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Abstract. The accuracy of hydraulic models depends on the
quality of the bathymetric data they are based on, what-
ever the scale at which they are applied. The along-stream
(longitudinal) and cross-sectional geometry of natural rivers
is known to vary at the scale of the hydrographic network
(e.g., generally decreasing slope, increasing width in the
downstream direction), allowing parameterizations of main
cross-sectional parameters with large-scale proxies such as
drainage area or bankfull discharge (an approach coined
downstream hydraulic geometry, DHG). However, higher-
frequency morphological variability (i.e., at river reach scale)
is known to occur for many stream types, associated with
varying flow conditions along a given reach, such as the al-
ternate bars or the pool–riffle sequences and meanders. To
consider this high-frequency variability of the geometry in
the hydraulic models, a first step is to design robust meth-
ods to characterize the scales at which it occurs. In this pa-
per, we introduce new wavelet analysis tools in the field of
geomorphic analysis (namely, wavelet ridge extraction) to
identify the pseudo-periodicity of alternating morphological
units from a general point of view (focusing on pool–riffle se-
quences) for six small French rivers. This analysis can be per-
formed on a single variable (univariate case) but also on mul-
tiple variables (multivariate case). In this study, we choose a
set of four variables describing the flow degrees of freedom:
velocity, hydraulic radius, bed shear stress, and a planform
descriptor that quantifies the local deviation of the channel
from its mean direction. Finally, this method is compared
with the bedform differencing technique (BDT), by comput-
ing the mean, median, and standard deviation of their lon-

gitudinal spacings. The two methods show agreement in the
estimation of the wavelength in all reaches except one. The
method aims to extract a pseudo-periodicity of the alternat-
ing bedforms that allow objective identification of morpho-
logical units in a continuous approach with the maintenance
of correlations between variables (i.e., at many station hy-
draulic geometry, AMHG) without the need to define a prior
threshold for each variable to characterize the transition from
one unit to another.

1 Introduction

Hydraulic modeling is based on the description of river mor-
phology (cross-sectional geometry), and this is the essential
input of models despite its scarcity and cost of acquisition.
The most important aspect to know is the river bathymetric
data at the local scale, detailed and specific to the site and lo-
cal conditions (Alfieri et al., 2016). This component is essen-
tial for accurate modeling of river hydraulics such as flood
modeling (e.g., Neal et al., 2015; Trigg et al., 2009), river
restoration (e.g., Wheaton et al., 2004), ecohydraulics (e.g.,
Pasternack and Brown, 2013), environmental modeling, and
fluvial process (e.g., Rodríguez et al., 2013). Longitudinal
variability in river geometry may have a greater impact on the
simulation of the water level than the cross-sectional shapes
(Saleh et al., 2013), and it must be taken into account in
the hydraulic models. This variability of river geometry at
a small scale in the longitudinal and cross-sectional direction
yields a variation in flow parameters and is known to occur
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for many morphological channel types, each type being char-
acterized by typical morphological units (MUs), e.g., pools,
riffles, steps, point bars, and meanders.

1.1 State-of-the-art methods for a quantitative
assessment of morphological variability within a
reach

Morphological units are topographic forms that shape the
river corridor (Wadeson, 1994; Wyrick and Pasternack,
2014). They form alternating and rhythmic undulations con-
tinuously varying along the river (Thompson, 2001). This
continuity is challenging to represent; for this reason, most of
the methods that model these patterns divide the topography
into discrete units to analyze them (Kondolf, 1995; Wyrick
et al., 2014).

Among the most frequently observed alternating MUs,
pools and riffles have been recognized as fundamental geo-
morphological elements of meandering streams (Krueger and
Frothingham, 2007). Pools are located in the outer edge of
each meander loop and defined as topographic lows along a
longitudinal stream profile with high depth and low velocity
(Fig. 1a, b and d), and research has shown that they gener-
ally have an asymmetrical cross-section shape. Conversely,
riffles are topographic highs with shallow depths and moder-
ate to high velocities located in the straight parts of the reach
between adjacent loops (Fig. 1a, c and d), and they have sym-
metrical cross-section shapes (O’Neill and Abrahams, 1984;
Knighton, 1981).

For many years, many researchers have been trying to de-
velop techniques to identify MUs and especially pools and
riffles using hydraulic variables or topographic ones, or both
(Table 1). In 1D identification, some studies used bed topog-
raphy only to determine the characteristics of MUs. Richards
(1976a) proposed the zero-crossing method, which fits a re-
gression line to the longitudinal profile of the bed eleva-
tion and defines pools as points that have negative residu-
als and riffles as points with positive residuals. O’Neill and
Abrahams (1984) developed the bedform differencing tech-
nique (BDT) as a refinement of Richards’ methodology. This
one uses bed elevations measured at a fixed interval along
the channel to calculate the bed elevation difference series
between local extrema (maximum and minimum) of the bed
profile. The BDT introduces a tolerance value (T ); it is the
minimum absolute value of the cumulative elevation change
required for the identification of a pool or riffle. The value
of T is based on the standard deviation of the bed elevation
difference series and eliminates the erroneous classification
of small undulations in the bed profile. Knighton (1981) pro-
posed the Areal Difference Asymmetry Index to identify the
location of pools and riffles by their symmetrical or asym-
metrical areas. This index is defined as the ratio of the differ-
ence between the area of the right and the left of the channel
centerline on the total cross-sectional area.

On the other hand, some studies focused only on hydraulic
parameters to identify MUs. For example, Yang (1971) pro-
posed an identification of pools and riffles using the energy
gradient and affirmed that the fundamental difference be-
tween riffles and pools is the difference in energy gradients.
Also, Jowett (1993) proposed a classification criterion with
Froude number and velocity–depth ratio to distinguish be-
tween pools, runs, and riffles.

All these methods handle topographic or hydraulic param-
eters separately. Recently, however, several researchers have
improved MU identification through the use of the covari-
ance of several parameters in a multidimensional approach.
Schweizer et al. (2007) used a joint depth and velocity distri-
bution to predict pools, runs, and riffles without the knowl-
edge of the river bathymetry. Hauer et al. (2009) used a func-
tional linkage between depth-averaged velocity, water depth,
and bottom shear stress to describe and quantify six dif-
ferent hydro-morphological units (riffle, fast run, run, pool,
backwater, and shallow water) using a conceptual Mesohabi-
tat Evaluation Model (MEM) under various flow conditions.
These methods use digital elevation models (DEMs) to ex-
tract more information about MUs. For this purpose, Milne
and Sear (1997) began with depth to define pool–riffle se-
quences using ArcGis tools and DEMs to model the geome-
try of river channels based on field-surveyed cross sections
on a 3D basis. But, by choosing depth alone, the differ-
ence between two bedforms with the same depth becomes
difficult to know. By contrast, it is easy with different bed
slopes and bed roughness that yield different velocities and
shear stresses (Wyrick et al., 2014). So to overcome this and
take into account the lateral variation of rivers, Wyrick et al.
(2014) proposed a new method for the objective identifica-
tion and mapping of landforms at the morphological unit
scale. They used spatial grids of depth and velocity at low
flow estimated using a 2D hydrodynamic model and an ex-
pert classification scheme that determine the number and the
nomenclature of MUs and the range of base flow depth and
velocity of each type.

