J. Acevedo-garcia, K. Gruner, A. Reinstädler, A. Kemen, E. Kemen et al., The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens, Sci. Rep, vol.7, p.9319, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604162

B. Achatz, K. Kogel, P. Franken, and F. Waller, Piriformospora indica mycorrhization increases grain yield by accelerating early development of barley plants, Plant Signal Behav, vol.5, p.1687, 2010.

J. R. Aist and H. W. Israel, Papilla formation -timing and significance during penetration of barley coleoptiles by Erysiphe graminis hordei, Physiol. Plant Pathol, vol.67, pp.455-461, 1977.

P. Albersheim, A. G. Darvill, K. A. Roberts, R. Sederoff, and A. Staehlin, Cell walls and plant-microbe interactions, 2011.

N. Asaad, M. J. Den-otter, and J. B. Engberts, Aqueous solutions that model the cytosol: studies on polarity, chemical reactivity and enzyme kinetics, Org. Biomol. Chem, vol.2, pp.1404-1412, 2004.

R. Büschges, K. Hollricher, R. Panstruga, G. Simons, M. Wolter et al., The barley Mlo gene: a novel control element of plant pathogen resistance, Cell, vol.88, pp.695-705, 1997.

Y. Bai, S. Pavan, Z. Zheng, N. F. Zappel, A. Reinstadler et al., Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of mlo function, Mol. Plant Microbe Interact, vol.21, pp.30-39, 2008.

H. Baltruschat, J. Fodor, B. D. Harrach, E. Niemczyk, B. Barna et al., Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants, New Phytol, vol.180, pp.501-510, 2008.

A. Banhara, Y. Ding, R. Kuhner, A. Zuccaro, and M. Parniske, Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. Front, Plant Sci, vol.6, p.667, 2015.

O. Barazani, M. Benderoth, K. Groten, C. Kuhlemeier, and I. T. Baldwin, Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata, Oecologia, vol.146, pp.234-243, 2005.

M. Basiewicz, M. Weiss, K. Kogel, G. Langen, H. Zorn et al., Molecular and phenotypic characterization of Sebacina vermifera strains associated with orchids, and the description of Piriformospora williamsii sp, Fungal Biol, vol.116, pp.204-213, 2012.

A. Baxter, R. Mittler, and N. Suzuki, ROS as key players in plant stress signalling, J. Exp. Bot, vol.65, pp.1229-1240, 2014.

C. J. Bayles, M. S. Ghemawat, and J. R. Aist, Inhibition by 2-deoxy-Dglucose of callose formation, papilla deposition, and resistance to powdery mildew in an ml-o barley mutant, Physiol. Mol. Plant Pathol, vol.36, pp.63-72, 1990.

P. Bonfante and A. Genre, Mechanisms underlying beneficial plantfungus interactions in mycorrhizal symbiosis, Nat. Commun, vol.1, p.48, 2010.

I. Camehl, C. Drzewiecki, J. Vadassery, B. Shahollari, I. Sherameti et al., The OXI1 kinase pathway mediates Piriformospora indicainduced growth promotion in Arabidopsis, PloS Pathog, vol.7, p.1002051, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02646391

J. Chowdhury, M. Henderson, P. Schweizer, R. A. Burton, G. B. Fincher et al., Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei, New Phytol, vol.204, pp.650-660, 2014.

C. Consonni, M. E. Humphry, H. A. Hartmann, M. Livaja, J. Durner et al., Conserved requirement for a plant host cell protein in powdery mildew pathogenesis, Nat. Genet, vol.38, pp.716-720, 2006.

S. Deshmukh, R. Hückelhoven, P. Schäfer, J. Imani, M. Sharma et al., The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.18450-18457, 2006.

A. Devoto, P. Piffanelli, I. Nilsson, E. Wallin, R. Panstruga et al., Topology, subcellular localization, and sequence diversity of the Mlo family in plants, J. Biol. Chem, vol.274, pp.34993-35004, 1999.

J. R. Donoghue, Implementing Schaffer's multiple comparison procedure for a large number of groups, pp.1-23, 2004.

J. J. Doyle and J. L. Doyle, A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull, vol.19, pp.11-15, 1987.

C. Elliott, F. Zhou, W. Spielmeyer, R. Panstruga, and P. Schulze-lefert, Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus, Mol. Plant Microbe Interact, vol.15, pp.1069-1077, 2002.

C. Elliott, J. Muller, M. Miklis, R. A. Bhat, P. Schulze-lefert et al., Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein, Biochem. J, vol.385, pp.243-254, 2005.

J. Enkerli, G. Bhatt, and S. F. Covert, Nht1, a transposable element cloned from a dispensable chromosome in Nectria haematococca, Mol. Plant Microbe Interact, vol.10, pp.742-749, 1997.

