J. P. Thiery and J. P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions, Nat. Rev. Mol. Cell Biol, vol.7, pp.131-142, 2006.

E. D. Hay, Organization and fine structure of epithelium and mesenchyme in the developing chick embryo, pp.31-55, 1968.

A. Barrallo-gimeno and M. A. Nieto, The Snail genes as inducers of cell movement and survival: implications in development and cancer, Development, vol.132, pp.3151-3161, 2005.

H. Peinado, D. Olmeda, and A. Cano, Snail, Zeb and bHLH factors in tumor progression: an alliance against the epithelial phenotype?, Nat. Rev. Cancer, vol.7, pp.415-428, 2007.

G. Moreno-bueno, F. Portillo, and A. Cano, Transcriptional regulation of cell polarity in EMT and cancer, Oncogene, vol.27, pp.6958-6969, 2008.

Y. Nakaya, E. W. Sukowati, Y. Wu, and G. Sheng, RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation, Nat. Cell Biol, vol.10, pp.765-775, 2008.

A. C. Martin, M. Kaschube, and E. F. Wieschaus, Pulsed actin-myosin network contractions drive apical constriction, Nature, vol.457, pp.495-499, 2009.

M. Haraguchi, Snail regulates cellmatrix adhesion by regulation of the expression of integrins and basement membrane proteins, J. Biol. Chem, vol.283, pp.23514-23523, 2008.

C. Gans and R. G. Northcutt, Neural crest and the origin of vertebrates: a new head, Science, vol.220, pp.268-273, 1983.

R. Pijnenborg, G. Dixon, W. B. Robertson, and I. Brosens, Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy, Placenta, vol.1, pp.3-19, 1980.

N. Le-douarin and C. Kalcheim, The neural crest, vol.445, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02188723

M. Manzanares and M. A. Nieto, A celebration of the new head and an evaluation of the new mouth, Neuron, vol.37, pp.895-898, 2003.

J. M. Perez-pomares and R. Munoz-chapuli, Epithelial-mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in Metazoans, Anat. Rec, vol.268, pp.343-351, 2002.

K. A. Johansson and A. Grapin-botton, Development and diseases of the pancreas, Clin. Genet, vol.62, pp.14-23, 2002.

N. Tanimizu and A. Miyajima, Molecular mechanism of liver development and regeneration, Int. Rev. Cytol, vol.259, pp.1-48, 2007.

I. Skromne and C. D. Stern, Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo, Development, vol.128, pp.2915-2927, 2001.

P. Liu, Requirement for Wnt3 in vertebrate axis formation, Nat. Genet, vol.22, pp.361-365, 1999.

H. Popperl, Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm, Development, vol.124, pp.2997-3005, 1997.

H. K. Chea, C. V. Wright, and B. J. Swalla, Nodal signaling and the evolution of deuterostome gastrulation, Dev. Dyn, vol.234, pp.269-278, 2005.

S. B. Shah, Misexpression of chick Vg1 in the marginal zone induces primitive streak formation, Development, vol.124, pp.5127-5138, 1997.

O. Andersson, P. Bertolino, and C. F. Ibanez, Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development, Dev. Biol, vol.311, pp.500-511, 2007.

I. Varlet, J. Collignon, and E. J. Robertson, nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation, Development, vol.124, pp.1033-1044, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02490770

F. Bertocchini and C. D. Stern, The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling, Dev. Cell, vol.3, pp.735-744, 2002.

A. Perea-gomez, Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks, Dev. Cell, vol.3, pp.745-756, 2002.

B. Ciruna and J. Rossant, FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak, Dev. Cell, vol.1, pp.37-49, 2001.

J. Mathieu, Nodal and Fgf pathways interact through a positive regulatory loop and synergize to maintain mesodermal cell populations, Development, vol.131, pp.629-641, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02119447

M. A. Nieto, The snail superfamily of zincfinger transcription factors, Nat. Rev. Mol. Cell Biol, vol.3, pp.155-166, 2002.

M. A. Nieto, M. G. Sargent, D. G. Wilkinson, and J. Cooke, Control of cell behavior during vertebrate development by Slug, a zinc finger gene, Science, vol.264, pp.835-839, 1994.