Brown and Pasternack (2017) chose two variables: the
minimum bed elevation and the channel top width across
several flow discharges. They calculated the geomorphic co-
variance structure (GCS); it is a bivariate spatial relationship
amongst or between standardized and possibly detrended
variables along a river corridor. They found that there is a
positive correlation between these two variables. Also, they
used an autocorrelation function and power spectral density
to prove a quasi-periodic pattern of wide and shallow or nar-
row and deep cross sections along the river. This pioneer-
ing work and other studies (e.g., Richards, 1976b; Carling
and Orr, 2000) proved that a single longitudinal cycle might
contain a pool with a narrow and deep cross section, a rif-
fle with a wide and shallow cross section, in addition to
transitional forms. The work that we introduce in this paper
aims to present a spectral method that extracts this pseudo-
periodicity from a river to characterize the alternating MUs,

Hydrol. Earth Syst. Sci., 24, 3513–3537, 2020 https://doi.org/10.5194/hess-24-3513-2020



M. Mahdade et al.: Automatic identification of alternating morphological units in river channels 3515

Figure 1. Different views of pool–riffle sequences. (a) Plan view pattern that includes bankfull width wbf, floodplain extent, talweg line,
velocity v, pools and riffles, and channel direction (planform); (b) cross-sectional view of a pool with a section width w and a steeper water
depth y calculated from the talweg elevation, which is the deepest part of the bottom, and y = ymax = zws− z, with z the bed elevation,
zws the water surface elevation, and ym the mean water depth; (c) cross-sectional view of a riffle with a shallower water depth y, higher bed
elevation z and high bankfull width wbf; (d) longitudinal profile that makes it possible to see the water surface, the bed slope, the pools and
riffles, and the wavelength λ calculated between two successive riffles or pools.

and especially pool–riffle sequences, and to identify the key
parameter (the wavelength) that characterizes the scale of
variability of the river topography. This information can be
further used to build a synthetic river such as the River-
Builder (Pasternack and Zhang, 2020) or the channel builder
for simulating the river morphology of Legleiter (2014).

Some of the methods presented in the literature have
shown limits in calculating the wavelengths of pool–riffle
sequences. Others have given results that are often difficult
to interpret in terms of bedform amplitude. This amplitude,
which varies according to each bedform, involves the use of
the pseudo-period. A few methods are developed to extract
this pseudo-period from alternating MU rivers. We, there-
fore, choose to work with wavelet analysis that estimates the
local variability strength of a signal and extracts the signal
amplitude and wavelength. In this study, we apply continu-

ous wavelet transform (CWT) to calculate the wavelength λ
and the dimensionless wavelength spacing λ∗ (longitudinal
spacing) which is

λ∗ =
λ

wbf
, (1)

where wbf is bankfull width.
In reality, the longitudinal spacing λ∗ has several defini-

tions. Some authors have defined the wavelength λ as the dis-
tance between riffle crests (e.g., Harvey, 1975; Hogan, 1986)
or the distance from the bottom of successive pools (e.g.,
Keller and Melhorn, 1973, 1978). Other authors have cho-
sen channel width w (e.g., Richards, 1976a, b; Dury, 1983)
instead of bankfull channel width wbf (e.g., Leopold et al.,
1964). These differences raise questions about the selection
of these ratios and their dependence on geometric or hy-
draulic parameters. Moreover, the majority of researchers use
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Table 1. Review of some methods of morphological units’ identification (variable used and MU types).

Methods Variables MUs References

Control-point method Energy gradient Pools and riffles Yang (1971)

Zero-crossing method Bed topography Pools and riffles Richards (1976a),
Milne (1982)

Areal difference asymmetry Cross-section area Pools and riffles Knighton (1981)
index

Power spectral analysis Bed topography Pools and riffles Nordin (1971),
Box and Jenkins (1976)

Bedform differencing Bed topography Pools and riffles O’Neill and Abrahams (1984)
technique (BDT)

Hydraulic characteristics Froude number Pools, runs, and riffles Jowett (1993)
classification

3D identification Water depth Pools and riffles Milne and Sear (1997)

Schweizer’s method Water depth and velocities Pools, runs, and riffles Schweizer et al. (2007)

MEM Model Water depth, velocity, Pool, riffle, run, fast Hauer et al. (2009, 2011)
and bottom shear stress run, shallow water, and

backwater

Wyrick’s method Water depth and velocity Pools, riffles, runs, and Wyrick and Pasternack (2014),
glides Wyrick et al. (2014)

Brown and Pasternack Minimum bed elevation Pools and riffles Brown and Pasternack (2017)
method and channel top width

the average channel width instead of the bankfull width be-
cause both give a similar pool–riffle spacing interval. Here,
we are working with wbf and with a new automatic wave-
length calculation method that uses the whole covariance
structure of a set of hydraulically independent variables with-
out the need for ad hoc thresholding of these variables.

Some researchers have investigated the variability of lon-
gitudinal spacing depending on geometric or hydraulic pa-
rameters. Rosgen (2001) developed an empirical relationship
between the ratio of pool-to-pool spacing/bankfull width and
the channel slope expressed as a percentage based on a neg-
ative power function of slope S:

λ∗ = 8.2513S−0.9799. (2)

In addition, Montgomery et al. (1995) showed that there is
an influence of large woody debris (LWD) on channel mor-
phology that leads to a relation between LWD and longitu-
dinal spacing in a pool–riffle sequence, and they found that
82% of pools were formed by LWD or other obstructions,
and increased numbers of obstructions led to a decrease in
the pool–riffle spacing. Moreover, research has linked vari-
ation in spacing to channel characteristics, including gra-
dient (Gregory et al., 1994). Also, Harvey (1975) showed
that pool–riffle spacing correlated strongly with discharges
between the mean-annual flood and a 5-year recurrence in-
terval (Thompson, 2001). Recently, Wyrick and Pasternack

(2014) measured the spacing of six different morphological
units using a tool in ArcGIS. Therefore, the definition of the
characteristics and the measurement methods allowed us to
expect some variation from one study to another in the es-
timated relationship between longitudinal spacing and bank-
full width (Richards, 1976a; O’Neill and Abrahams, 1984;
Gregory et al., 1994; Knighton, 2014). Aside from the in-
terval [5wbf, 7wbf] defined by Leopold et al. (1964) and the
interval [2wbf, 4wbf] defined by Montgomery et al. (1995)
in forested streams, other values of the longitudinal spacing
exist, such as the Carling and Orr (2000) interval, which is
[3wbf, 7.5wbf] and decreases to [3wbf, 6wbf] as sinuosity in-
creases (Clifford, 1993; Carling and Orr, 2000).

1.2 Study objectives

The studies that used wavelet analysis in the geomorpholog-
ical field consist in extracting components of a given spa-
tial series (e.g., w(x), v(x)), but they are not specifically
designed to identify pseudo-periodic components in a uni-
variate case, let alone in a multivariate case. For this reason,
we introduce an automatic procedure called wavelet ridge
extraction defined by Lilly and Olhede (2011) and used in
this study to extract the longitudinal spacing of the alternat-
ing MUs.
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The objective is to extract some quantitative properties of
these alternating morphological units, such as the mean and
the median of their longitudinal spacing, with a continuous
vision of the topography instead of a discrete classification.
For that, we focus on two numerical criteria computed at
reach scale: the distribution of spacings between morpholog-
ical units (mean, median, etc.) and the evaluation of correla-
tions between all geometrical and flow variables. We use in
this work four classical variables (velocity, hydraulic radius,
bottom shear stress, and the local channel direction angle)
because they respond directly to morphodynamic processes
(flow convergence routing or meander migration), and they
are independent hydraulic degrees of freedom.

