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Abstract
Energy holds a key role in farm systems. Cultivation is based on the conversion of solar energy into biomass of interest. Fossil
energy allows mechanized and high-yield agricultural production system, but has a strong impact on climate change, and its
supply is compromised in the next decades. Energy flows stand between two worlds: while energy is a strategic component of the
economy, it is also a thermodynamic state variable for describing ecosystems. This situation reemphasizes the need for energy
flow analysis in farm systems. There is a great variety in the approaches used to compute energy flows at farm scales. Yet, their
main characteristics and the ways they handle farm sustainability issues need to be clarified. This review identifies ten kinds of
energetic approaches, i.e., (i) conventional energy analysis, (ii) pluri-energy analysis, (iii) agroecological energy analysis, (iv)
exergy analysis, (v) cumulative exergy consumption, (vi) extended exergy account, (vii) cumulative exergy extraction from the
natural environment, (viii) eco-exergy, (ix) cosmic exergy analysis, and (x) emergy assessment. These approaches are analyzed
through key features to discuss their ability to address resources’ efficiency issues and identify promising outcomes for energy
assessment of farms. This analysis emphasizes the lack of clear definition of system boundaries in farm-scale studies. In addition,
most of the studies mainly focus on socio-economic flows through a sectoral perspective. Yet, internal biomass flows that play a
role in maintaining agroecosystem functionality can also be considered according to a circular/systemic perspective. Then,
integration of soil organic matter in the energy balance leads to significant changes in energy efficiency evaluation playing a
function of biotic energy storage in the farm system. Hence, some recommendations are provided to perform an exhaustive
energetic assessment of farm systems as well as future lines of research to be investigated.
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1 Introduction

Since humans became sedentary, natural ecosystems were con-
verted into agroecosystems in order to carry out and increase
specific crop and livestock production. This provided an energy

output from food and rawmaterial, which was useful for human
societies (Giampietro et al. 1992). In pre-industrial societies,
agriculture was the major source of energy and materials
(Aguilera et al. 2015), being what we call today a bio-based
economy. Since the Industrial Revolution, agriculture increased
its land and human productivity by substituting its energetic
requirement with fossil fuels. Agriculture becomes less reliant
on the variability of natural mechanisms (Gliessman 2006) but
increasingly dependent on fossil fuels (Gupta and Hall 2011;
Balogh et al. 2012; Krausmann 2016; Hall 2017). This is the
turning point of our civilization from a solar economy to a
mining economy (Wrigley 2013; Daviron 2016).

The modern agricultural system has presently reached a
critical transition point in its performances (e.g., environmen-
tal impacts) (Tilman 1999; Tilman et al. 2002) as well as its
energetics pattern (e.g., the entire food system requires rough-
ly 10 kcal of fossil energy to provide 1 kcal of food) (IAASTD
2009; Bonny 2011; Pimentel et al. 2012; OCDE/FAO 2017;
Gingrich and Krausmann 2018). Energy now appears to sit at
the border between two worlds (Fig. 1), i.e., it is a strategic
component of the economy (Han et al. 2019; Taghizadeh-
Hesary et al. 2019) as well as a thermodynamic state variable
for ecosystems (Odum 1983).

Interest in agricultural energetic assessments began during
the first oil crisis with the works of Pimentel (1973, 1976) and
Odum (1973) in the 1970s. This attention declined during the
1980s when oil prices fell in 1986 (Risoud and Chopinet
1999). Since the 2000s, energy assessment has been receiving
renewed attention in part due to interest in biofuel production
efficiency (Tilman et al. 2009; Pelletier et al. 2011), the impact
of greenhouse gas (GHG) emissions on climate (Stocker
2014), and the world fossil fuel peak production projected in
2025 (Mohr et al. 2015). This concern is expressed both by the
amount of dedicated scientific papers (Vigne et al. 2012b) and
by the variety of accounting methodologies (Pelletier et al.
2011). Energy analysis has been widely applied from farm-
scale to country-scale (Aguilera et al. 2015). It generally at-
tempts to determine the energy cost of agricultural production.
This method, initially used for assessing fossil-fuel dependen-
cy, has applications for comparing farming practices, organic
and conventional farming, and recently biofuel production.

A number of existing reviews compile many energy anal-
yses. Pelletier et al. (2011) described a general panorama of
energy use in food systems with a life cycle perspective of
food production. Zegada-Lizarazu et al. (2010) proposed a
critical review of the energy balance of agricultural systems,
highlighting the variability of the energetic value as well as the
difficulty of defining a consistent system boundary. Smith
et al. (2015) reviewed the energy efficiency of organic agri-
culture and compared it with conventional farming. They con-
cluded that organic farming is more energy efficient than con-
ventional farming, even though the productivity per unit of
product is more variable. However, there is no exhaustive

Fig. 1 a The farm system at a crossroad of different energetic flows. b
The agricultural system at the interface between the different forms of
energy production (biomass, electricity) and the different land uses (crop
fields, hedges, forests, facilities, wind turbines, and photovoltaic fields)
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review of the energetic assessment approaches used to assess
the agricultural production system.

The objectives of the present review are to identify the
different energetic approaches applied to the agricultural pro-
duction system, to analyze their main features and their ability
to address resource efficiency issues, and to identify new lines
of energy assessment promising field of investigation. It ad-
dresses farm- scale by repositioning them according to other
scales (i.e., crop or regional scales). First, we define a protocol
to select the existing literature and provide a critical analysis
of the different energetic approaches identified through five
key features. Secondly, we identify the main energetic ap-
proaches used to assess the agricultural production system.
Then, we compare and analyze the different approaches
through the key features. Finally, we discuss the issue of sys-
tem boundaries and provide corresponding recommendations
for future energetic approaches.

2 Protocol of the review

2.1 Literature review method

This literature review is based on the request [TITLE:
((ener* or exer* or emer*) and (agri* or farm* or agro* or
“food production” or livestock) NOT (emerging or emer-
gency or wind or wave or tide)) AND TOPIC: ((model* or
balance or diagnostic or footprint or assessment or analy-
sis))] used with “Web of Science”, 10th of August 2018. It
results in a selection of 1,192 papers. From this set, a first
selection was carried out through the title and the abstract.
Conference papers, articles without references (no DOI ad-
dress), and papers out of scope were not considered. A first

categorization was made according to the scale of the study
(i.e., product scale, farm scale, national scale) and by iden-
tifying articles with contextual elements. A total of 196 pa-
pers covering the scope of the review were finally selected.
Even though farm scales are the main interest here, articles
from other scales highlighting methodological issues were
integrated. They were then organized into a comparative
table in order to identify common features and to compare
the different approaches. Although the present review rather
focuses on energy assessments at farm scales, different
scales of analysis have been covered due to the different
contexts of methodological aspects. While “Web of
Science” requests revealed a general panorama, specific re-
lated articles that had not been included in the corpus were
added to the review through the different references of the
papers reviewed.

2.2 Key features to analyze energetic assessment
approaches

The literature survey is analyzed through five key features,
i.e., (i) goal and scope, (ii) system modeling, (iii) flow inven-
tory, (iv) indicators, and (v) implementation. They are detailed
in Table 1 and briefly presented as follows.

(i) First, depending on the goal and scope, the practitioner
choses an appropriate energetic approach according to
three main criteria i.e., i) system scale, ii) aim of the study
and iii) type of agricultural production.