T. Fenster and G. Hause, Accumulation of reactive oxygen species in arbuscular mycorrhizal roots, Mycorrhiza, vol.15, pp.3743-3779, 2005.

P. Franken, The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind, Appl. Microbiol. Biotechnol, vol.96, pp.1455-1464, 2012.

A. Genre and P. Bonfante, Epidermal cells of a symbiosis-defective mutant of Lotus japonicus show altered cytoskeleton organisation in the presence of a mycorrhizal fungus, Protoplasma, vol.219, pp.43-50, 2002.

A. Genre, M. Chabaud, T. Timmers, P. Bonfante, and D. G. Barker, , 2005.

, Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection, Plant Cell, vol.17, pp.3489-3499

A. Genre, M. Chabaud, A. Faccio, D. G. Barker, and P. Bonfante, Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota, Plant Cell, vol.20, pp.1407-1420, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02669051

A. Genre, S. Ivanov, M. Fendrych, A. Faccio, V. Zarsky et al., Multiple exocytotic markers accumulate at the sites of perifungal membrane biogenesis in arbuscular mycorrhizas, Plant Cell Physiol, vol.53, pp.244-255, 2012.

S. R. Ghimire and K. D. Craven, Enhancement of switchgrass (Panicum virgatum L.) biomass production under drought conditions by the ectomycorrhizal fungus Sebacina vermifera, Appl. Environ. Microbiol, vol.77, pp.7063-7067, 2011.

S. R. Ghimire, N. D. Charlton, and K. D. Craven, The mycorrhizal fungus, Sebacina vermifera, enhances seed germination and biomass production in swtichgrass (Panicum virgatum L.), Bioenergy Res, vol.2, pp.51-58, 2009.

D. L. Greenshields, G. Liu, W. , and Y. , Roles of iron in plant defence and fungal virulence, Plant Signal Behav, vol.2, pp.300-302, 2007.

M. Guether, R. Balestrini, M. Hannah, J. He, M. K. Udvardi et al., , 2009.

, Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus, New Phytol, vol.182, pp.200-212

C. Gutjahr, Phytohormone signaling in arbuscular mycorhiza development, Curr. Opin. Plant Biol, vol.20, pp.26-34, 2014.

R. Hückelhoven, J. Fodor, C. Preis, and K. Kogel, Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation, Plant Physiol, vol.119, pp.1251-1260, 1999.

R. Hückelhoven, Powdery mildew susceptibility and biotrophic infection strategies, FEMS Microbiol. Lett, vol.245, pp.9-17, 2005.

R. Hückelhoven, Cell wall-associated mechanisms of disease resistance and susceptibility, Annu. Rev. Phytopathol, vol.45, pp.101-127, 2007.

R. Hückelhoven, The effective papilla hypothesis, New Phytol, vol.204, pp.438-440, 2014.

M. J. Harrison, Signaling in the arbuscular mycorrhizal symbiosis, Annu. Rev. Microbiol, vol.59, pp.19-42, 2005.

M. Humphry, A. Reinstadler, S. Ivanov, T. Bisseling, and R. Panstruga, Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1, Mol. Plant Pathol, vol.12, pp.866-878, 2011.

H. W. Israel, R. G. Wilson, J. R. Aist, and H. Kunoh, Cell wall appositions and plant disease resistance: acoustic microscopy of papillae that block fungal ingress, Proc. Natl. Acad. Sci. U.S.A, vol.77, pp.2046-2049, 1980.

I. H. Jørgensen, Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley, Euphytica, vol.63, pp.141-152, 1992.

S. Jacobs, B. Zechmann, A. Molitor, M. Trujillo, E. Petutschnig et al., Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica, Plant Physiol, vol.156, 2011.

B. Jarosch, K. Kogel, and U. Schaffrath, The ambivalence of the barley Mlo locus: Mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea, Mol. Plant Microbe Interact, vol.12, pp.508-514, 1999.

B. Jarosch, M. Jansen, and U. Schaffrath, Acquired resistance functions in mlo barley, which is hypersusceptible to Magnaporthe grisea, Mol. Plant Microbe Interact, vol.16, pp.107-114, 2003.

T. Khaosaad, J. M. García-garrido, S. Steinkellner, and H. Vierheilig, Take-all disease is systemically reduced in roots of mycorrhizal barley plants, Soil Biol. Biochem, vol.39, pp.727-734, 2007.

C. Kistner, T. Winzer, A. Pitzschke, L. Mulder, S. Sato et al., , 2005.

, Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis, Plant Cell, vol.17, pp.2217-2229

J. Kumar, R. Hückelhoven, U. Beckhove, S. Nagarajan, and K. Kogel, A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins, Phytopathol, vol.91, pp.127-133, 2001.