In this study, we focus mainly on alternating alluvial
channels, especially pool–riffle sequences, even though the
method presented here could be used to analyze any mor-
phology characterized by alternating topographic forms. We
first present the dataset of six river reaches in France used
for this analysis (Sect. 2). In Sect. 3, we present the wavelet
ridge extraction method to identify pool–riffle sequences in
the univariate and multivariate cases with the four variables.
Section 4 presents results and compares them with the BDT
developed by O’Neill and Abrahams (1984) to determine
whether they yield the same results in terms of spacing. We
choose this method instead of threshold methods because the
latter require ad hoc thresholding/parameter range definition
from independent calibration data, which was not possible in
our case.

The rationale behind this approach is to provide a con-
tinuous description of geometric and flow patterns along a
reach using the wavelength, a description that could be sub-
sequently used to create a synthetic river as in the River-
Builder (Brown et al., 2014).

2 Dataset and study reaches

Six reaches of small French rivers are used in this study
(Navratil, 2005; Navratil et al., 2006): the Graulade at St
Sylvain Montaigut (1), the Semme at Droux (2), the Olivet
at Beaumont (3), the Ozanne at Tirzay lès Bonneval (4),
the Avenelles at Boissy-le-Châtel Les Avenelles (5), and the
Orgeval at Boissy-le-Châtel Le Theil (6) (Fig. 2). These
reaches contain mainly pool–riffle sequences. They have
slopes between 0.002 and 0.013 m m−1 (estimated from the
talweg elevation, which is the lowest point in the section),
mobile gravel beds, stable banks, and well-defined flood-
plains along at least one side of the channel (Navratil et al.,
2006). These reaches are located in the Loire River basin
(four reaches) and the Seine River basin (two reaches),
and their length ranges from 155 to 495 m (Table 2). All
reaches are located at or near the stream gauging stations of
the French national hydrometric network. Long-term (about
20 years) hydrological records are available for most reaches.

The bankfull widths vary from 4 to 12 m, with an average
value of about 9 m.

Cross sections were surveyed along the river reaches at
the level of hydraulic controls and morphological breaks to
describe the major variations in terms of width, height, and
slope in the main channel and the floodplain and at the level
of pool–riffle sequences. Cross sections and water surface
profile measurements were surveyed in 2002–2004, cover-
ing the main channel and floodplain and using an electronic,
digital, total-station theodolite. Water surface profiles were
measured at different flow discharges (Navratil et al., 2006).
Using this dataset, we solely rely on measurements at the
lowest surveyed discharge in the development of the method
because it is the discharge through which we can visualize
the variability of the bathymetry (alternating morphological
units). We select four spatial series:

1. velocity v(x);

2. hydraulic radius Rh(x)=
A(x)
P (x)
≈

A(x)
w(x)

with A(x) the
cross-sectional area and P(x) the wetted perimeter;

3. bed shear stress τb(x)= (ρg)n
2v(x)2Rh(x)

−1/3 with
ρ water density (1000 kg m−3) and n Manning’s rough-
ness coefficient;

4. local channel direction angle (planform) θ(x).

All descriptors are derived from in situ observations taken
from Navratil et al. (2006), except the calibrated estimates
of Manning’s roughness coefficient n. These values were
estimated by Navratil et al. (2006) using a 1D open chan-
nel steady and step backwater model, FLUVIA (Baume and
Poirson, 1984). However, we use these values to compute the
bed shear stress τb(x), along the reach: even if it partly relies
on calibration, it is a more robust way of computing τb here
than through the finite differentiation of the total head func-
tion v(x)2

2g + z(x) between adjacent cross sections to get the
energy slope J , given the typical number and spacing of sur-
veyed cross sections for each reach in the dataset.

The fourth variable chosen is related to the channel plan-
form: we define θ(x) as the local angular deviation of the
channel direction from a lower-frequency curve. There are
many possible definitions of this low-frequency behavior,
such as parametric splines or Bezier curves; in order to avoid
over-parameterization, we define this low-frequency plan-
form as a constant curvature curve, i.e., the best-fitting arc-
circle (Fig. 3), a choice suitable for all six reaches studied.
Since θ is signed, it is expected to have a pseudo-periodicity,
which is approximately twice as slow as other 1D variables.
Indeed, a large positive value of θ indicates a counterclock-
wise deviation from the low-frequency direction, while a
large negative value of the same amplitude indicates a clock-
wise deviation. From a hydraulic perspective, both deviations
have the same effect since they are symmetrical with respect
to the low-frequency direction. For this reason, we chose to
analyze the variable cos(θ(x)).
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Figure 2. The locations of the study reaches in France.

Table 2. Characteristics of the six reaches and their catchment. The bankfull width wbf is taken from the study of Navratil et al. (2006), and
the average width wm and the standard deviation σ(w) are calculated for minimum discharge Qmin.

Reach (1) Graulade (2) Semme (3) Olivet (4) Ozanne (5) Avenelles (6) Orgeval

Reach length L (m) 160 177 495 319 155 318

Number of cross sections 14 32 66 26 25 36

Reach gradient S (m m−1) 0.0125 0.0044 0.0018 0.0024 0.0060 0.0047

Bankfull width wbf (m) 4 12 6 12 9 10

Average width wm (m) 2.8 9.3 4.7 7.0 3.3 6.1

Standard deviation σ(w) (m) 0.4 1.9 0.9 1.1 0.9 1.0

Surveyed flow discharges (m3 s−1) 0.22 and 1.26 1.85 and 2.41 0.18; 1.13; 0.19; 0.33; 0.15 0.21
1.72 and 1.99 0.8 and 11.5

Min discharge Qmin (m3 s−1) 0.22 1.85 0.18 0.19 0.15 0.21

3 Wavelet method

Classical mathematical methods, such as Fourier analysis,
extract the wavelengths in the frequency domain for station-
ary signals, but can also be used for non-stationary signals us-
ing an “evolutive” methodology based on spectral estimators
(Thomson, 1982; Pasternack and Hinnov, 2003). Wavelet
transform standardly does the same for non-stationary sig-
nals: analyzing a signal basically consists in looking for the
local similarity between the signal and a given waveform
(the wavelet). In this paper, we use the continuous wavelet
transform with the Morlet wavelet (Gabor, 1946) (Fig. 4) ap-

plied to spatial series instead of time series, so periods and
frequencies in time series are replaced by wavelengths (in
m) and wavenumbers (in rad m−1). The choice of the Morlet
wavelet is justified by the analytical properties in its deriva-
tion and its flexibility due to the exponential form (see Ap-
pendix B).

The wavelet transform uses a whole family of “daugh-
ter” wavelets generated by scaling and translating the mother
wavelet ψ ; the value of the transform at location x and
scale s is the scalar product of the signal and this daughter
wavelet ψs,x .

Hydrol. Earth Syst. Sci., 24, 3513–3537, 2020 https://doi.org/10.5194/hess-24-3513-2020
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Figure 3. Definition of θ , the local angular deviation of the channel
direction from a lower-frequency behavior. Here this low-frequency
planform is defined as an arc-circle (illustration on the Olivet River
reach). It is worth noting that θ is signed: at the location indicated
in the figure, θ is negative.

Figure 4. The wavelet Morlet mother function; the plot shows the
real and imaginary parts of the wavelets in the space domain (dis-
tance).