(ii) The choice of the approach has a direct influence on
system modeling. It defines flow representation that is
quantified within the system and between systems
(Loiseau et al. 2012). In an energetic assessment, the
agroecosystem is considered a unique system or repre-
sented with different subsystems. According to the mod-
el and to the relevance of the analysis, focus would be
put on the ecosphere or technosphere flows. The eco-
sphere refers to the environmental mechanisms, whereas
the technosphere is related to human activities (Jolliet
et al. 2015). The agroecosystem is considered here a
modified ecosystem by humans (Alhameid et al. 2017).

(iii) The type of energetic approach also determines the
flows inventoried, i.e., (i) primary natural resources
(i.e., sun, rain, wind, or geothermy) referring to the en-
vironment (i.e., ecosphere), (ii) energy carrier, and (iii)
materials and products (fertilizers, raw materials, pur-
chased seeds, forage, etc.) referring to the economic
inputs (i.e., technosphere), (iv) human labor based on
Fluck’s classification (Fluck 1992) (i.e., muscular man-
power, metabolized food energy, embodied energy of
food consumed, and a lifestyle measure of labor, based
on gross national production), and (e) internal flows on-
farm (Tello et al. 2015) corresponding to the portion of

Table 1 Key features and related criteria selected for the review

Key features Related criteria

(i) Goal and scope System scale

Aim of the study

Type of agricultural production

(ii) System modeling Representation

Accounting process

(iii) Flow inventory Primary natural resources

Energy carrier

Material and product

Human labor

Internal agroecosystem flow

(iv) Indicators Energetic indicators

Other indicators

(v) Implementation Use of software

Understandability

Data availability
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biomass from the system and reinvested in the
agroecosystem (vegetal biomass reuse, manure) but also
animal power used for traction.

(iv) According to the system modeling and flows inventory,
indicators are built. An indicator is defined as an “ob-
served variable that is used to report a non-observable
reality” (Boulanger 2004). Energetic indicators are di-
rectly related to energy assessment, such as EROI
(Energy Return On Investment), energy productivity,
energy intensity, net energy, or energy renewability in-
dex. Other indicators express the consequence of fossil
energy use (e.g., carbon footprint) or are paralleled to
the economic dimension of agricultural production sys-
tems. The different energetic indicators are presented in
the supplementary material.

(v) Implementation refers to tools, data, or existing frame-
works that is mobilized to perform studies. The existence
of specific software for energy assessment may suggest
that the method is widely used and has a good level of
methodological maturity. Likewise, even though the un-
derstandability of a method remains a qualitative criteri-
on, it is a key element for the usability, application, and
adoption of the method by stakeholders.

3 Energetic approaches used to assess
the agricultural system

Energetic assessment of agricultural production system can
embrace different forms of energy account that follow the first

and, in some cases, the second law of thermodynamics. Ten
approaches are identified and are presented according to the
energy accounting: (i) energy, (ii) exergy, and (iii) emergy.

3.1 Energy assessment

Energy assessment follows the first law of thermodynamics
(i.e., the law of conservation). It has been defined as the pro-
cess of determining the energy required directly and indirectly
to allow a system to produce a determining product (or output)
(IFIAS 1974). The approach is commonly assimilated to pro-
cess analysis (Jones 1989) also known as bottom-up analysis
(Murphy et al. 2011). Direct energy refers to the on-site ener-
gy used (e.g., fuel, electricity, gas, etc.). This corresponds to
the heating value of the energy carrier consumed by the sys-
tem (or process) but none of the energy requirements for prior
steps (IFIAS 1978; Risoud 1999; Hülsbergen et al. 2001;
Dalgaard et al. 2001; Pratibha et al. 2015). Murphy et al.
(2011) define energy carriers as following: “It is a vector de-
rived from a primary energy source (e.g., electricity, fuels, or
wood fire)”. Indirect energy (or off-site energy use) refers to
the energy used to extract, transform, and transport the inputs
to the system. (e.g., fertilizers, pesticides, machinery, fuels)
(Aguilera et al. 2015). This corresponds to the energy embod-
ied in the inputs, energy which is no more available as such
(Hall 2017), also called the energy intensity of an input (Hall
et al. 2011). The output represents the biomass production
sold and is converted into energetic values. Energetic inputs
and outputs are generally expressed in higher heating value,
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Fig. 2 Conventional energy analysis diagram placed within a strong sustainability vision
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also known as gross calorific value (GCV), and is defined as
the amount of heat released once it is combusted.

3.1.1 Approach #1: conventional energy analysis

Energetic analysis is the main method employed for assessing
energy consumption and production (Fig. 6a)). In this group,
conventional energy analysis (Fig. 2), also called net energy
analysis or energy balance (Hall et al. 2011), is the most com-
monly applied (147 papers). Conventional energy analysis
refers to works where the agricultural production system is
considered a sector of the economy (sectoral approach)
(Fig. 7), see as a unique system, and where the socio-
economic inputs and outputs are the main focus.

3.1.2 Approach #2: pluri-energy analysis

Pluri-energy analysis framework proposed by Vigne et al.
(2013b, 2014) is a first attempt to look energetic flows inside
the agricultural system. This method aims at assessing the
different types of energy mobilized and organized in agricul-
tural systems, considering fossil energy, biomass (in gross
energy), labor energy, and solar energy. The framework pro-
poses to focus on the energetic account of internal flows, thus
picturing the contrasting subsystems of mixed farming sys-
tems. A footprint approach has also been applied to the frame-
work (Vigne et al. 2012b). They notice that it provides a good
picture of the system but does not allow for a clear identifica-
tion of energy efficiency possibilities. In another work, Arrieta

et al. (2018) pointed some difficulties in allocating indirect
land use change to footprint.

3.1.3 Approach #3: agroecological energy analysis

After the conventional approach, agroecological energy anal-
ysis (AEA) is the most used energy assessment alternative
(Fig. 3). It is defined by the developers as an agroecological
perspective of energy analysis (Guzmán et al. 2014, 2015,
2017, 2018) and a bioeconomic accountancy of the energy
flows and yields of farm system (Tello et al. 2016). AEA
emphasizes in the role of internal biomass reinvested in the
agroecosystem, looking at the farm system as part of the
socio-ecosystem (i.e., systemic approach) (Fig. 7). It uses en-
ergy accounting for defining the socio-metabolism configura-
tion between the agroecosystem and society (Tello et al. 2016;
Marull et al. 2016; Galán et al. 2016; Tello and González de
Molina 2017; Gingrich et al. 2018c; MacFadyen and Watson
2018; Fraňková and Cattaneo 2018; Guzmán et al. 2018;
Cunfer et al. 2018; Parcerisas and Dupras 2018). Here, inter-
nal flow is considered an energy flow that is produced and
used by the agroecosystem through the biomass unharvested,
and the biomass harvested intentionally left in the agricultural
production system.

3.2 Exergy assessment

Exergy follows the second law of thermodynamics. This
means that all energetic processes are irreversible and produce
a loss of energy called entropy (Szargut 2005). Exergy is the

Agricultural production system seen as an Agroecosystem
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Fig. 3 Agroecological energy analysis diagram placed within a strong sustainability vision
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maximum amount of useful work that is obtained from a par-
ticular system or resource when it has reached equilibrium
(Dewulf et al. 2008). Exergy measures both the quantity and
the quality of energy (Hoang and Alauddin 2011). By quality,
it means the ability of a certain energy source having certain
amount of energy to cause change, i.e., the amount of energy
which is extracted as useful (Dincer et al. 2005)

3.2.1 Approach #4: exergy analysis and approach #5:
cumulative exergy consumption

Exergy analysis initially focused on specific consumption re-
lated to energy carriers (e.g., electricity for water pump or
diesel consumption in tractors) to analyze the agricultural sys-
tems (Dincer et al. 2005; Utlu and Hepbasli 2006). It is con-
cerned with the quality of energy to cause change, degradation
of energy during a process, entropy generation, and lost op-
portunities to do work (Fig. 4). Cumulative exergy consump-
tion (CExC) extends exergy analysis beyond a single process
to consider the exergy requirements of all the process and of
its entire supply chain (Hoang and Alauddin 2011; Sciubba
2019). With the development of Life Cycle Assessment
(LCA), the CExC is reinforced through the Cumulative
Exergy Demand (CExD) (Hoang and Rao 2010) present in
database such as Ecoinvent. Exergy assessment and CExC
share the same interest of conventional energy assessment as
they are concerned by socio-economic inputs. It is expected
that exergy efficiency is usually lower than the energy effi-
ciency, because the irreversibility of the process destroys
some of the input exergy (Dincer et al. 2005). For example,

Huysveld et al. (2015) revealed that more than half of the
resources consumed by dairy cows was irreversibly lost
(through latent heating and transpiration). The remaining re-
sources went to manure (54%), methane emission (9%), milk
(32%), and animal slaughter (2%).