E. A. Carver, R. Jiang, Y. Lan, K. F. Oram, and T. Gridley, The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition, Mol. Cell. Biol, vol.21, pp.8184-8188, 2001.

Y. Kasai, J. R. Nambu, P. M. Lieberman, and S. T. Crews, Dorsal-ventral patterning in Drosophila: DNA binding of snail protein to the single-minded gene, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.3414-3418, 1992.

Y. T. Ip, R. E. Park, D. Kosman, E. Bier, and M. Levine, The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo, Genes Dev, vol.6, pp.1728-1739, 1992.

C. P. Heisenberg and L. Solnica-krezel, Back and forth between cell fate specification and movement during vertebrate gastrulation, Curr. Opin. Genet. Dev, vol.18, pp.311-316, 2008.

M. J. Blanco, Snail1a and Snail1b cooperate in the anterior migration of the axial mesendoderm in the zebrafish embryo, Development, vol.134, pp.4073-4081, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02912729

P. Savagner, Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes, J. Cell Physiol, vol.202, pp.858-866, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00148036

S. J. Arnold, U. K. Hofmann, E. K. Bikoff, and E. J. Robertson, Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse, Development, vol.135, pp.501-511, 2008.

R. C. Lindsley, Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs, Cell Stem Cell, vol.3, pp.55-68, 2008.

S. Kitajima, A. Takagi, T. Inoue, and Y. Saga, MesP1 and MesP2 are essential for the development of cardiac mesoderm, Development, vol.127, pp.3215-3226, 2000.

A. Cano, The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression, Nat. Cell Biol, vol.2, pp.76-83, 2000.

E. Batlle, The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumor cells, Nat. Cell Biol, vol.2, pp.84-89, 2000.

V. Bolos, The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors, J. Cell Sci, vol.116, pp.499-511, 2003.

J. Ikenouchi, M. Matsuda, M. Furuse, and S. Tsukita, Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail, J. Cell Sci, vol.116, pp.1959-1967, 2003.

I. E. Zohn, p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation, Cell, vol.125, pp.957-969, 2006.

C. X. Deng, Murine FGFR-1 is required for early postimplantation growth and axial organization, Genes Dev, vol.8, pp.3045-3057, 1994.

X. Sun, E. N. Meyers, M. Lewandoski, and G. R. Martin, Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo, Genes Dev, vol.13, pp.1834-1846, 1999.

A. G. Mueller, Embryonic lethality caused by apoptosis during gastrulation in mice lacking the gene of the ADP-ribosylation factorrelated protein 1, Mol. Cell. Biol, vol.22, pp.1488-1494, 2002.

C. Zahn, ADP-ribosylation factor-like GTPase ARFRP1 is required for trans-Golgi to plasma membrane trafficking of E-cadherin, J. Biol. Chem, vol.283, pp.27179-27188, 2008.

J. D. Lee, N. F. Silva-gagliardi, U. Tepass, C. J. Mcglade, A. et al., The FERM protein Epb4.1l5 is required for organization of the neural plate and for the epithelial-mesenchymal transition at the primitive streak of the mouse embryo, Development, vol.134, pp.2007-2016, 2007.

M. Hirano, S. Hashimoto, S. Yonemura, H. Sabe, and S. Aizawa, EPB41L5 functions to posttranscriptionally regulate cadherin and integrin during epithelial-mesenchymal transition, J. Cell Biol, vol.182, pp.1217-1230, 2008.

V. Stemmer, B. De-craene, G. Berx, and J. Behrens, Snail promotes Wnt target gene expression and interacts with beta-catenin, Oncogene, vol.27, pp.5075-5080, 2008.

E. L. Whiteman, C. J. Liu, E. R. Fearon, and B. Margolis, The transcription factor snail represses Crumbs3 expression and disrupts apico-basal polarity complexes, Oncogene, vol.27, pp.3875-3879, 2008.

H. S. Lee, T. G. Nishanian, K. Mood, Y. S. Bong, and I. O. Daar, EphrinB1 controls cell-cell junctions through the Par polarity complex, Nat. Cell Biol, vol.10, pp.979-986, 2008.

M. Jorda, Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor, J. Cell Sci, vol.118, pp.3371-3385, 2005.

A. Miyoshi, Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells, Br. J. Cancer, vol.90, pp.1265-1273, 2004.

N. Mitiku and J. C. Baker, Genomic analysis of gastrulation and organogenesis in the mouse, Dev. Cell, vol.13, pp.897-907, 2007.

