M. J. Aybar, M. A. Nieto, and R. Mayor, Snail precedes slug in the genetic cascade required for the specification and migration of the Xenopus neural crest, Development, vol.130, pp.483-494, 2003.

A. Barrallo-gimeno and M. A. Nieto, The Snail genes as inducers of cell movement and survival: implications in development and cancer, Development, vol.132, pp.3151-3161, 2005.

A. Barrios, R. J. Poole, L. Durbin, C. Brennan, N. Holder et al., Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis, Curr Biol, vol.13, pp.1571-1582, 2003.

V. Bolos, H. Peinado, M. A. Perez-moreno, M. F. Fraga, M. Esteller et al., The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors, J Cell Sci, vol.116, pp.499-511, 2003.

E. A. Carver, R. Jiang, Y. Lan, K. F. Oram, and T. Gridley, The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition, Mol Cell Biol, vol.21, pp.8184-8188, 2001.

S. C. Chapman, J. Collignon, G. C. Schoenwolf, and A. Lumsden, Improved method for chick whole-embryo culture using a filter paper carrier, Dev Dyn, vol.220, pp.284-289, 2001.

J. K. Dale, P. Malapert, J. Chal, G. Vilhais-neto, M. Maroto et al., Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis, Dev Cell, vol.10, pp.355-366, 2006.

M. G. Del-barrio and M. A. Nieto, Overexpression of Snail family members highlights their ability to promote chick neural crest formation, Development, vol.129, pp.1583-1593, 2002.

J. Dubrulle, M. J. Mcgrew, and O. Pourquié, FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation, Cell, vol.106, pp.219-232, 2001.

R. Feil, J. Wagner, D. Metzger, and P. Chambon, Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains, Biochem Biophys Res Commun, vol.237, pp.752-757, 1997.

T. Hochgreb, V. L. Linhares, D. C. Menezes, A. C. Sampaio, C. Y. Yan et al., A caudorostral wave of RALDH2 conveys anteroposterior information to the cardiac field, Development, vol.130, pp.5363-5374, 2003.

B. Hogan, R. Beddington, F. Constantini, E. Lacy, C. Irving et al., Progressive spatial restriction of Sek-1 and Krox-20 gene expression during hindbrain segmentation, Dev Biol, vol.173, pp.26-38, 1994.

A. Isaac, M. G. Sargent, and J. Cooke, Control of vertebrate left-right asymmetry by a snail-related zinc finger gene, Science, vol.275, pp.1301-1304, 1997.

C. Jouve, I. Palmeirim, D. Henrique, J. Beckers, A. Gossler et al., Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm, Development, vol.127, pp.1421-1429, 2000.

Y. Kawakami, A. Raya, R. M. Raya, C. Rodriguez-esteban, and J. C. Belmonte, Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo, Nature, vol.435, pp.165-171, 2005.

A. Locascio, M. Manzanares, M. J. Blanco, and M. A. Nieto, Modularity and reshuffling of Snail and Slug expression during vertebrate evolution, Proc Natl Acad Sci, vol.99, pp.16841-16846, 2002.

M. J. Mcgrew, J. K. Dale, S. Fraboulet, and O. Pourquié, The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos, Curr Biol, vol.8, pp.979-982, 1998.

A. V. Morales, Y. Yasuda, and D. Ish-horowicz, Periodic Lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to notch signaling, Dev Cell, vol.3, pp.63-74, 2002.

M. A. Nieto, The snail superfamily of zinc-finger transcription factors, Nat Rev Mol Cell Biol, vol.3, pp.155-166, 2002.

M. A. Nieto, M. G. Sargent, D. G. Wilkinson, and J. Cooke, Control of cell behavior during vertebrate development by Slug, a zinc finger gene, Science, vol.264, pp.835-839, 1994.

H. Niwa, K. Yamamura, and J. Miyazaki, Efficient selection for high-expression transfectants with a novel eukaryotic vector, Gene, vol.108, pp.193-199, 1991.

O. Pourquié, The segmentation clock: converting embryonic time into spatial pattern, Science, vol.301, pp.328-330, 2003.

A. Raya, I. Belmonte, and J. C. , Unveiling the establishment of left-right asymmetry in the chick embryo, Mech Dev, vol.121, pp.1043-1054, 2004.

M. Sefton, S. Sanchez, and M. A. Nieto, Conserved and divergent roles for members of the Snail family of transcription factors in the chick and mouse embryo, Development, vol.125, pp.3111-3121, 1998.

J. Vermot and O. Pourquié, Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos, Nature, vol.435, pp.215-220, 2005.

J. Vermot, G. Llamas, J. Fraulob, V. Niederreither, K. Chambon et al., Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo, Science, vol.308, pp.563-566, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187818

, RA synchronizes somitogenesis by inhibiting Snail1 A