3.2.2 Approach #6: extended exergy account and approach
#7: CEENE

Extended exergy accounting (EEA) involves, in addition to
CExC, human labor, as well as capital and environmental im-
pacts (Sciubba 2001, 2019; Amiri et al. 2020). The environ-
mental impact is assimilated to a virtual environment input cost.
Manso et al. (2017) tested three exergy accounting methodolo-
gies in the Portuguese agricultural, forestry ,and fisheries sec-
tors, i.e., (i) energy resources exergy accounting (EREA), (ii)
natural resources exergy accounting (NREA), and (iii) EEA.
The first one considers the intrinsic exergy contained in the
energy carrier; the second includes energy and matter. Manso
et al. (2017) noted that the EEA results are dominated by capital
and environmental impacts. Another identified approach is the
Cumulative Exergy Extraction from the Natural Environment
(CEENE) which was developed by Dewulf et al. (2007). This
method quantifies eight categories of exergy “removed” from
natural ecosystems, i.e., renewable resources, fossil fuels, nu-
clear energy, metal ores, minerals, water, land, and atmospheric
resources. In their analysis, Hoang and Alauddin (2011) con-
cluded that when EEA andCEENEwere combined, the organic
content in topsoil, feed, and total water withdrawal were the
three main resources extracted from the environment.

Agricultural production 
system seen from an 

Exergetic view
Output to market 
(useful products)

Irreversible lost (enthropy)

Socio-economic 
inputs

Technosphere
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Fig. 4 Exergy assessment diagram placed within a strong sustainability vision
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3.2.3 Approach #8: eco-exergy and approach #9: cosmic
exergy analysis

Another exergetic accounting method identified in this review
is eco-exergy developed by S.E. Jorgensen (2006). Eco-
exergy is defined as the chemical exergy of an organism (its
distance from chemical equilibrium) plus the exergy embod-
ied in the (genetic) information. Perryman and Schramski
(2015) proposed to combine EROI and eco-exergy ratios to
evaluate both the quantity and quality of energy accumulated
and dissipated in the agricultural processes of nine countries.
The results reveal a correlation between these food production
indicators and the ecological footprint (resources being con-
sumed) of each country, while no correlation with their re-
spective biocapacity was evidenced.

We also identify cosmic exergy analysis (Chen 2006). This
approach mobilized embodied exergy to define Odum’s
Emergy (solar energy–based accounting, see the “Emergy as-
sessment” section), resulting in a combined method placing
exergy at planetary boundary scale (Chen et al. 2009, 2011). It
has been applied to the farm system in order to compare three
agroecosystem scenarios (i.e., farmland-biogas, farmland-
dairy, farmland-dairy-biogas) (Liu et al. 2017). We have not
developed this method any further in the manuscript.

3.3 Emergy assessment

Emergy is another form of accounting energy (approach #10)
(Fig. 5). It involves a more ecocentric vision that considers, in
addition to the energies coming from the society, the energies

from the natural flows (Zhang and Long 2010; Giannetti et al.
2011; Smith et al. 2015; Yi and Xiang 2016). Ecocentric vi-
sion implies that humankind is an equal part of nature and is
associated with ecosystems (Abaidoo and Dickinson 2009).
Initial development of emergy analysis began in the 1980s
with the works of Odum (1983, 1984). However, it is only
since 2006 that emergy assessment has been applied more
commonly in agricultural systems (Diemont et al. 2006;
Cavalett et al. 2006; Chen et al. 2006; Martin et al. 2006).
Emergy represents all the energy used during the work pro-
cesses that generate a product or service according to a
lifecycle perspective. It is expressed with a common unit
based on solar radiation (Brown and Ulgiati 2004). Solar
Joule is the unit for measuring the energy required to generate
a product weighted in solar energy. Some researchers consider
emergy a sort of memory of solar energy that has been used
(Pizzigallo et al. 2008). Emergy classifies inputs in four cate-
gories: (i) natural renewable resources (sun, rain, wind), (ii)
natural non-renewable resources (e.g., soil organic matter or
ground water), (iii) purchased non-renewable inputs (fossil
fuels, fertilizers), and (iv) purchased renewable inputs (e.g.,
seeds, organic fertilizer) (Cavalett et al. 2006; Agostinho et al.
2008; Zhang et al. 2013; Rodríguez-Ortega et al. 2017).

Emergy is often presented as a complementary accounting
method offering a global vision of energy dynamics where
natural flows such as the sun, wind, or water are considered
(Lu et al. 2010; Vigne et al. 2012b, 2013b; Kuczuk et al. 2017;
Fan et al. 2018; Jafari et al. 2018). It can complement a stan-
dard socio-economic optimization model by adding a bio-
physical value to an agricultural system evaluation

Technosphere
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(Kocjančič et al. 2018). In this case, emergy does not reflect
the usefulness of a product but rather the cumulative environ-
mental support for its existence. Emergy presents a relative
homogeneity in its approach and in its accounting procedures.

4 Analysis of energetic approaches
through the key features

4.1 Goal and scope of the reviewed studies

4.1.1 System scale

The majority of articles from the 196 papers selected in this
review concerned farm system scales (Fig. 6b). Articles

focusing on national and global scales were the second most
important, followed by landscape or regional scales. Finally,
only a few articles focused on the crop scale. Conventional
energy analysis (used for all scales) is the only used energetic
approach for comparing specific crop production (Fathollahi
et al. 2018), studying agronomic approaches and technologies
(Budzyński et al. 2015; Diacono et al. 2017; Arodudu et al.
2017; Fathollahi et al. 2018), or specific crop growth for
bioenergy (Jankowski et al. 2016). Agroecological energy
analysis is applied to regional and national scales (Gingrich
et al. 2018b). Indeed, one goal of this approach is to explain
landscape evolution and its relation with food system pattern
(Padró et al. 2017; Cattaneo et al. 2018; Gingrich et al. 2018a).
Exergy approaches are also mainly focused on regional and
national scales (Utlu and Hepbasli 2006; Chen et al. 2009;
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Ghandoor and Jaber 2009; Ahamed et al. 2011) with one
exception addressed at farm scale (Liu et al. 2017) and another
two which were out of the “Web of Science” request
(Huysveld et al. 2015; Amiri et al. 2020). Concerning emergy
approach, the main scale is the farm system (24 from the 35
emergy studies reviewed).