Wavelet analysis is prevalent in many fields, such as
fluid mechanics (e.g., Schneider and Vasilyev, 2010; Higuchi
et al., 1994; Katul et al., 1994; Katul and Parlange, 1995b,
a), meteorology (e.g., Kumar and Foufoula-Georgiou, 1993;
Kumar, 1996), geophysics (e.g., Ng and Chan, 2012; Grin-
sted et al., 2004), hydrology (e.g., Rossi et al., 2011; Schaefli
et al., 2007; Nourani et al., 2014), and geomorphology (Gan-
godagamage et al., 2007; Lashermes and Foufoula-Georgiou,

2007; McKean et al., 2009). In the literature of the alternating
bedforms’ identification, McKean et al. (2009) used a deriva-
tive of a Gaussian wavelet (DOG) of order 6 to investigate the
spatial patterns (pools and riffles) of channel morphology and
salmon spawning using a 1D elevation profile of the channel
bed morphology.

In this study, we use another application of the wavelet
analysis called the wavelet ridge extraction method (Mal-
lat, 1999; Lilly and Olhede, 2010). This analysis is based
on the existence of special space/wavenumber curves, called
wavelet ridge curves or simply ridges (Lilly and Olhede,
2010), where the signal concentrates most of its energy (Car-
mona et al., 1999; Ozkurt and Savaci, 2005). Along such a
curve, the signal can be approximated by a single compo-
nent modulated in both amplitude and frequency. So, the ra-
tionale behind the method is that the existence of alternat-
ing morphological units along a reach (such as pool–riffle
sequences) could be translated into a pseudo-periodicity in
geometric and flow variables. Hence, identifying these bed-
forms requires identification of a local wavenumber K(x)
and phase 8(x) for each variable, a task that can be per-
formed by wavelet analysis and especially wavelet ridge ex-
traction (Mallat, 1999; Lilly and Olhede, 2010).

3.1 Wavelet analysis and ridge extraction

Few methods in the literature have been trying to identify
river characteristics with wavelets. For example, Gangodaga-
mage et al. (2007) used wavelet transform modulus maxima
(WTMM, Muzy et al., 1993) in a fractal analysis to extract
multiscale statistical properties of a corridor width. Proce-
dures such as the WTMM consist in extracting components
of the signal, but they are not specifically designed to identify
pseudo-periodic components in a univariate case, let alone in
a multivariate case.

In the present study, we test a new wavelet ridge analysis
on spatial series with the Morlet mother basis function repre-
sented in Fig. 4. Its expression is

ψ(η)= π−
1
4 eiβηe−

η2
2 , (3)

with ψ the mother wavelet function that depends on the di-
mensionless “position” parameter η and β the dimensionless
frequency, here taken to be 6, as recommended by Torrence
and Compo (1998). Starting with this wavelet mother, a fam-
ily ψs,x called wavelet daughters is obtained by translating
and scaling ψ .

ψs,x(η)=
1
√
s
ψ

(
η− x

s

)
, x ∈ R, s > 0, (4)

with x the translation offset, which represents a position at
which the signal is analyzed, and s the dilation or scale factor.
If s > 1, the daughter wavelet has a frequency lower than the
mother wavelet, whereas if s < 1, a wavelet with a frequency
higher than the mother wavelet is generated.
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Given a spatial series f (η), its continuous wavelet trans-
form iW[f ](x,s) depending on the wavelet ψ is a function
of two variables where

W[f ] : R×R∗+→ C,

(x,s) 7−→
1
√
s

+∞∫
−∞

f (η)ψ∗
(
η− x

s

)
dη. (5)

(∗) indicates the complex conjugate. This complex function
can also be written as

W[f ](x,s)= R(x,s)eiφ(x,s), (6)

where R is the absolute value (modulus) and φ is the phase
(argument) at position x with the scale s.

R(x,s)= |W[f ](x,s)| (7)
φ(x,s)= Im(lnW[f (x)](x,s)) (8)

where Im is the imaginary part of ln(W [f (x)](x,s)). To
maintain the nomenclature in the spatial definition and fa-
cilitate the extraction of wavelengths, we choose the angular
wavenumber (in rad m−1) k = 2π

λ
instead of the scale fac-

tor. We associate a wavelength λ= 2παs with the scale pa-
rameter s, where α is the Fourier factor associated with the
wavelet, and

α =
2

β +
√

2+β2
, (9)

s =
1
αk
. (10)

Thus, the wavelet transform of the function f (x) is defined
in the space wavenumber as

W[f ] : R×R∗+→ C,

(x,k) 7−→
√
αk

+∞∫
−∞

f (η)ψ∗
(
αk(η− x)

)
dη. (11)

Except for the channel angle, all input variables are always
positive and may substantially vary in magnitude, so we per-
form the wavelet transform on the Neperian logarithm of
these variables. The whole analysis is performed in a simple
Scilab script, using the functions that compute the wavelet
transform W[f ] and are provided by Torrence and Compo
(1998) (https://atoc.colorado.edu/research/wavelets/, 11 June
2020). We followed the procedure in Appendix B to compute
∂φ
∂x

and extract the curves that satisfy Eqs. (12) and (13).
The complex wavelet transform can be classically visu-

alized using a scalogram, i.e., a colored map of the modu-
lus R(x,k) in the (x,k) plane (Fig. 5, bottom). The wavelet
analysis neglects parts of the signal at both extremities of the
series: this is the cone of influence (Torrence and Compo,
1998) that is the region of the wavelet spectrum in which

edge effects become important. However, as explained pre-
viously, the complex transform also yields a phase φ(x,k) in
rad (Eq. 8); it can also be plotted in the same plane (Fig. 5,
top). In our study, we search for space/wavenumber curves
mainly using phase information, i.e., search for phase ridges
as opposed to amplitude ridges (Lilly and Olhede, 2010).

In Sect. 3.2, we give a rigorous definition of wavelet ridge
points and curves in a univariate case (i.e., a single spatial
series). Then, in Sect. 3.3, we generalize the definition to the
multivariate, i.e., when the series consists of several corre-
lated variables.

3.2 Univariate case

In the univariate case, we choose a single variable f (ve-
locity, hydraulic radius, bed shear stress, or local chan-
nel direction angle). For the wavelet ψ(η), the ridge point
of W[f ](x,k) is a space–wavenumber pair (x,k) satisfying
the phase ridge point conditions (Lilly and Olhede, 2010):

∂

∂x
Im(lnW[f (x)](x,k))− k = 0, (12)

or, according to the definition of the phase (Eq. 8):

∂φ

∂x

∣∣∣∣
(x,k)

− k = 0. (13)

This condition states that the rate of change of the trans-
form phase at scale k exactly matches k at location x; from
this condition, the instantaneous frequency of the signal
can be derived (Lilly and Olhede, 2008, 2010). The sets of
points satisfying the condition form a parametric curve (ridge
curve) noted (x,K(x)) implicitly defined by

∂φ

∂x

∣∣∣∣
(x,K(x))

−K(x)= 0. (14)

This property is illustrated in Fig. 5, where a ridge curve is
superposed both on the scalogram and on the phase map.

There may be several curves that verify Eq. (14); in prac-
tice, we choose curves that cross the domain of the wavelet
transform (from one cone of influence to another) continu-
ously and belong to the region where the maximum power
of the wavelet is. This curve K(x) also represents the local
wavenumber, which is defined on a support ` < L named as-
sessed length, with L the total reach length.

The phase function 8 is then obtained by evaluating the
function φ(x,k) along the curve (x,K(x)), in thick black in
Fig. B1a.

8(x)= φ(x,K(x)) (15)

In the end, we can extract the wavelength function of pool–
riffle sequences, which corresponds to a pseudo-period func-
tion of the signal f , and which is

λ(x)=
2π
K(x)

. (16)
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Figure 5. (a) The phase function from which we get the functionK(x); (b) the power of the wavelet with the region where there is maximum
variability depicted by the black curve K(x) (ridge curve). These two figures are represented in a wavenumber/distance space for the Olivet
River, and the wavelet transform is performed on the logarithm of the velocity. The part of the figure with low opacity shows the cone of
influence, which is ignored in this study (edge effects are more important for short wavelengths than for long wavelengths).