G. S. Eakin and R. R. Behringer, Gastrulation in other mammals and humans, Gastrulation, pp.275-287, 2004.

H. W. Denker, R. Behr, C. Heneweer, C. Viebahn, and M. Thie, Epithelial-mesenchymal transition in Rhesus monkey embryonic stem cell colonies: a model for processes involved in gastrulation?, Cells Tissues Organs, vol.185, pp.48-50, 2007.

T. Dvash, Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies, Hum. Reprod, vol.19, pp.2875-2883, 2004.

A. M. Eastham, Epithelial-mesenchymal transition events during human embryonic stem cell differentiation, Cancer Res, vol.67, pp.11254-11262, 2007.

M. A. Selleck and M. Bronner-fraser, Origins of the avian neural crest: the role of neural plateepidermal interactions, Development, vol.121, pp.525-538, 1995.

D. Meulemans and M. Bronner-fraser, Gene-regulatory interactions in neural crest evolution and development, Dev. Cell, vol.7, pp.291-299, 2004.

T. Sauka-spengler and M. Bronner-fraser, Development and evolution of the migratory neural crest: a gene regulatory perspective, Curr. Opin. Genet. Dev, vol.16, pp.360-366, 2006.

T. Sauka-spengler and M. Bronner-fraser, A gene regulatory network orchestrates neural crest formation, Nat. Rev. Mol. Cell Biol, vol.9, pp.557-568, 2008.

K. F. Liem, . Jr, G. Tremml, H. Roelink, and T. M. Jessell, Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm, Cell, vol.82, pp.969-979, 1995.

M. I. Garcia-castro, C. Marcelle, and M. Bronner-fraser, Ectodermal Wnt function as a neural crest inducer, Science, vol.297, pp.848-851, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00311348

C. Carmona-fontaine, Contact inhibition of locomotion in vivo controls neural crest directional migration, Nature, vol.456, pp.957-961, 2008.

D. Sela-donenfeld and C. Kalcheim, Regulation of the onset of neural crest migration by coordinated activity of BMP4 and Noggin in the dorsal neural tube, Development, vol.126, pp.4749-4762, 1999.

V. Karafiat, Transcription factor c-Myb is involved in the regulation of the epithelialmesenchymal transition in the avian neural crest, Cell. Mol. Life Sci, vol.62, pp.2516-2525, 2005.

D. Sela-donenfeld and C. Kalcheim, Inhibition of noggin expression in the dorsal neural tube by somitogenesis: a mechanism for coordinating the timing of neural crest emigration, Development, vol.127, pp.4845-4854, 2000.

E. Coles, J. Christiansen, A. Economou, M. Bronner-fraser, and D. G. Wilkinson, A vertebrate crossveinless 2 homologue modulates BMP activity and neural crest cell migration, Development, vol.131, pp.5309-5317, 2004.

T. Burstyn-cohen, J. Stanleigh, D. Sela-donenfeld, and C. Kalcheim, Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development, vol.131, pp.5327-5339, 2004.

A. Glavic, F. Silva, M. J. Aybar, F. Bastidas, M. et al., Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos, Development, vol.131, pp.347-359, 2004.

M. Cheung, The transcriptional control of trunk neural crest induction, survival, and delamination, Dev. Cell, vol.8, pp.179-192, 2005.

M. Dottori, M. K. Gross, P. Labosky, and M. Goulding, The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate, Development, vol.128, pp.4127-4138, 2001.

R. Kos, M. V. Reedy, R. L. Johnson, and C. A. Erickson, The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos, Development, vol.128, pp.1467-1479, 2001.

M. G. Del-barrio and M. A. Nieto, Overexpression of Snail family members highlights their ability to promote chick neural crest formation, Development, vol.129, pp.1583-1593, 2002.

J. P. Liu and T. M. Jessell, A role for rhoB in the delamination of neural crest cells from the dorsal neural tube, Development, vol.125, pp.5055-5067, 1998.

E. Sock, K. Schmidt, I. Hermanns-borgmeyer, M. R. Bosl, and M. Wegner, Idiopathic weight reduction in mice deficient in the high-mobility-group transcription factor Sox8, Mol. Cell. Biol, vol.21, pp.6951-6959, 2001.