4.1.2 Aim of the study

According to the type of study, the majority (45%) of the
papers focused on the comparison of farming systems (e.g.,
organic vs conventional or integrated vs conventional agri-
cultures) (Bailey et al. 2003; Alonso and Guzmán 2010),
farming practices (tillage vs non-tillage, different dairy
housing system) (Alluvione et al. 2011; Uzal 2013), or com-
paring agricultural product energy efficiency (for food pro-
duction or biofuels) (Pimentel and Patzek 2007; Fore et al.
2011; Elsoragaby et al. 2019). The second most important
type of studies comprised specific case studies of agricul-
tural system and production (30%) studying particularly
energy consumption (Bhatt and Bujarbaruah 2011;
Migliorini et al. 2012; Pérez Neira et al. 2014; Clark et al.
2016; Bartzas and Komnitsas 2018). Indeed, conventional
energy analysis, exergy, and CExC aim to analyze the direct
and indirect energetic cost of agricultural production when
emergy assessment looks at the global resources consump-
tion, focusing on the sustainability of the farm system. EEA
and CEENE also assess global resource consumption with a
more anthropocentric interest using such as land resource
use. Another set of articles focused on the historical evolu-
tion of energy use (Fig. 6c). If traditionally and presently
conventional energy analysis is used to measure our in-
creasing dependency on fossil energy, agroecological ener-
gy analysis is particularly dynamic in assessing historical
evolution (Soto et al. 2016; Tello et al. 2016; Díez et al.
2018; Marco et al. 2018; Guzmán et al. 2018; Infante-
Amate and Picado 2018; Harchaoui and Chatzimpiros
2019). Indeed, this approach assesses socio-metabolic and
landscape evolution and configuration through its energetic
framework enhancing energy return into the agroecosystem
understudy.

Twenty-three articles were dedicated to review and meth-
odological aspects. Three reviews of interest have been
highlighted (Zegada-Lizarazu et al. 2010; Pelletier et al.
2011; Smith et al. 2015) (see introduction). A fourth review
of Aguilera et al. (2015) (out of the request from “Web of
Science”) must be also mentioned and presents a deep
research on the historical evolution of the embodied energy
in agricultural inputs. Based on methodological aspects, Jones
(1989) is often cited when referring to process analysis. Here,
among others, an empirical classification of system bound-
aries is proposed, according to the method and scale of inven-
tory (i.e., fossil fuel accounting, process analysis, ecosystem

analysis method, and thermodynamic analysis). The method-
ological works of Guzmán et al. (2015, 2017) and Tello et al.
(2016) must also be highlighted, where a socio-metabolic
(Krausmann 2008, 2016; Gomiero 2017) energy profile of
the agroecosystem is proposed.

4.1.3 Type of agricultural production

Regarding the type of agricultural production assessed, crop
production for food or bioenergy is the main focus (Fig. 6d).
Animal production and mixed crop livestock systems are sim-
ilarly assessed.

4.1.4 System modeling

Energy assessment generally considers the farm as a unique
system (75% of the “Web of Science” request corpus) without
any differentiation between production processes and environ-
mental support functions (Tello et al., 2016). Subsystem rep-
resentation allows for the presence of internal flows and pro-
cess configuration. According to the subsystem representa-
tion, this can highlight major internal flows of biomass within
the system (Tello et al. 2015). Vigne et al. (2013b) suggested
the farm-scale system representation should be disassembled
in order to compare contrasting dairy systems. The farm was
thus divided into six generic subsystems, i.e., building and
material, crop, vegetal production storage, livestock, manure
storage, and family. Thanks to this method, significant
differences in the configuration of energy flows between
contrasting territories were revealed.

Tello et al. (2016) highlighted internal biomass reuse and
its circularity aspects in the agroecosystem by representing
three interconnected energy subsystems, i.e., livestock, farm-
land (composed of cropland, woodland, and pasture) and as-
sociated biodiversity. The agroecosystem was split into farm-
land and associated biodiversity (logical distribution in a farm
operator’s point of view), because each subsystem provides a
different functionality (Tello et al. 2015). Farmland produces
biomass for exportation while associated biodiversity ensures
the regulation and support of ecosystem services.

A large part of emergy assessment is characterized by an
energy system diagram, which is more (An et al. 1998) or less
(Hu et al. 2012) complex and where other approaches such as
LCA are associated (Wang et al. 2014, 2015). At the differ-
ence of the other resources, natural non-renewable resources,
also called local non-renewable resources (i.e., soil organic
matter (SOM) and ground water consumption), are represent-
ed inside the system as a storage system (diagram representa-
tion in supplementary material) (Wu et al. 2013; Jaklič et al.
2014; Jafari et al. 2018). Fan et al. (2018) proposed to reflect
the dynamic of SOM storage in the agricultural production
system by integrating SOM losses (i.e., already assessed in
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an emergy assessment), but also considering SOM gain as a
co-product and accounted as an input.

Exergy papers do not depict farm subsystems as they are
rather focused on accounting at national scales (Dincer et al.
2005; Utlu and Hepbasli 2006; Ghandoor and Jaber 2009;
Ahamed et al. 2011) or at process scales (Zisopoulos et al.
2017). However, the study by Huysveld et al. (2015) (al-
though out of the request) should be mentioned in subsystem
farm representation. In this case study (i.e., specialized dairy
farm in Flanders), an exergy assessment is first performed at
process scale (the herd), revealing that more than half of the
resources consumed by the herd is irreversibly lost. In a sec-
ond step, an exergy analysis at farm scale with the CEENE
method was carried out. It revealed that 93% of the total
CEENE, in the case of a specific intensive dairy farm, is due
to feed supply.

4.2 Flow inventory

4.2.1 Primary natural resources

Energy assessment does not take natural flows into account,
such as sun radiation, wind, or water, as these are not pro-
duced by the socio-economic environment (technosphere)
(Aguilera et al. 2015). With emergy analysis, these flows are
considered through the amount of solar radiation accumulated
in products and services. Nonetheless, the work of Bulatkin
(2012) integrates natural resources while using Joule in its
energetic accounting. The assessment is an attempt to allow
for the different types of energy to be compared in terms of
quality (Aguilera et al. 2015). Bulatkin (2012) proposed four
categories of flows, i.e., solar radiation, organic matter and
crop residue, energy of soil humus, and anthropogenic energy
flows. Energy of soil humus is nicely represented through the
energy lost during soil processes (i.e., soil mineralization).

Guzmán et al. (2015) propose to evaluate agroecosystem
production in terms of Net Primary Production (NPP)
(Guzmán et al. 2014), thus taking into account all biomass
production in the system. Even if solar energy is not consid-
ered here (because it cannot be directly possessed or con-
trolled by humans (Tello et al. 2015), NPP represents the true
amount of energy incorporated into plant tissues (Guzmán
et al. 2018) and, indirectly solar radiation.

4.2.2 Energy carrier, material, and products

Few studies clearly express energy carrier (e.g., fuels) both in
terms of Gross Calorific Value (GCV) and in terms of embod-
ied energy (Felten et al. 2013; Shamshirband et al. 2015).
When information was lacking, the energetic value was used
for distinguishing between a cumulative value (GCV plus
embodied energy) and an enthalpy value (i.e., GCV). When
diesel energetic value is close to 45.7 MJ.kg−1 (or

38.5 MJ.L−1) (Aguilera et al., 2015), the energy carrier is only
considered in terms of GCV. Also, the use of direct and indi-
rect terms to express inputs is a source of misunderstanding.
Some consider that direct energy inputs correspond to the
GCV plus the embodied energy of an energy carrier
(Mendoza 2005) when others consider that direct energy cor-
responds only the GCV of an energy carrier (Shamshirband
et al. 2015). This can lead to forgetfulness of the embodied
energy of energy carriers in study that, on the one hand, con-
siders embodied energy of materials and products (i.e., fertil-
izers, pesticides, machinery) without considering the embod-
ied energy of e.g. diesel (Migliorini et al. 2012; Veiga et al.
2015; Lin et al. 2017). Using only the GCV for energy carriers
(i.e., direct energy) is justified if the main objective of the
study is to measure on-farm engines consumption.