Also, the shape’s amplitude Am, with which pools and riffles

vary, is corrected by a coefficient
√

1
αK(x)

. This correction
comes from the inversion of the direct transformation equa-
tion (Eq. 11) which holds the coefficient

√
αK(x).

Am(x)= |W[f ](x,K(x))|

√
1

αK(x)

= R(x,K(x))

√
1

αK(x)
(17)

The signal is locally similar to a sinusoid fmod of wavenum-
ber K in rad m−1, which models the variability of f . We
can define the pseudo-periodic variable as presented in Fig. 6
with

fmod(x)= Am(x)cos(8(x))= Am(x)cos(φ(x,K(x))). (18)

In the example below (Fig. 6), the modeled velocity func-
tion follows the variability of the observed velocity; it is
a pseudo-periodic, continuous function that approximates
the first-order variability of this hydraulic parameter across
pool–riffle sequences. The statistics of theK(x) function can
be translated into statistics of longitudinal spacings of al-

ternating bedforms, e.g., mean spacing λ∗mean, median spac-
ing λ∗median or spacing standard deviation σ(λ∗). In Fig. 6
we would find λ∗mean ≈ 8.7, λ∗median ≈ 9.12 and σ(λ∗)≈ 0.79
if we were to analyze velocity only. The pseudo-periodicity
of vmod results in the identification of six pools (white) and
seven riffles (gray).

In the next section, we extend the definition of phase ridge
points and ridges to the case where several variables are sam-
pled along the reach, all of them potentially correlated and
embedding information about the pseudo-periodicity of the
channel’s hydraulic behavior.

3.3 Multivariate case

The multivariate case is the extension of the univariate case
to a set of N real-valued signals. We use the coevolution
of more than one variable to extract the wavelength of the
reach and therefore identify the pool–riffle sequences. We
start by computing the wavelet transform for each variable
i = 1 . . . N and extract their phase functions φi(x,k). Ac-
cording to the previous section, univariate ridge curvesKi(x)
would be defined by

∂φi

∂x

∣∣∣∣
(x,Ki (x))

−Ki(x)= 0. (19)
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Figure 6. (a) Variation of the modeled function fmod which represents the pseudo-periodic variable (e.g., the velocity of the Olivet River)
compared to the observed one. This pseudo-periodicity results in the identification of pools (white) and riffles (gray) in panel (b). The
unstudied part is due to the cone of influence of the wavelet method.

But then the local wavenumber would be specific to a given
variable. On the other hand, the multivariate case requires
one to determine a common wavenumber between all the
variables such that

∂φi

∂x

∣∣∣∣
(x,K(x))

−K(x)≈ 0∀i. (20)

The identification of a “master” ridge point/curve is
now a minimization problem. We define it as a lo-
cal minimum of the squared norm of the vector(
∂φ1
∂x

∣∣∣
(x,k)
− k,

∂φ2
∂x

∣∣∣
(x,k)
− k, . . .,

∂φN
∂x

∣∣∣
(x,k)
− k

)
:

E(x,k)=

N∑
i=1

(
∂φi

∂x

∣∣∣∣
(x,k)

− k

)2

. (21)

This minimum is calculated by searching for the wavenum-
bers and positions where the derivatives (Eq. 22) of this quan-
tity satisfy

∂E(x,k)

∂k
=

N∑
i=1

(
∂2φi

∂k∂x

∣∣∣∣
(x,k)

− 1

)(
∂φi

∂x

∣∣∣∣
(x,k)

− k

)
= 0

and

∂2E(x,k)

∂k2 =

N∑
i=1

[
∂3φi

∂k2∂x

∣∣∣∣
(x,k)

(
∂φi

∂x

∣∣∣∣
(x,k)

− k

)

+

(
∂2φi

∂k∂x

∣∣∣∣
(x,k)

− 1

)2
> 0. (22)

The procedure is applied to a set of variables [v, Rh, τb, θ ]
and the goal is to seek for the common wavenumber between

all these variables. In Fig. 7 we illustrate the result of this
procedure applied to the Olivet River for all four variables.
A unique wavenumber is extracted, which represents a co-
evolution of all these variables.

As a result, the phase shift of every variable is calculated
by

8i(x)= φi(x,K(x)). (23)

This ridge curve K(x) is common between all variables, yet
8i varies according to each variable. Therefore, each one can
be represented as a pseudo-periodic function fi,mod with the
pair (K(x), 8i(x)).

In our case, after calculating the phase and amplitude, we
modeled each variable as in Eq. (24) and represented them in
Fig. 8.

fi,mod(x)= Ai,m(x)cos(8i(x))

= Ai,m(x)cos(φi(x,K(x))) (24)

The amplitude shape of the modeled variable is calculated by
the same way in the univariate case:

Ai,m(x)=
∣∣W [

fi
]
(x,K(x))

∣∣√ 1
αK(x)

. (25)

The results in Fig. 8 show that a common pseudo-period has
been successfully identified and allows consistent pseudo-
periodic representation of all four variables.

Figure 9 shows the correlations between these variables: it
can be seen that the pseudo-periodic reconstruction preserves
the correlation structure between the three flow variables; an
anti-correlated hydraulic radius with bed shear stress and ve-
locity and a strong correlation between bed shear stress and
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Figure 7. Power of the wavelet of the four variables: velocity, hydraulic radius, bed shear stress, and local channel direction angle. The black
curve K(x) is the extracted ridge curve of the Olivet River in the multivariate case.

velocity. However, concerning the angle, the results show a
small phase shift, which is corrected in the following x po-
sitions. But generally, a deviation (clockwise or counter-
clockwise) from the average direction of the channel (i.e.,
cos(θ) much smaller than 1) is associated with a low hy-
draulic radius and large values of τb and v, a consistent char-
acterization of a riffle. These pseudo-periodic functions give
us an identification of reach features: pools (in white) and
riffles (in gray).

As already mentioned in Sect. 3.2 (univariate analysis), the
statistics of the K(x) function can be translated into statis-
tics of local wavelength λ(x)= 2π

K(x)
, which can, in turn,

be interpreted as statistics of longitudinal spacings of al-
ternating bedforms, e.g., mean spacing λ∗mean, median spac-
ing λ∗median or spacing standard deviation σ(λ∗). In the exam-
ple of the Olivet River (Fig. 9) λ∗mean ≈ 8.16, λ∗median ≈ 8.62
and σ(λ∗)≈ 0.70. The pseudo-periodicity of the set [vmod,
Rh,mod, τb,mod, cos(θ)mod] results in the identification of
five pools and five riffles.

4 Results

In this section, we present the results of the analysis on the
six reaches presented in Sect. 2. We compare the univariate
to the multivariate approach and also the multivariate to the
benchmark method. First, the methods are compared in terms
of the statistics (mean, median, etc.) they yield. Second, we
present the benchmark method called the BDT and compare
its results for the six reaches with the multivariate case.