V. Kumar, M. V. Sarma, K. Saharan, R. Srivastava, L. Kumar et al., Effect of formulated root endophytic fungus Piriformospora indica and plant growth promoting rhizobacteria fluorescent pseudomonads R62 and R81 on Vigno mungo, World J. Microbiol. Biotechnol, vol.28, pp.595-603, 2012.

S. Kusch and R. Panstruga, mlo-based resistance: an apparently universal "weapon" to defeat powdery mildew disease, Mol. Plant Microbe Interact, vol.30, pp.179-189, 2017.

S. Kusch, L. Pesch, and R. Panstruga, Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins, Genome Biol. Evol, vol.8, pp.878-895, 2016.

U. Lahrmann and A. Zuccaro, Opprimo ergo sum-evasion and suppression in the root endophytic fungus Piriformospora indica, Mol. Plant Microbe Interact, vol.25, pp.727-737, 2012.

U. Lahrmann, Y. Ding, A. Banhara, M. Rath, M. R. Hajirezaei et al., Host-related metabolic cues affect colonization strategies of a root endophyte, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.13965-13970, 2013.

U. Lahrmann, N. Strehmel, G. Langen, H. Frerigmann, L. Leson et al., Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity, New Phytol, vol.207, pp.841-857, 2015.

L. Fevre, R. O'boyle, B. Moscou, M. J. Schornack, and S. , Colonization of barley by the broad-host hemibiotrophic pathogen Phytophthora palmivora uncovers a leaf development-dependent involvement of Mlo, Mol. Plant Microbe Interact, vol.29, pp.385-395, 2016.

G. Liu, D. L. Greenshields, R. Sammynaiken, R. N. Hirji, G. Selvaraj et al., Targeted alterations in iron homeostasis underlie plant defense responses, J. Cell Sci, vol.120, pp.596-605, 2007.

J. Liu, I. Maldonado-mendoza, M. Lopez-meyer, F. Cheung, C. D. Town et al., Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots, Plant J, vol.50, pp.529-544, 2007.

M. Lyngkjaer, A. Newton, J. Atzema, and S. Baker, The barley mlo-gene: an important powdery mildew resistance source, Agronomie, vol.20, pp.745-756, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00886078

G. R. Mcgrann, A. Stavrinides, J. Russell, M. M. Corbitt, A. Booth et al., A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot, J. Exp. Bot, vol.65, pp.1025-1037, 2014.

M. Mcneil, P. Albersheim, L. Taiz, and R. L. Jones, The structure of plant cell walls: VII. Barley Aleurone Cells Plant Physiol, vol.55, pp.64-68, 1975.

M. Miklis, C. Consonni, R. A. Bhat, V. Lipka, P. Schulze-lefert et al., Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery, Plant Physiol, vol.144, pp.1132-1143, 2007.

R. G. Miller, Simultaneous statistical inference, 1981.

C. S. Nautiyal, P. S. Chauhan, S. M. Dasgupta, K. Seem, A. Varma et al., Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488, Piriformospora indica DSM 11827, and Cicer arietinum L, World J. Microbiol. Biotechnol, vol.26, pp.763-775, 2008.

C. Peterhänsel, A. Freialdenhoven, J. Kurth, R. Kolsch, and P. Schulze-lefert, Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death, Plant Cell, vol.9, pp.1397-1409, 1997.

G. H. Pham, A. Singh, R. Malla, R. Kumari, R. Prasad et al., Interaction of P. indica with other microorganisms and plants, Plant Surface Microbiology, pp.237-265, 2004.

H. Piepho, An algorithm for letter-based representation of all-pairwise comparisons, J. Comp. Graph. Stat, vol.13, pp.456-466, 2004.

M. J. Pozo and C. Azcon-aguilar, Unraveling mycorrhiza-induced resistance, Curr. Opin. Plant Biol, vol.10, pp.393-398, 2007.

X. Qiang, B. Zechmann, M. U. Reitz, K. Kogel, and P. Schäfer, The mutualistic fungus Piriformospora indica colonizes Arabidopsis roots by inducing an endoplasmic reticulum stress-triggered caspase-dependent cell death, Plant Cell, vol.24, pp.794-809, 2012.

T. Rey, A. Nars, M. Bonhomme, A. Bottin, S. Huguet et al., NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens, New Phytol, vol.198, pp.875-886, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646356

H. Roschzttardtz, G. Conejero, C. Curie, M. , and S. , Identification of the endodermal vacuole as the iron storage compartment in the Arabidopsis embryo, Plant Physiol, vol.151, pp.1329-1338, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00445498

H. Roschzttardtz, G. Conejero, F. Divol, C. Alcon, J. L. Verdeil et al., New insights into Fe localization in plant tissues, Front. Plant Sci, vol.4, p.350, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00921131

J. M. Ruiz-lozano, S. Gianinazzi, and V. Gianinazzi-pearson, Genes involved in resistance to powdery mildew in barley differentially modulate root colonization by the mycorrhizal fungus Glomus mosseae, Mycorrhiza, vol.9, pp.237-240, 1999.