In the case of materials and product inputs, embodied en-
ergy is generally taken into account from cradle to farm gate
(Veysset et al. 2010; Pagani et al. 2016; Koesling et al. 2017).
However, external biomass inputs such as seeds, manure, and
organic matter are still not clearly described. In some cases,
purchased seeds are accounted in terms of embodied energy
(Kuesters and Lammel 1999; Ghorbani et al. 2011; Bos et al.
2014), while in other cases, it is the GCV of seeds that is taken
into account (Rahman and Barmon 2012; Rahman et al. 2014;
Rahman and Hasan 2014). In their comparison between or-
ganic and conventional Spanish farming systems, Alonso and
Guzmán (2010) take into account both the cost of manufactur-
ing and the energy content of the product (nutrient composi-
tions) for chemical and mineral fertilizers. Pérez Neira et al.
(2012) clearly presented manure inputs by only considering
the energy content of the product when originating from the
system itself as well as both GCV and embodied energy when
purchased. In the case of materials and equipment, the energy
required to produce them is depreciated according to a specific
amortization method (Benoit and Laignel 2010) or more com-
monly uniformly distributed over the lifetime (total energy
divided by years of useful life) (Alonso and Guzmán 2010).

4.2.3 Human labor

Measuring the energetics of human labor is highly controver-
sial (Wu et al. 2011) and varies widely depending on system
boundaries (Aguilera et al. 2015). The most notable works on
the energy of human labor are probably the hierarchical Fluck
(1992) review, the Jones (1989) thought process, the Aguilera
et al. (2015) analysis, and also the work of Giampietro and
Pimentel (1990). Many studies exclude human labor, particu-
larly in industrialized systems, where it is marginal energetic
value (Cleveland 1995; Maraseni et al. 2015). Still, without
human labor, we would have no production. Others argue that
it is too different from fossil energy to be expressed in the
same units (Refsgaard et al. 1998; Hülsbergen et al. 2001).
Metabolized food energy during work is the first energetic
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value used to describe human effort. It used generally
2.2 MJ.h−1, based on an 8-h working day (Pimentel et al.
1973) in Western countries and 1.96 MJ.h−1 in Middle
Eastern countries (Singh et al. 1988; Gündoğmuş and Gu
2006; Mohammadi et al. 2014).

The last has been disapproved by Wu et al. (2011) who
considered that by only accounting metabolic requirements,
human labor is underestimated. The embodied energy related
to production of food for laborers is mostly not accounted and
can generate double counting issues (Aguilera et al. 2015). For
the different manuscript based on agroecological energy anal-
ysis approach cited in this review, consumption baskets have
been accounted from an embodied point of view considering
site-specific data (by considering for example the energy em-
bodied in transporting the food (Tello et al. 2015).

Sunshine Farm case study (Baum et al. 2009) also adopts
an extended boundary for human labor. They applied net en-
ergy analysis for accounting human labor (Fluck 1981), in-
cluding human lifestyle through input-output analysis, which
was equivalent to 75 MJ.h−1. Baum et al. (2009) also intro-
duced the question of commuting energy in the farm system
which could represent, following the formula of Patzek
(2004), 34–54% of the 75 MJ/h of labor. Later, Pimentel es-
timated the energy input for labor based on a yearly consump-
tion of 8.000 L oil equivalent per person and 2000 working
hours, representing 167.6 MJ.h−1 (Pimentel and Patzek 2007).
Since transport is a large proportion of all the energy used in
agriculture, this could be a good parameter to integrate, wheth-
er it is for the characterization of the embodied energy in food
production or for the embodied energy in workers’
displacement.

4.2.4 Internal flow

Consideration of internal flows is not recent, since an old
article of the review dealing with on-farm circulating flows
dates back to Han et al. (1985). In this study, they consider
manure reuse within the system (70% of manure is collected
and used in cropland), recycled outputs from crop production
(e.g., seeds, seed cakes, and straw), human dejection, and
reuse of biomass from non-cropland areas as green manure.
Depending on the configuration between the farmers and the
system, internal flows are also allocated to human nutrition.
At a village community scale, Tripathi and Sah (2001) inte-
grated the human component to the energy analysis of internal
flows because humans were important consumers of the bio-
mass production. More recently Harchaoui and Chatzimpiros
(2019) emphasize in the importance to consider energy flows
reinvested in food for humans and feed for draft animals
(called “self-fueling”) in order to measure trade-off between
self-fueling and external inputs.

For Guzmán et al. (2015), internal flows refer to the flow of
biomass reinvested in the system in order to keep the
agroecosystem operational. The global biomass production
is divided into biomass export (i.e., biomass sold), biomass
reuse (i.e., harvested and reuse), unharvested biomass (i.e.,
roots principally), and accumulated biomass (in perennial
plants). The configuration of this biomass flow characterizes
and defines the capacity of the agroecosystem to generate
flows of ecosystem services (Tello et al. 2016; Guzmán
et al. 2018; Parcerisas and Dupras 2018).

In emergy, representation of internal flows is not necessar-
ily detailed (Patrizi et al. 2018), but they are generally associ-
ated with a stock called in emergy “natural non-renewable

Table 2 Energetic indicators used in the literature with an anthropic consideration of the system

Energetic indicators Notes References

EROI ¼ Energy output soldð Þ MJð Þ
Energy input purchasedð Þ MJð Þ This EROI refers to socio-economic input-output. It is equivalent to

other terms: energy (use) efficiency, input-output ratio, external
EROI

a) (See table note)

Internal EROI ¼ Energy output MJð Þ
Biomass reuse MJð Þ Refers to the efficiency of internal biomass intentionally return into

the system
b) (See table note)

Final EROI ¼ Energy output MJð Þ
External inputþBiomass reuse MJð Þ Biomass reuse refers to harvested crop residue and reused

intentionally in the system
b) (See table note)

Non−renewable EROI ¼ Energy output MJð Þ
Non−renewable external input MJð Þ c) (See table note)

Fossil energy efficiency ¼ Energy output MJð Þ
fosSil energy direct and indirect input MJð Þ (Mendoza 2005;

Vigne et al.
2013b)

Gross energy efficiency ¼ Energy output MJð Þ
External biomass input MJð Þ Consider the gross calorific value of the external biomass consumed (Vigne et al.

2013b)

Labor energy efficiency ¼ Energy output MJð Þ
Human labor metabolic valueð Þ MJð Þ Adapt to local conditions and activities with a stress score value from

1 (driving) to 5 (plowing)
(Vigne et al.

2013b)

Solar energy efficiency ¼ Energy output MJð Þ
Photosyntetic active radiation MJð Þ (Vigne et al.

2013b)
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resources” (Cavalett et al. 2006; La Rosa et al. 2008) (i.e., soil
organic matter, ground water). In other emergy study, the
portion of the biomass production reinvested into the system
has clearly been expressed (Diemont et al. 2006; Jafari et al.
2018). However, in the case of emergy, due to the background
notion of cumulative energy, the risk of double counting re-
mains a point of awareness (Patrizi et al. 2018).

Actually, soil organic matter is defined as the solar energy
stored in the farm system (Jordan 2016). Its renewability will
depend on how we take care of this resource and is defined as
a fund resource (Tello et al. 2015). At the difference of stock
resource (based on the consumption of a declining resource), a

fund resource is defined by a given rate of flow production
(Georgescu-Roegen 1971; Giampietro et al. 1992). This no-
tion is a key element in understanding the interest of assessing
internal flows and its role played in maintaining
agroecosystem function.