4.1 Univariate vs. multivariate

First, both approaches are employed on all reaches to extract
statistics such as the mean, median, and standard deviation
wavelengths of morphological units (pool–riffle sequences).
The wavelet method extracts the wavelength for an assessed
length ` (which is the K(x) support in Figs. 6 and 9) that
is generally small compared to the total length of the reach.
Consequently, we have results that are valuable only for the
lengths shown in Table 3. In this table, we give the values
of the assessed lengths for each approach, including the vari-
ables used in it. These values generally depend on the num-
ber of alternating bedforms and also on the total length of
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Figure 8. Variation of the modeled function fi,mod, which represents the pseudo-periodic variable (in red) for the velocity, the hydraulic
radius, the bed shear stress, and the local channel direction angle of the Olivet River compared to the observed ones (in blue).

the reach. The greater the number of alternating bedforms
and the reach length are, the greater the assessed length is.

Moreover, the multivariate approach takes into account
all the variables and therefore looks for a single pseudo-
periodicity between the four variables, and then we are going
to have a pseudo-periodicity that represents the reach and not
the chosen variable.

Figure S1 in the Supplement shows the comparison be-
tween the univariate and multivariate results for the six
reaches (from 1 to 6) using the four variables (velocity, hy-
draulic radius, bed shear stress, and cosine of local channel
direction angle. Table 4 gives some statistics on both ap-
proaches. Longitudinal spacing is calculated using the wave-
lengths extracted automatically by the wavelet ridge method
from K(x).

We compare the methods in terms of longitudinal spac-
ing (λ∗). In each reach, there seems to be one variable which
drives the wavelength identified in the multivariate approach:

– in the Graulade River, the longitudinal spacing identi-
fied using the multivariate approach matches closely the
one associated with the hydraulic radius (in the mean
and the median with a deviation of 0.05wbf) and also
with the local channel direction angle (in the median
with a deviation of 0.06wbf);

– in the Semme River, it matches those of the local chan-
nel direction angle (in the mean and the median with a
deviation of 0.14wbf and 0.12wbf consecutively);

– in the Olivet River, it matches the bed shear stress (in
the mean with a deviation of 0.25wbf) and the velocity
(in the median with a deviation of 0.5wbf);

– in the Ozanne River, it matches those of the hydraulic
radius and the velocity (in the mean and the median with
a deviation less than 0.6wbf);

– in the Avenelles, it matches those of the velocity, hy-
draulic radius, and bed shear stress (in the mean with a
deviation less than 0.15wbf);

– in the Orgeval River, it matches those of the hydraulic
radius (in the mean with a deviation of 0.28wbf and the
median with 0.06wbf) and also with the local channel
direction angle (in the mean with a deviation of 0.23wbf
and in the median with 0.11wbf).

Consequently, the multivariate estimates of λ∗ compare
with univariate estimates in a similar way:

– the distribution of λ∗ in the multivariate case is included
in the envelope of univariate distributions;
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Figure 9. (a) Correlation between the modeled functions fi,mod, which represents the pseudo-periodic variables (velocity in red, hydraulic
radius in blue, bed shear stress in green, and local channel direction angle in black) of the Olivet River. These pseudo-periodic functions
result in the identification of pools (white) and riffles (gray) in panel (b).

Table 3. The assessed length provided by the wavelet analysis for all reaches in the univariate case using the velocity, hydraulic radius, bed
shear stress, or local channel direction angle and in the multivariate case using all these four variables.

Reaches Reach Assessed length ` (m) (univariate) Assessed length

length Velocity Hydraulic Bed Local ` (m)
(m) radius shear channel (Multivariate)

stress direction (v, Rh,
angle τb, cos(θ))

(1) Graulade 160 88 67 72 102 67
(2) Semme 177 87 70 89 110 37
(3) Olivet 495 349 366 363 365 251
(4) Ozanne 319 215 157 151 125 77
(5) Avenelles 155 76 70 79 64 60
(6) Orgeval 318 142 200 163 140 158

– the dispersion of this multivariate distribution, mea-
sured by σ(λ∗), is always close to the minimum value
that can be achieved by any of the univariate distribu-
tions.

Hence, the multivariate method improves the identification of
the wavelength: it is less sensitive to a local high-frequency
variation of a given variable if this variation is not associ-
ated with a variation of the other variables. However, there is

no direct way of validating the estimates from these raw re-
sults: a way of doing so would be to build a synthetic, equiva-
lent periodic geometry parameterized by the identified wave-
length to verify that it yields, for example, a similar reach-
average rating curve. This will be the subject of further work.

In the following section, we compare the wavelet method
with a benchmark method using talweg elevation.
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Table 4. Summary of results for all reaches in the univariate case using the velocity, hydraulic radius, bed shear stress, or local channel
direction angle and in the multivariate case using all these four variables. For each variable, we compute the mean, median, and standard
deviation σ of the wavelength and the longitudinal spacing. This one (λ∗) is calculated by λ

wbf
, and wbf is taken from Table 2. Bold values

represent the median or the mean wavelengths that are similar in both the univariate case and the multivariate case in a reach.

(1) Graulade (2) Semme (3) Olivet (4) Ozanne (5) Avenelles (6) Orgeval

Univariate

Velocity

λ (m)
Mean 23.47 13.86 52.20 37.18 27.32 51.66
median 24.17 13.93 54.74 36.74 27.17 51.29
σ(λ) 1.69 0.53 7.75 2.97 1.60 1.70

λ∗ (m)
Mean 5.87 1.15 8.70 3.10 3.03 5.17
median 6.04 1.16 9.12 3.06 3.02 5.13
σ(λ∗) 0.42 0.04 1.29 0.25 0.18 0.17

λ (m)
Mean 21.74 39.28 47.19 37.73 25.72 45.46
median 21.41 39.43 46.60 38.47 25.47 48.23

Hydraulic σ(λ) 0.71 1.19 4.74 2.40 0.66 8.73

radius
λ∗(m)

Mean 5.43 3.27 7.86 3.14 2.86 4.55
median 5.35 3.29 7.76 3.20 2.83 4.82
σ(λ∗) 0.18 0.10 0.79 0.20 0.07 0.87

Bed shear stress

λ (m)
Mean 26.07 32.29 47.47 36.43 27.47 51.70
median 25.92 32.66 45.54 36.30 27.95 51.26
σ(λ) 1.12 1.68 5.36 1.70 0.73 1.54

λ∗ (m)
Mean 6.52 2.69 7.91 3.04 3.05 5.17
median 6.48 2.72 7.59 3.02 3.11 5.13
σ(λ∗) 0.28 0.14 0.89 0.14 0.09 0.15

λ (m)
Mean 21.14 23.45 40.87 66.31 28.79 50.58

Cosine of local median 21.32 23.30 39.44 62.98 28.73 49.93
channel σ(λ) 0.75 0.95 3.57 7.49 1.47 4.35

direction angle
λ∗ (m)

Mean 5.28 1.95 6.81 5.52 3.20 5.06
median 5.33 1.94 6.57 5.25 3.19 4.99
σ(λ∗) 0.19 0.08 0.60 0.62 0.16 0.43

Multivariate (v, Rh, τb, cos(θ))

λ (m)
Mean 21.54 21.74 48.98 43.89 26.59 48.29
median 21.55 21.84 51.70 43.49 26.54 48.78
σ(λ) 0.38 0.85 4.22 0.98 0.40 3.42

λ∗ (m)
Mean 5.38 1.81 8.16 3.66 2.95 4.83
median 5.39 1.82 8.62 3.62 2.95 4.88
σ(λ∗) 0.09 0.07 0.70 0.08 0.04 0.34

4.2 Comparison with benchmark method

In this section, we compare our method’s results with a se-
lected benchmark method from the literature (i.e., BDT).
This method shows good results in the identification of these
bedforms according to some studies (e.g., Frothingham and
Brown, 2002; Krueger and Frothingham, 2007).