M. Cheung and J. Briscoe, Neural crest development is regulated by the transcription factor Sox9, Development, vol.130, pp.5681-5693, 2003.

S. Perez-alcala, M. A. Nieto, and J. A. Barbas, LSox5 regulates RhoB expression in the neural tube and promotes generation of the neural crest, Development, vol.131, pp.4455-4465, 2004.

T. Van-de-putte, Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome, Am. J. Hum. Genet, vol.72, pp.465-470, 2003.

L. A. Taneyhill, E. G. Coles, and M. Bronner-fraser, Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest, Development, vol.134, pp.1481-1490, 2007.

I. Shoval, A. Ludwig, and C. Kalcheim, Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination, Development, vol.134, pp.491-501, 2007.

T. Akitaya and M. Bronner-fraser, Expression of cell adhesion molecules during initiation and cessation of neural crest cell migration, Dev. Dyn, vol.194, pp.12-20, 1992.

S. Nakagawa and M. Takeichi, Neural crest emigration from the neural tube depends on regulated cadherin expression, Development, vol.125, pp.2963-2971, 1998.

J. Vallin, J. M. Girault, J. P. Thiery, and F. Broders, Xenopus cadherin-11 is expressed in different populations of migrating neural crest cells, Mech. Dev, vol.75, pp.171-174, 1998.

C. A. Erickson and R. Perris, The role of cellcell and cell-matrix interactions in the morphogenesis of the neural crest, Dev. Biol, vol.159, pp.60-74, 1993.

S. L. Parsons, S. A. Watson, P. D. Brown, H. M. Collins, and R. J. Steele, Matrix metalloproteinases, Br. J. Surg, vol.84, pp.160-166, 1997.

J. R. Robbins, P. G. Mcguire, B. Wehrle-haller, and S. L. Rogers, Diminished matrix metalloproteinase 2 (MMP-2) in ectomesenchyme-derived tissues of the Patch mutant mouse: regulation of MMP-2 by PDGF and effects on mesenchymal cell migration, Dev. Biol, vol.212, pp.255-263, 1999.

T. D. Duong and C. A. Erickson, MMP-2 plays an essential role in producing epithelialmesenchymal transformations in the avian embryo, Dev. Dyn, vol.229, pp.42-53, 2004.

R. Perris and D. Perissinotto, Role of the extracellular matrix during neural crest cell migration, Mech. Dev, vol.95, pp.3-21, 2000.

G. Moreno-bueno, Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition, Cancer Res, vol.66, pp.9543-9556, 2006.

K. Giehl and A. Menke, Microenvironmental regulation of E-cadherin-mediated adherens junctions, Front. Biosci, vol.13, pp.3975-3985, 2008.

S. Y. Wu and D. R. Mcclay, The Snail repressor is required for PMC ingression in the sea urchin embryo, Development, vol.134, pp.1061-1070, 2007.

S. A. Murray and T. Gridley, Snail family genes are required for left-right asymmetry determination, but not neural crest formation, in mice, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.10300-10304, 2006.

R. Kalluri and R. A. Weinberg, The basics of epithelial-mesenchymal transition, J. Clin. Invest, vol.119, pp.1420-1428, 2009.

M. Iwano, Evidence that fibroblasts derive from epithelium during tissue fibrosis, J. Clin. Invest, vol.110, pp.341-350, 2002.

M. Sato, Y. Muragaki, S. Saika, A. B. Roberts, and A. Ooshima, Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction, J. Clin. Invest, vol.112, pp.1486-1494, 2003.

A. Boutet, Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney, EMBO J, vol.25, pp.5603-5613, 2006.

D. Tarin, E. W. Thompson, and D. F. Newgreen, The fallacy of epithelial mesenchymal transition in neoplasia, Cancer Res, vol.65, pp.5996-6000, 2005.

J. Condeelis and J. E. Segall, Intravital imaging of cell movement in tumors, Nat. Rev. Cancer, vol.3, pp.921-930, 2003.

T. Brabletz, Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.10356-10361, 2001.

A. J. Trimboli, Direct evidence for epithelial-mesenchymal transitions in breast cancer, Cancer Res, vol.68, pp.937-945, 2008.