4.3 Energetic indicators

4.3.1 Energy use efficiency

Energy use efficiency, commonly called Energy Return On
energy Invest (EROI) is the ratio between output and input (all

Table 3 Energetic indicators used in the literature with an agroecological consideration of the system

Energetic indicators Notes References

Agroecological final EROI ¼ Energy output MJð Þ
Biomass reuseþexternal inputþunharvested biomass MJð Þ Energy expressly invested in

the system and the recycled
without human intervention

(Guzmán et al.
2015, 2018)

NPPact EROI ¼ NPPact MJð Þ
Biomass reuseþexternal inputþunharvested biomass MJð Þ NPPact is the amount of energy

actually incorporated into all
plant tissues

(Guzmán et al.
2015, 2018;
Galán et al.
2016)

Biodiversity EROI ¼ Unharvested biomass MJð Þ
Biomass reuseþexternal inputþunharvested biomass MJð Þ 0means all biomass is reused. 1

means natural ecosystem
without human intervention

(Guzmán et al.
2018)

Woodening EROI ¼ Accumulated biomass MJð Þ
Biomass reuseþexternal inputþunharvested biomass MJð Þ Informs whether the energy

added to the system
contributes to the storage of
energy in the system

(Guzmán et al.
2018)

Environmental efficiency of support energy ¼ Energy outputþΔSOM MJð Þ
Energy input MJð Þ This indicator aims at

evaluating system efficiency
by using supporting energy

(Alluvione
et al. 2011)

Input−output ratioΔSOC ¼ Energy outputþΔSOC MJð Þ
Energy input MJð Þ ;ΔSOC > 0;¼ Energy output MJð Þ

Energy inputþΔSOC MJð Þ ;ΔSOC < 0 Considering variation of soil
organic matter

(Fan et al.
2018)

Indicator of immediate removal ¼ Biomass harvested MJð Þ
EUnharvested biomass MJð Þ Determine cropping system

orientation as
market-focused or soil
fertility–focused

(Alluvione
et al. 2011)

Edible energy efficiency ¼ Edible energy output MJð Þ
EUnharvested biomass MJð Þ (Galán et al.

2016)

Table 4 Other energetic indicators used in the literature

Energetic indicators Notes References

Specific energy input ¼ Energy input MJð Þ
Crop yield kgð Þ Amount of energy used to produce one kg of

product
a) (See table note)

Energy productivity ¼ Crop yield kgð Þ
Energy input MJð Þ Amount of product obtain per unit of energy

input
b) (See table note)

Net energy gain = energy output − energy input c) (See table note)

Energy intensiveness ¼ Energy input MJð Þ
Total cost Þð (Zangeneh et al. 2010; Choudhary

et al. 2017)

Energy intensity ¼ Energy input MJð Þ
Energy output MJð Þ (Koesling et al. 2017)

Energy productivity per labor unit ¼ Energy output MJð Þ
Labor unit hð Þ (Choudhary et al. 2017)

Net environmental energy = Energy
output + ΔSOM − energy input

(Alluvione et al. 2011)
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the indicators cited are in the supplementary material) (Hall
et al. 2009; Hall 2017). Present in 75% of the 196 papers from
the “Web of Science” request, it is the most commonly used
energetic indicator and concerns principally purchased in-
puts (also called external inputs) and outputs sold (Table 2).
Variability in system boundaries makes difficult comparing
energy efficiency between systems. In order to reinforce
exhaustiveness but also to avoid confusion in the type of
energy inputs, Pérez Neira et al. (2018) propose to specify
energy inputs in terms of cumulative energy demand used
in LCA.

In the case of agroecological energy analysis, Guzmán
et al. (2015) and Tello et al. (2016) consider that one EROI
is not enough and suggest three different EROIs (i.e., external
final EROI, final EROI, and internal final EROI). Guzmán
et al. (2015) go further suggesting EROI from an agroecolog-
ical point of view (Table 3), integrating all the biomass pro-
duce of the agroecosystem and not just the part that is sold
(e.g., NPPactEROI).

In the same direction of integrating agroecosystem ele-
ments in the EROI, two energetic assessments suggest the
integration of soil organic matter variation (ΔSOM) into the
EROI (Alluvione et al. 2011; Fan et al. 2018). If there is a loss
of SOM, it is considered an output and added to the other
outputs of the system (i.e., as a nominator) (Alluvione et al.
2011; Fan et al. 2018). Fan et al. (2018) go further by consid-
ering SOM an input (i.e., as a denominator) if there is a gain in
SOM. Soil loss and decrease of SOM remain important issues
in present-day agricultural practices that affect crop yield,
physical soil properties, fertility, and water-holding capacity
(Pimentel et al. 2012). Fan et al. (2018) observations suggest
that soil loss and SOM decrease produce a stronger influence
on EROI than mineral fertilization. Indeed, in its study, the
crop rotation (i.e., fallow-wheat-pea, with a low input strategy
and no tillage) that showed the best EROI (12.9), falls to near
the worst crop rotation trial (EROI, 3.7) when integrating
SOM decrease.

a) (Mrini et al. 2002; Singh et al. 2002; Jianbo 2006; Baum
et al. 2009; Hall et al. 2011; Alluvione et al. 2011; Ramedani
et al. 2011; Rahman and Barmon 2012; Soni et al. 2013;
Firrisa et al. 2014; Sefeedpari et al. 2014b; Atlason et al.
2015; Guzmán et al. 2015; Tello et al. 2016; Choudhary
et al. 2017; Parcerisas and Dupras 2018; Pérez Neira et al.
2018; Bartzas and Komnitsas 2018)

b) (Guzmán et al. 2015, 2018; Tello et al. 2016; Galán et al.
2016; Parcerisas and Dupras 2018)

c) (Alonso and Guzmán 2010; de Muner et al., 2015; Pérez
Neira 2016; Pérez Neira et al. 2018)

4.3.2 Other energetic indicators

Energy intensity represents the embodied energy per output.
A majority of articles use the term “specific energy input”

when analyzing energetic consumption (both direct and indi-
rect) per unit of product. Energy intensity should not be mis-
taken with the term “energy intensiveness” employed in other
articles (Zangeneh et al. 2010; Choudhary et al. 2017)
representing the cost of energy inputs consumed as a fraction
of the total inputs (Table 4).

Energy productivity (unit.MJ−1) and net energy (output -
input) are also common energetic indicators found in the lit-
erature. Energy productivity was more frequently used in crop
production topics (Jekayinfa et al. 2012; Sefeedpari et al.
2014a; Choudhary et al. 2017; Bartzas and Komnitsas 2018).

