phase are soil-borne (Rojas et al. 2016; Lamichhane et al. 2017, 
879 2020b; You et al. 2017a). Likewise, weeds are excluded as their impact on crop growth, 
880 development and yield is important only after the crop establishment phase when they 
881 are sufficiently developed to compete with crops for light and nutrients (Chauhan and 
882 Johnson 2011).  
883
884 Figure 2. Hierarchical structure of CESIM (screenshot of the DEXi software). Bolded and 
885 non-bold terms represent aggregated and basic attributes, respectively.
886
887 Figure 3. Attribute scales of CESIM (screenshot of the DEXi software). The scales are 
888 ordered from unfavorable values for crop establishment (on the left-hand side) to 
889 favorable ones (on the right-hand side). This difference is clearly noticeable in the DEXi 
890 software, because, by convention, values favorable to the user are coloured in green, 
891 detrimental in red, and neutral in black.
892
893 Figure 4. Aggregating table for the ‘‘seed germination’’ aggregated attribute (screenshot 
894 of the DEXi software). Aggregation rules for the 12 possible combinations of the 3 seed 
895 characteristics, the 2 levels of seedbed characteristics and the 2 levels of seed predation.
896
897 Figure 5. Confusion matrix of the CESIM-Subterranean clover model and marginal 
898 distributions. Numbers in italic indicate overall percentages calculated as the ratio of the 
899 number of instances in a given situation, or marginal sums, to the total number of 
900 observations × 100 (n = 231). Green and red color codes indicate the minimum and 
901 maximum difference between observed and simulated values, respectively. Intermediate 
902 colors were arbitrarily defined by the ColorFunction option in Mathematica (Wolfram 
903 Research, Inc. 2015), according to the number of the classes considered (four in this 
904 case). ‘Mod. Low’ and ‘Mod. High’ mean moderately low and high classes, respectively.
905
906
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Table 1. Normalized attributes weights of CESIM-subterranean clover establishment computed by DEXi (Bohanec, 2015). The impact of 
each attribute on the value of the immediate descendant attribute in the hierarchy is represented by local weights while the influence of 
each attribute on the value of the final attribute is defined by global weights. Local and global weights are distributed in five levels of 
aggregation.

Attributes defining the final percentage of 
subterranean clover establishment

Local 
level 1

Local 
level 2

Local 
level 3

Local 
level 4

Local 
level 5

Global 
level 1

Global 
level 2

Global 
level 3

Global 
level 4

Global 
level 5

1. Seedling emergence 40 40
     1.1. Seed germination 27 27
          1.1.1. Seed characteristics 27 3
               1.1.1.1. Seed mass 26 1
               1.1.1.2. seed treatment 23 1
               1.1.1.3. Seed germination ability 51 2
          1.1.2. Seedbed characteristics 36 4
               1.1.2.1. Moisture 50 2
               1.1.2.2. Temperature 50 2
          1.1.3. Seed predation 36 4
     1.2. Seedling characteristics 15 6
          1.2.1. Seedling emergence force 50 3
          1.2.2. Shoot/root elongation rate 50 3
     1.3. Seedbed characteristics 34 14
          1.3.1. Seedbed physical characteristcs 33 5
               1.3.1.1. Temperature 22 1
               1.3.1.2. Moisture 22 1
                    1.3.1.2.1. Rainfall 39 0
                    1.3.1.2.2. Texture 35 0
                    1.3.1.2.3. Evaporation 26 0
               1.3.1.3. Crusting 26 1
                    1.3.1.3.1. Rainfall 32 0
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                    1.3.1.3.2. Texture 22 0
                    1.3.1.3.3. Evaporation 24 0
                    1.3.1.3.4. Structure 22 0
               1.3.1.4. Crop residue management 31 1
          1.3.2. Seedbed chemical characteristics 33 5
               1.3.2.1. Organic matter 25 1
               1.3.2.2. Inorganic nutrients 15 1
               1.3.2.3. pH 60 3
          1.3.3. Seedbed biological characteristics 33 5
               1.3.3.1. Disease index 24 1
                    1.3.3.1.1. Disease caused by oomycetes 50 1
                    1.3.3.1.2. Disease caused by true fungi 50 1
               1.3.3.2. Risks of animal pests 24 1
                    1.3.3.2.1. Invertebrate pests 50 1
                    1.3.3.2.2. Vertebrate pests 50 1
               1.3.3.3. Sowing density 21 1
               1.3.3.4. Crop rotation 15 1
               1.3.3.5. Crop residue management 15 1
     1.4. Sowing depth 24 10
2. Stand uniformity 20 20
     2.1. Seedbed physical characteristics 33 7
          2.1.1. Moisture 50 3
          2.1.2. Temperature 50 3
     2.2. Seedbed chemical characteristics 33 7
          2.2.1. Organic matter 50 3
          2.2.2. Inorganic nutrinets 25 2
          2.2.3. pH 25 2
     2.3. Seedbed biological characteristics 33 7
          2.3.1. Disease index 50 3
               2.3.1.1. Disease caused by oomycetes 50 2
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               2.3.1.2. Disease caused by true fungi 50 2
          2.3.2. Risks of animal pests 50 3
               2.3.2.1. Invertebrate pests 50 2
               2.3.2.2. Vertebrate pests 50 2
3. Crop compensation capacity 40 40
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Supplementary materials:

Supplementary Table 1. Description of the dataset used in this study to test the 
prediction quality of the model 

Supplementary Table S2: Transformation of nominal and quantitative variables into 
ordinal variables using a converter

Supplementary Figure S1. Aggregating table for the ‘‘seedbed characteristics’’ 
aggregated attribute (screenshot of the DEXi software). Aggregation rules for the 27 
possible combinations of physical, chemical and biological characteristics, each of 3 
levels.

Supplementary Figure S2. Aggregating table for the ‘‘seedling characteristics’’ 
aggregated attribute (screenshot of the DEXi software). Aggregation rules for the 9 
possible combinations of emergence force and shoot/root elongation rate, each of 3 
levels.

Supplementary Figure S3. Aggregating table for the ‘‘seedling emergence’’ aggregated 
attribute (screenshot of the DEXi software). Aggregation rules for the 81 possible 
combinations of seed germination, seedling characteristics, seedbed characteristics and 
sowing depth, each of 3 levels.

Supplementary Figure S4. Aggregating table for the ‘‘stand uniformity’’ aggregated 
attribute (screenshot of the DEXi software). Aggregation rules for the 27 possible 
combinations of seedbed physical, chemical and biological characteristics, each of 3 
levels.
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Supplementary Figure S1. Aggregating table for the ‘‘seedbed characteristics’’ 

aggregated attribute (screenshot of the DEXi software). Aggregation rules for the 27 
possible combinations of physical, chemical and biological characteristics, each of 3 levels. 
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Supplementary Figure S2. Aggregating table for the ‘‘seedling characteristics’’ 

aggregated attribute (screenshot of the DEXi software). Aggregation rules for the 9 
possible combinations of emergence force and shoot/root elongation rate, each of 3 levels. 
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Supplementary Figure S3. Aggregating table for the ‘‘seedling emergence’’ aggregated 

attribute (screenshot of the DEXi software). Aggregation rules for the 81 possible 

combinations of seed germination, seedling characteristics, seedbed characteristics and 

sowing depth, each of 3 levels. 
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Supplementary Figure S4. Aggregating table for the ‘‘stand uniformity’’ aggregated 

attribute (screenshot of the DEXi software). Aggregation rules for the 27 possible 
combinations of seedbed physical, chemical and biological characteristics, each of 3 levels. 
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