I. K. Bukholm, J. M. Nesland, and A. L. Borresen-dale, Re-expression of E-cadherin, alphacatenin and beta-catenin, but not of gammacatenin, in metastatic tissue from breast cancer patients, J. Pathol, vol.190, pp.15-19, 2000.

C. W. Cheng, Mechanisms of inactivation of E-cadherin in breast carcinoma: modification of the two-hit hypothesis of tumor suppressor gene, Oncogene, vol.20, pp.3814-3823, 2001.

S. F. Gilbert, Developmental biology, vol.709, 2000.

E. Dupin, G. Calloni, C. Real, A. Goncalves-trentin, L. Douarin et al., Neural crest progenitors and stem cells, C. R. Biol, vol.330, pp.521-529, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00207677

B. Christ, R. Huang, and M. Scaal, Amniote somite derivatives, Dev. Dyn, vol.236, pp.2382-2396, 2007.

J. Gros, M. Manceau, V. Thome, M. , and C. , A common somitic origin for embryonic muscle progenitors and satellite cells, Nature, vol.435, pp.954-958, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00118545

B. Christ, M. Jacob, J. , and H. J. , On the origin and development of the ventrolateral abdominal muscles in the avian embryo. An experimental and ultrastructural study, Anat. Embryol. (Berl.), vol.166, pp.87-101, 1983.

A. Eichmann, Vascular development: from precursor cells to branched arterial and venous networks, Int. J. Dev. Biol, vol.49, pp.259-267, 2005.

M. Tavian and B. Peault, Embryonic development of the human hematopoietic system, Int. J. Dev. Biol, vol.49, pp.243-250, 2005.

J. Karl and B. Capel, Sertoli cells of the mouse testis originate from the coelomic epithelium, Dev. Biol, vol.203, pp.323-333, 1998.

E. D. Hay, An overview of epitheliomesenchymal transformation, Acta Anat. (Basel), vol.154, pp.8-20, 1995.

Y. Nakajima, T. Yamagishi, S. Hokari, and H. Nakamura, Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP), Anat. Rec, vol.258, pp.119-127, 2000.

J. M. Milunsky, TFAP2A mutations result in branchio-oculo-facial syndrome, Am. J. Hum. Genet, vol.82, pp.1171-1177, 2008.

R. Favier, Paris-Trousseau syndrome: clinical, hematological, molecular data of ten new cases, Thromb. Haemost, vol.90, pp.893-897, 2003.

A. Alkhateeb, P. R. Fain, and R. A. Spritz, Candidate functional promoter variant in the FOXD3 melanoblast developmental regulator gene in autosomal dominant vitiligo, J. Invest. Dermatol, vol.125, pp.388-391, 2005.

Q. Wang, Pax genes in embryogenesis and oncogenesis, J. Cell. Mol. Med, vol.12, pp.2281-2294, 2008.

C. Zweier, Mowat-Wilson" syndrome with and without Hirschsprung disease is a distinct, recognizable multiple congenital anomaliesmental retardation syndrome caused by mutations in the zinc finger homeo box 1B gene, Am. J. Med. Genet, vol.108, pp.177-181, 2002.

R. A. Spritz, P. W. Chiang, N. Oiso, A. , and A. , Human and mouse disorders of pigmentation, Curr. Opin. Genet. Dev, vol.13, pp.284-289, 2003.

C. Kwok, Mutations in SOX9, the gene responsible for Campomelic dysplasia and autosomal sex reversal, Am. J. Hum. Genet, vol.57, pp.1028-1036, 1995.

V. Pingault, SOX10 mutations in patients with Waardenburg-Hirschsprung disease, Nat. Genet, vol.18, pp.171-173, 1998.

H. Yagi, Role of TBX1 in human del22q11.2 syndrome, Lancet, vol.362, pp.1366-1373, 2003.

B. L. Loeys, A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2, Nat. Genet, vol.37, pp.275-281, 2005.

M. J. Dixon, Treacher Collins syndrome, Hum. Mol. Genet, vol.5, pp.1391-1396, 1996.

T. D. Howard, Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome, Nat. Genet, vol.15, pp.36-41, 1997.

V. El-ghouzzi, Mutations of the TWIST gene in the Saethre-Chotzen syndrome, Nat. Genet, vol.15, pp.42-46, 1997.