Concerning renewability ratio (i.e., renewable/non-renew-
able), even if it is principally in emergy account that we met
this indicator, for certain energetic analysis, particularly in
Middle Eastern countries, a clear differentiation between
non-renewable and renewable inputs is generally made
(Beheshti Tabar et al. 2010; Pishgar-Komleh et al. 2012;
Mohammadi et al. 2014; Choudhary et al. 2017).

a) (Singh et al. 2004; Ramedani et al. 2011; Rahman and
Barmon 2012; Jekayinfa et al. 2012, 2013; Sefeedpari et al.
2013, 2014b; Pagani et al. 2016; Bartzas and Komnitsas 2018)

b) (Rahman and Barmon 2012; Jekayinfa et al. 2012;
Sefeedpari et al. 2014b; Choudhary et al. 2017; Bartzas and
Komnitsas 2018)

c) (Rahman and Barmon 2012; Jekayinfa et al. 2012;
Sefeedpari et al. 2014b; Arodudu et al. 2016)

4.4 Implementation

In the corpus of reviewed articles, seven articles were identi-
fied for their use of a specific software to calculate energy
flows in agricultural systems. Chen and Baillie (2009)
assessed the use of on-farm operational energy (direct energy)
for cotton production using the EnergyCalc software. Another
computer tool identified in 3 papers (Veysset et al. 2010;
Benoit and Laignel 2010; Vigne et al. 2014) is the Planet
method developed by Risoud (1999) and Bochu (2006).
Planet calculates the energy balance and performs an efficien-
cy analysis considering essentially fossil fuels and electricity
that are directly and indirectly consumed by the system
(Benoit and Laignel 2010). Kraatz (2012) also employed the
modeling software called REPRO (Reproduction of Soil
Fertility) to analyze the farming system and to evaluate energy
intensity in livestock operations. FEAT (Farm Energy
Analysis Tool) is an open-source database model developed
by Camargo et al. (2013) in an attempt to unify approaches,
interfaces, and sourcing data. It calculates energy use and
GHG emissions. Finally, Fathollahi et al. (2018) performed
an energy, economic, and environmental analysis of forage
production systems using SimaPro 8.3.0. They thus produced
a complete energetic analysis combined with a LCA.

Understandability is a qualitative criterion in the present
review and must be interpreted with caution as it is relatively
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subjective. Nevertheless, the majority of emergy and exergy
assessments were classified in the “difficult” category. This is
partly because emergy and exergy methods are based on the
second law of thermodynamics.

The majority of the energetic value was obtained from the
literature with a large range of variability (Zegada-Lizarazu
et al. 2010; Vigne et al. 2012a). Some papers use general
databases such as Ecoinvent (Upton et al. 2013; Blancard
and Martin 2014; Barak et al. 2016; Ghisellini et al. 2016;
Pishgar-Komleh et al. 2017; Koesling et al. 2017; Pragya
et al. 2017; Todde et al. 2018a). However, precision also re-
quires that energetic values adapt to local conditions (Alonso
and Guzmán 2010; Vigne et al. 2012a, 2013a) (e.g., machin-
ery production, electric matrix, fossil energy, or human labor).
Transport of input, such as biomass (feed, organic matter, etc.)
used on-farm, was usually the major adjustment made
(Guzmán et al. 2018; Pérez Neira et al. 2018). Concerning
emergy, a general database with transformity values (i.e., solar
joule per unit of joule) is not yet available, which can lead to
higher variability in energetic value (Amaral et al. 2016).

5 Recommendations to conduct exhaustive
energetic assessments

5.1 Specific semantic related to energy assessment

A large part of this review concerns system boundary defini-
tion, which remains a particular point of frailty in the energy
assessments. The selection of an appropriate system boundary
for energy analysis and for applying indicators such as EROI
is a crucial step which is often overlooked (Murphy et al.
2011). Thus, a first step for a clear and coherent system
boundary will be related to the semantic mobilized. Non-
homogenized semantics and the vocabulary result from the
plurality of approaches. However, it also reflects variability
in the system boundary and limits the exhaustiveness in the
flow inventory.

The distinction of inputs in “direct” and “indirect” still
remains a source of misunderstanding (see the “Other energet-
ic indicators” section). We chose to define direct as the GCV
of an energy carrier as it is useful for engineering purpose (i.e.,
the energy required in a process) (IFIAS 1978). Embodied
energy also has different definitions. Some studies character-
ize embodied energy as the higher heating value (gross ener-
gy) of the input, plus the energy requirements for the produc-
tion and delivery of the input (Aguilera et al. 2015; Koesling
et al. 2017). This would represent the equivalent of the
Cumulative Energy Demand (CED) used in LCA. In this re-
view, we chose to follow the definition of Hall (2017):
“Embodied energy is the energy once used to make something
and is no longer able to do work”. If this definition were
applied to the diesel used on the farm, this would be

equivalent to the energy used for its extraction, process, and
transport, therefore equal to 9.1 MJ.L−1 (Zegada-Lizarazu
et al. 2010).

If the study bases its methodology in a “process analysis,”
also defined as a partial LCA (i.e., only energetic flow con-
sidered) (Pérez Neira et al. 2014; Todde et al. 2018b), what-
ever how we classify inputs in “direct and indirect”, external
inputs must be accounted in terms of GCV and embodied
energy, which is equivalent to the CED in LCA. Even though
process scales and a cradle to farm gate are generally applied,
differences prevail in the input inventory and subsequently in
the system boundary too. Since the development of LCA (i.e.,
reinforcement of its application and ISO formalization), the
methodology of energy accounting through a process analysis
method has also been improved. An LCI (Life Cycle
Inventory) protocol offers exhaustiveness in process flow in-
ventory and is often cited as the methodological choice for
energy assessment (Fredriksson et al. 2006; Arodudu et al.
2016; Pryor et al. 2017; Fathollahi et al. 2018).

5.2 System boundary and the different energetic
approaches

The aim of the study and associated energetic approach drives
the system boundary. Conventional energy analysis is focused
on the socio-economic environment, i.e., how much energy
has been purchased and how much has been sold. Energy
assessment is frequently regarded as a benefit-cost evaluation
(Zangeneh et al. 2010; Pishgar-Komleh et al. 2011, 2017;
Jekayinfa et al. 2013). Emergy and some exergy approaches,
by the nature of their thermodynamic accounting process, by
considering sun radiation the master flow, can argue to be at
planet boundary. These latter two energy accounts have con-
vinced a growing community of researchers, offering a global
energy assessment and highlight the energy loss of a system
(i.e., entropy). Their objective is generally to assess environ-
mental sustainability. The conventional energy assessment
deserves to be more in line with our economic model and to
provide more direct answers to the farming community. A
better consideration of the ecosphere is a tendency that has
been observed in energy assessment thanks to the develop-
ment of circular approach and to the consideration of internal
biomass production, thus highlighting its role in preserving
agroecosystem functions (Tello et al. 2016). Nevertheless,
when the energy analysis requires a better clarity in system
definition, the integration of internal inputs could become an
issue for the flow inventory andmight open up the necessity to
deal with different EROI (Guzmán et al. 2015).

Murphy et al. (2011) highlighted this issue for EROI anal-
ysis. In a production process, they organized flow inventory in
increasing levels of analysis by widening the system boundary
to include more inputs: (i) level 1 is the internal energy con-
sumption; (ii) level 2, the external energy consumption; (iii)
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level 3, the materials consumption, (iv) level 4, the labor con-
sumption; and (v) level 5, the auxiliary service consumption.
Pérez Neira et al. (2012, 2014) suggested an approach similar
in agricultural context. They organized the flow inventory
through four categories (“level”was the word used): (1) direct
energy, (2) material and energy cost of production (embodied
energy), (3) fixed capital, and (4) energy in maintaining the
fixed capital.

We translate the approach of Murphy to the agricultural
farming system by expansion of the system boundary to in-
clude more inputs: the first level corresponds to an internal
flow of biomass reuse within the farm system. This first cate-
gory of energetic flows leads to use the agroecological energy
analysis approach. As the farm system is at the frontier be-
tween ecosphere and technosphere, and human management
mobilizing tools and machines, the next levels (2 and 3) cor-
respond to the cumulative energy demand of external inputs,
mobilizing EROI from a socio-economic interest. This cate-
gory of energetic flows is assessed easily with conventional
energy assessment through an energetic LCI. There is still
debate on how to incorporate labor consumption. As part of
the system, and, in most cases, a consumer of a part of the
farm production, metabolized food energy would correspond
to an internal flow when the embodied energy related to its
lifestyle would be external. Human lifestyle, as well as auxil-
iary service consumption, is generally appreciated with an
input-output economic analysis, and could correspond to
Murphy’s levels 4 and 5.