D. Sarkar, H. Rovenich, G. Jeena, S. Nizam, A. Tissier et al., The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere, New Phytol, vol.224, pp.886-901, 2019.

P. Schäfer, S. Pfiffi, L. M. Voll, D. Zajic, P. M. Chandler et al., Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica, Plant J, vol.59, pp.461-474, 2009.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative C(T) method, Nat. Protoc, vol.3, pp.1101-1108, 2008.

A. Serfling, S. G. Wirsel, V. Lind, and H. B. Deising, Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions, Phytopathol, vol.97, pp.523-531, 2007.

B. Shahollari, A. Varma, and R. Oelmuller, Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains, J. Plant Physiol, vol.162, 2005.

I. Sherameti, B. Shahollari, Y. Venus, L. Altschmied, A. Varma et al., The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters, J. Biol. Chem, vol.280, pp.26241-26247, 2005.

I. Sherameti, S. Tripathi, A. Varma, and R. Oelmuller, The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves, Mol. Plant Microbe Interact, vol.21, pp.799-807, 2008.

J. P. Skou, J. H. Jørgensen, and U. Lilholt, Comparative studies on callose formation in powdery mildew compatible and incompatible barley, J. Phytopathol, vol.109, pp.147-168, 1984.

E. Stein, A. Molitor, K. Kogel, and F. Waller, Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1, Plant Cell Physiol, vol.49, pp.1747-1751, 2008.

S. Svistoonoff, V. Hocher, and H. Gherbi, Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation?, Curr. Opin. Plant Biol, vol.20, pp.11-18, 2014.

H. Thordal-christensen, Z. Zhang, W. Yangdou, and D. B. Collinge, Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during barley-powdery mildew infection, Plant J, vol.11, pp.1187-1194, 1997.

M. A. Torres, J. D. Jones, and J. L. Dangl, Reactive oxygen species signaling in response to pathogens, Plant Physiol, vol.141, pp.373-378, 2006.

A. Trouvelot, J. Kough, and V. Gianinazzi-pearson, Measuring the rate of VA mycorrhization of root systems. Research methods for estimating having a functional significance, Proceedings of the 1st European symposium on mycorrhizae: Physiological and genetical aspects of mycorrhizae, pp.217-222, 1986.

C. C. Van-schie and F. L. Takken, Susceptibility genes 101: how to be a good host, Annu. Rev. Phytopathol, vol.52, pp.551-581, 2014.

A. Varma, V. Savita, . Sudha, N. Sahay, B. Butehorn et al., Piriformospora indica, a cultivable plant-growth-promoting root endophyte, Appl. Environ. Microbiol, vol.65, p.2744, 1999.

N. Vigneron, G. V. Radhakrishnan, and P. M. Delaux, What have we learnt from studying the evolution of the arbuscular mycorrhizal symbiosis?, Curr. Opin. Plant Biol, vol.44, pp.49-56, 2018.

E. Von-röpenack, A. Parr, and P. Schulze-lefert, Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley, J. Biol. Chem, vol.273, pp.9013-9022, 1998.

F. Waller, B. Achatz, H. Baltruschat, J. Fodor, K. Becker et al., The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.13386-13391, 2005.

F. Waller, K. Mukherjee, S. D. Deshmukh, B. Achatz, M. Sharma et al., Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species, J. Plant Physiol, vol.165, pp.60-70, 2008.

Y. Wang, X. Cheng, Q. Shan, Y. Zhang, J. Liu et al., Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew, Nat. Biotechnol, vol.32, pp.947-951, 2014.

J. Y. Wang, I. Haider, M. Jamil, V. Fiorilli, Y. Saito et al., The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice, Nat. Commun, vol.10, p.810, 2019.

M. Weiss, F. Waller, A. Zuccaro, and M. A. Selosse, Sebacinales -one thousand and one interactions with land plants, New Phytol, vol.211, pp.20-40, 2016.

M. Wolter, K. Hollricher, F. Salamini, and P. Schulze-lefert, The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype, Mol. Gen. Genet, vol.239, pp.122-128, 1993.

V. Yadav, M. Kumar, D. K. Deep, H. Kumar, R. Sharma et al., A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant, J. Biol. Chem, vol.285, pp.26532-26544, 2010.

B. S. Yandell, Practical data analysis for designed experiments, 1997.

R. J. Zeyen, T. L. Carver, and M. F. Lyngkjaer, Epidermal cell papillae, The powdery mildews: a comprehensive treatise, pp.107-125, 2002.

A. Zuccaro, U. Lahrmann, U. Guldener, G. Langen, S. Pfiffi et al., Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica, PloS Pathog, vol.7, p.1002290, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02644136