The technique of O’Neill and Abrahams (1984) (BDT)
uses a tolerance value (T ), which defines the minimum abso-
lute value needed to identify a pool or a riffle (Krueger and
Frothingham, 2007). It is calculated using the standard devi-
ation SD of the series of bed elevation differences from up-
stream to downstream for each reach and corrected by a co-
efficient chosen according to the reach. For this, we test sev-
eral tolerance values, and for the Graulade (1), Ozanne (4),
Avenelles (5), and Orgeval (6) reaches, we find the same re-

sults. We choose to check one tolerance value for each reach
with T = SD. This method identifies pool and riffle positions
by assigning a crest as a riffle and a bottom as a pool, and
therefore the computation of the wavelengths becomes a lit-
tle difficult. So, we choose to calculate a series of pool–pool
and riffle–riffle spacings, their medians, and their standard
deviations and then calculate their averages.

This procedure is applied to all rivers, and the results are
depicted in Fig. 10. Table 5 presents statistics of the BDT and
displays a comparison between these two types of morpho-
logical unit identification and mostly the identification of an
average wavelength of the reach.

Figure 10 shows the BDT results on all reaches; this
method relies only on topography to determine the positions
of pools and riffles. Moreover, it also uses a threshold T (tol-
erance), but the technique does not need a calibration reach
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Figure 10. Results of the BDT method using a tolerance equal to the standard deviation on the total length (blue) and the assessed one (red)
for all reaches (1 to 6). Round points are pools or riffles: pools are high, and riffles are low points.

or field investigation to know how to set this threshold. In this
figure, round points are pools or riffles, and we can calculate
the wavelengths and longitudinal spacing of each reach using
positions of these points.

The work of the wavelet analysis is done on the assessed
length `. However, the BDT method works on the total length
of the reach. This comparison is made to determine how ef-
fectively the wavelength extracted by the wavelet analysis
can represent the entire reach even if an entire part is left
unassessed.

For the wavelet method (Fig. 9), the wavelength extraction
is among its objectives, while the BDT does not directly cal-
culate the wavelength. It is computed by averaging the pool-
to-pool and riffle-to-riffle distances. To compare these two
methods, we use only the longitudinal spacing (λ∗) as a cri-
terion.

In Table 5, we present the results of the BDT on the total
length L and the assessed length ` of all reaches. By using
the total length L, the longitudinal spacings found with the
BDT are close to the ones found with the wavelet analysis
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Table 5. Results of BDT and the multivariate wavelet methods for all reaches. λmeth,mean is the mean wavelength using one of the methods
(for BDT, it used on the total length and the assessed one `). λmeth,median is the median, and λ∗meth,mean is the mean longitudinal spacing,
λ∗meth,median is the median, and σ(λmeth,median) is the standard deviation of the longitudinal spacing. (–) means that we find only one
longitudinal spacing, which is the mean and the median, so there is no standard deviation.

Reaches (1) Graulade (2) Semme (3) Olivet (4) Ozanne (5) Avenelles (6) Orgeval

Total length L (m) 160.0 177.0 495.0 319.0 155.0 318.0

Assessed length ` (m) 67.0 37.0 251.0 77.0 60.0 158.0

λwav,mean (m) 21.54 21.74 48.98 43.89 26.59 48.29
λBDT,mean (m) 23.67 25.33 24.94 41.12 33.63 39.90
λ`BDT,mean (m) 20.75 – 28.00 35.00 – 46.00

λ∗wav,mean 5.38 1.81 8.16 3.66 2.95 4.83
λ∗BDT,mean 5.92 2.11 4.16 3.43 3.74 3.99
λ∗
`BDT,mean 5.19 – 4.66 2.92 – 4.60

λwav,median (m) 21.55 21.84 51.70 43.49 26.54 48.78
λBDT,median (m) 26.00 21.25 21.75 36.50 30.50 39.00
λ`BDT,median (m) 20.75 – 23.50 35.00 – 46.00

λ∗wav,median 5.39 1.81 8.62 3.62 2.95 4.88
λ∗BDT,median 6.5 1.77 3.63 3.04 3.39 3.90
λ∗
`BDT,median 5.19 – 3.92 2.92 – 4.60

σ(λ∗wav,mean) 0.09 0.07 0.70 0.08 0.04 0.34
σ(λ∗BDT,mean) 2.06 0.82 1.83 1.56 1.71 1.91
σ(λ∗

`BDT,mean) 2.21 – 2.30 – – 0.71

(deviation less than 1 times the bankfull width for the me-
dian) in all the reaches except the Olivet (deviation of 4wbf).
Over the assessed length `, we find very similar results with
deviations less than 1 times the bankfull width. However, the
shortening of the length (` < L) reduces the number of pools
and riffles identified – Graulade (1) and Avenelles (5) – and
therefore introduces bias. This indicates that a length greater
than two cycles (pool–riffle) is always required to produce
a pseudo-periodicity of the reach by both methods, a condi-
tion which is not fulfilled for all reaches of our dataset. But
for the other rivers except for the Olivet (3) and Orgeval (6)
reaches, there is not much improvement if we replace the to-
tal length with the assessed one. In this comparison, we found
that the wavelengths extracted by the multivariate wavelet
analysis are generally included in the variance intervals of
the wavelengths found by the BDT. This conclusion is veri-
fied in all reaches except the Olivet River (3), where there is
a big difference between the longitudinal spacings found by
the BDT and by wavelets. This difference is due to the choice
of the tolerance value, which is low in our case to the point
of not filtering out the high-frequency variability of bed el-
evation and therefore gives a lower periodicity compared to
the wavelets.

5 Discussion

In this study, we consider the BDT method to be a bench-
mark method. We do not consider a specific method to be
the “true” one, and we only apply these methods to have a
general idea on the uncertainties in the identification of mor-
phological units. This method was chosen not because it is
the “best” method for pool–riffle identification, but because
it does not use thresholds (except for the tolerance T , which
does not depend on field data). It means that it does not re-
quire a preliminary calibration of thresholds on velocity, hy-
draulic radius, etc. on an independent reach (e.g., Wyrick and
Pasternack, 2014; Hauer et al., 2009). These thresholds vary
from one reach to another and according to the characteris-
tics of each river. For this reason, we did not compare our
method with threshold methods on this dataset. In contrast,
the results of the longitudinal spacing intervals will be com-
pared with the literature.

For a long time, researchers have found a common interval
of longitudinal spacings that vary between 5 and 7 times the
channel width (Leopold et al., 1964; Keller, 1972; Richards,
1976a; Gregory et al., 1994). Keller (1972) found that the
median is less and varies between 3 and 5 times the chan-
nel width. O’Neill and Abrahams (1984), using the BDT
method, found the same results but with a median close to 3
times the channel width, and this value can vary according to
the tolerance T . Carling and Orr (2000) found lower values
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than before at about 3w. Recent studies (e.g., Wyrick and
Pasternack, 2014) have calculated the longitudinal spacing
of six morphological units using 2D identification methods.
The averages of these pool and riffle spacings are, respec-
tively, 3.3 and 4.3 times the channel width, which is less than
the commonly accepted values of 5–7w.

In this study, the longitudinal spacing varies in the mean
and the median from ∼ 1.8 to 8.6 times the bankfull width,
supporting the conclusion of Carling and Orr (2000) that
pools are spaced approximately 3 to 7 times the channel
width. However, the quoted longitudinal spacing relation-
ships should be considered in the context that the bankfull
width and spacing distance are inherently variable even for
short length reaches. To illustrate this inherent variability, we
found the example of Keller and Melhorn (1978), where the
pool–pool spacing values ranged from 1.5 to 23.3 channel
widths, with an overall mean of 5.9 (Gregory et al., 1994;
Knighton, 2014). This variability in longitudinal spacing is
probably related to a short assessed length, a small number
of cross sections surveyed, or other factors such as geology,
bank characteristics (cohesion), the grain size of the river
bed, or artificial channel modifications.