5.3 Consideration of internal flows

The internal flow of the system has, indeed, recently received
increased attention in energy analysis, as the maintenance of
the agroecosystem function is crucial (Tello et al. 2015). A
recent article suggests that improvement in the efficiency in
motors and in the use of fertilizers (i.e., the main drivers in
energy efficiency) has already reached or is close to a plateau
(Harchaoui and Chatzimpiros 2018). The increase in energy
efficiency due to technological progress for the last decades
appears small (Hamilton et al. 2013). This implies that any
improvement in energy efficiency of the farm system and the
capacity to reduce external inputs (and trying to maintain ac-
tual output level) ought to essentially depend on operative
management decisions (i.e., reduction in time use machine,
economy of scale). Another solution for increasing efficiency
could involve the increased use of the biomass on-farm by
managing the internal circulation of flows, which is a key
feature in the prospect of agroecology intensification.
Ecological network analysis (Rufino et al. 2009) and indica-
tors such as the system through flow and its relation with
system resilience are noteworthy lines of research in this di-
rection. Another useful model has recently appeared to ad-
dress this problem: the Sustainable Agroecological Farm
Reproductive Analysis (SAFRA). It is a linear programming
model optimizing land, livestock, and labor used according to
different aims (i.e., land-saving, labor-saving, commercial
maximization) under a set of biophysical site-specific

a) Technosphere/Ecosphere approach versus Sectoral/Systemic approach. b) Linear/Circular energy accounting versus Sectoral/Systemic approach. 
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Fig. 7 Classifying energetic approaches through their granularity (sectoral/systemic approach), spheres of concern (technosphere enlarged to ecosphere),
and circularity (linear/circular). The pattern size represents the numbers of publications
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constraints (Padró et al. 2019). Tools for managing on-farm
flows, and building scenarios of different configuration and
scale of intensification are a promising field of investigation.

5.4 Ability of the approaches to address sustainability
issues

Understanding sustainability mobilizes concepts such as ag-
roecology, bioeconomy, circularity, and systemic approaches.
Figure 7 a and b defines the approaches according to their
system granularity (sectorial/systemic approaches), spheres
of concern (technosphere enlarged to ecosphere (Fig. 7a)
and circularity (Fig. 7b). Conventional energy assessment
looks at energy carrier consumption, and evaluates system
energy efficiency for economic purpose as energy carriers
have a strong impact on economic sustainability of the farm
system. Through its generic model, pluri-energy assessment is
a first interesting attempt to open the black box of farm system
suggesting the circulation of internal flows. Exergy and CExC
share this sectoral/linear and sectoral/technosphere approach
(Fig. 7a). Extended Exergy Assessment differs. It introduces
the ecosphere by evaluating ecological sustainability in terms
of “exergy of environmental remediation cost”. At the differ-
ence of the other exergy-based analysis, CEENE quantifies
the total exergy that is contained in the various resources that
are retrieved from the natural environment. Its aim is the im-
pact assessment of resource consumption and it offers a more
systemic approach. Eco-exergy would be in contrast with
technological exergy, the ecological exergy measurement.
Eco-exergy suggests that the accumulated biomass in a system
is the exergy content far away from its thermodynamic equi-
librium (called by Jorgensen as “inorganic sup”) and related to
the development, the complexity, and the biodiversity of an
agroecosystem. On the latter, Jorgensen states that eco-exergy
is not enough to evaluate ecosystem sustainability, and it is
necessary to include biodiversity as an indicator (Dalgaard
1995) (e.g., Shannon’s index).

Nonetheless, agroecological energy analysis (AEA) and
emergy offer a wider systemic approach, considering agricul-
ture as part of a larger system. AEA addresses agroecosystem
profile and patterns, looking at territorial socio-metabolic ex-
changes. Emergy evaluates the agriculture as part of a global
solar ecosystem, looking its global resource use, environmen-
tal impact, and overall sustainability. Yet, AEA and emergy
mobilize two different meanings in their accounting of re-
source use. Emergy is linear, based on ecological rules (e.g.,
self-organized and hierarchical), considering energy as a suc-
cession of transformation from large flow of low quality to
smaller volume of higher quality. AEA addresses a circular
approach to evaluate farm system suitability by looking at the
loop in the system as the biomass reinvested in the
agroecosystem in order to maintain its functionality (Fig.
7b). In AEA, circularity is mobilized exclusively to evaluate

biomass flow inside the agroecosystem, excluding the analy-
sis of external inputs circularity (e.g., industrial ecology).
Enlarging circularity on the other external inputs for AEA
would reinforce assessment of the farm system integration in
its territory, calling for multi-scale analysis and is a current
line of research in addressing sustainability issues.

6 Conclusion

Energy flows are useful in the modeling of agricultural pro-
duction systems as human activity is strongly related to the
use of energy, and particularly since the Industrial Revolution,
of fossil energy. Energy is also a key factor for explaining
ecosystem process. We identified ten energetic assessments
of agricultural production systems that are performed to ac-
count energetic flows: (i) conventional energy analysis, (ii)
pluri-energy analysis, (iii) agroecological energy analysis,
(iv) exergy analysis, (v) cumulative exergy consumption,
(vi) extended exergy account, (vii) Cumulative Exergy
Extraction from the Natural Environment (CEENE), (viii)
eco-exergy, (ix) cosmic exergy analysis, and (x) emergy as-
sessment. CEENE, cosmic exergy analysis, and emergy allow
for a better evaluation of natural resources offering the widest
boundary system, considering primary natural resources used.
The main advantage of emergy and exergy is also their ability
to distinguish energy types in terms of quality and to consider
lost in energetic processes. However, energy analysis, in terms
of heating value, has the advantage of being close to present-
day economic indicators and of allowing a better understand-
ing by the operators of the agricultural production system.
This review focuses on energy analysis as it was the principal
energetic assessment of the corpus. Comparison and
benchmarking are difficult to carry out due to variability in
the system boundary and in energetic value. However, energy
assessment allows a good description of the resources con-
sumed by the farm system.

The tendency of energy assessment to focus on socio-
economic flows without considering ecosystem mechanisms
becomes an issue in the case of human activities depending on
the agroecosystem. Thus, recent studies have overcome these
difficulties by introducing a circular perspective to energy
assessment (Guzmán et al. 2015; Tello et al. 2016). Internal
flows and biomass reuse management appear as key compo-
nents in the functionality and sustainability of agricultural
production systems. By considering the farm energy produc-
tion in terms of Net Primary Production, these internal flows
are better assessed and introduce a new scale of analysis of the
on-farm energy flows. Soil organic matter has proved to be a
significant component in the agroecosystem energetic bal-
ance, acting as a battery of the agroecosystem, the storage
being a key element in energy. Effects on biotic energy stor-
age (e.g., SOM in soil, biomass in a perennial plant), on the
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stability and resilience of an agroecosystem, are noteworthy
questions for future studies. In addition, the energy time path,
and the simultaneity between the energy output and energy
requirement of the system component are issues that have not
yet received sufficient attention in energy assessment.

At the end, this review reveals that each of the identified
approaches has advantages and limitations for assessing re-
source efficiency of on-farm agricultural systems. Some of
these energy-exergy-emergy approaches are more compre-
hensive, more capable of being applied at different scales si-
multaneously, or more capable to account for different ener-
getic flows and resource consumption. To get a multidimen-
sional understanding of agricultural systems, it would be
worthwhile to combine them but that implies dilemmas and
trade-offs. Those questions deserve a study in itself to identify
more deeply complementarities between the energetic
approaches.
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