We worked with a dataset that contains cross sections
spaced 0.46 to 2.9 times the bankfull width. Other studies
have used much shorter spacings (e.g., Pasternack and Ar-
royo, 2018; Legleiter, 2014) to identify morphological units.
Of course, the larger the number of cross sections, the more
robust the identified correlations are. Also, we worked with
irregularly spaced cross sections, which normally lead to bi-
ases in the results. Despite this, the “biased” placement does
not impair the overall methodology. This methodology has
provided good results in terms of longitudinal spacings, and
therefore it can be applied for shorter cross-section spacings
to clearly identify these alternate morphologies. The short
lengths we found raise questions about the naturality of the
rivers. In our case, the rivers are subject to artificial modifi-
cations (e.g., bridges, weirs) and rehabilitations, which will
have a significant impact on the hydro-morphological param-
eters (width, depth, meandering, etc.). This can have a very
important impact on the identification of pseudo-periods.

The wavelet ridge analysis is powerful in identifying
pseudo-periods, amplitude, and phase while preserving the
correlations between parameters. We can thus identify alter-
nating morphological units more objectively in terms of fre-
quency/wavenumber.

This wavelength can be used to represent the variability of
the bathymetry in hydraulic models in cases where we do
not have full access to the geometry of the channel (e.g.,
remote sensing data such as the overcoming Surface Water
and Ocean Topography Mission) and the morphology can be
modeled by pseudo-periodic functions. Furthermore, it can
be implemented in synthetic geometry generators (e.g., River
Builder, Pasternack and Zhang, 2020) where the bathymetry
and sinuosity wavelengths extracted by the wavelets can be
used to model meandering rivers with alternating morpholo-

gies. Ultimately, hydraulic modeling will be the true test of
the potential of a pseudo-periodic equivalent geometry (e.g.,
for simulating a reach-average rating curve).

On the other hand, it presents drawbacks compared to
other methods. First, the cone of influence ignores a large
part of the river and sometimes biases the results in the
case of small total lengths (the Graulade (1) and Semme (2)
reaches). Similarly for reach length and number of morpho-
logical units as for the number of cross sections, the larger it
is, the more robust the results are, and the smaller the relative
portion of “unassessed length” is. Still, the method remains
a powerful tool for non-stationary analysis. Another problem
is the amplitude, which is sometimes overestimated in some
regions of the topography. We visualized this in several cases
in our study since we used the Neperian logarithm to avoid
negative values, and therefore the inverse function (exponen-
tial) gives slightly larger values. However, this does not bias
the identified wavelength of the reach.

6 Conclusions

In this study, we present an automatic procedure based on
wavelet ridge extraction to identify some characteristics of
alternating morphological units (MUs), such as their longi-
tudinal spacing and amplitude. The method does not rely
on any a priori thresholds to identify MU sequences. It was
applied to six rivers with a maximum length of 500 m. We
chose to work with classical hydro-morphological variables
(velocity, hydraulic radius, bed shear stress) in addition to the
planform channel direction angle that evaluates the impact of
river sinuosity in the determination of the wavelength.

As a result, identified wavelengths are consistent with the
values of the literature (mean in 3–7wbf). The use of a multi-
variate approach yields more robust results than the univari-
ate approaches by ensuring a consistent covariance of flow
variables in the pseudo-periodic behavior.

Given the short length of several reaches, the relatively
small number of cross sections for each reach, and the possi-
ble impacts of artificial modifications, this paper is mainly a
proof-of-concept of the wavelet approach. We foresee many
perspectives for this work, such as the possibility of extend-
ing the work to other rivers with other types of MUs or other
longer reaches with a large number of cross sections.
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Appendix A: List of symbols

A(x) Cross-sectional area (m2)
Ai,mod Signal amplitude of the shape of the modeled variable number i
Am Signal amplitude of the shape
cos(θ) Cosine of the local channel direction angle
cos(θ)mod Modeled cosine of the local channel direction angle
f Space series function (m)
fi Measured space series function number i
fi,mod Modeled space series function number i with multivariate wavelet analysis
fmod Modeled variable with the univariate wavelet analysis
g Acceleration due to gravity and its value is 9.81 m s−2

k(x) Wavenumber (rad m−1)
K(x) Local wavenumber that corresponds to the maximum variance of the signal (rad m−1)
Ki(x) Local wavenumber that corresponds to the maximum variance of the variable i (rad m−1)
` K(x) support (m)
L Total reach length (m)
N Number of total chosen variables
n Manning’s roughness coefficient
P(x) Wetted perimeter (m)
Qmin Minimum discharge modeled (m3 s−1)

R(x,s) or R(x,k) or R Absolute value or modulus of the wavelet transform at a position x and with a scale s or
wavenumber k

Rh Hydraulic radius (m)
Rh,mod Modeled hydraulic radius (m)
s Dilation or scale factor
S Reach slope (m m−1)
SD The standard deviation of the bed elevation difference series (m)
T Tolerance value used in BDT method (m)
v(x) Velocity (m s−1)
vmod Modeled velocity (m s−1)
vobs Measured velocity (m s−1)
w Reach width (m)
wbf Reach bankfull width (m)
wm Mean bankfull width (m)
x Translation factor in the wavelet transform or the abscissa position (m)
y = ymax Water depth measured from the talweg elevation y = zws− z (m)
ym Mean depth (m)
z Measured bed elevation or talweg elevation (m)
zws Water surface elevation measured from the 0NGF (m)
α Fourier factor associated with the wavelet (m rad−1)
β Dimensionless frequency is taken to be 6 recommended by Torrence and Compo (1998)
λ Reach wavelength (m)
λ∗ Typical pool (riffle) spacing or dimensionless reach wavelength
ρ Water density (997 kg m−3)
θ local channel direction angle in rad
σ(w) The standard deviation of the width along the reach (m)
σ( ) Standard deviation
τb(x) Bed shear stress in the x abscissa (Pa)
τb,mod(x) Modeled bed shear stress in the x abscissa (Pa)
8 Corresponding phase at the position x and the wavenumber K with 8(x)= φ(x,K(x)) (rad)
8i Phase at the position x and the wavenumber K for the variable number i
φ(x,s) or φ(x,k) or φ Phase or argument at a position x and with a scale s or wavenumber k (rad)
φi The phase of the variable number i
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ψ Mother wavelet function
ψs,x Daughter wavelet function
η Dimensionless position parameter
C Complex numbers
R Real numbers
R∗+ Positive real numbers
W[f ](x,s) Continuous wavelet transform of f (x) with the wavelet ψ
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Appendix B: Mathematical calculus for the wavelet
transform

B1 The univariate case

The conjugate form of the mother wavelet is

ψ(η)= π−
1
4 e−iβη−

η2
2 . (B1)

Its derivative depending on the mute variable η is

ψ ′
∗
(η)=−π−

1
4 (iβ + η)e−iβη−

η2
2 (B2)

=−(iβ + η)ψ∗(η). (B3)

In Sect. 3.1, η is a mute integration variable, and x appears
only in the argument αk(ξ − x) of the function ψ∗. By ap-
plying the derivation formula of a composite function, the
derivative of the wavelet transform is expressed by

∂

∂x
W[f (x)](x,k)=

√
αk

+∞∫
−∞

f (η)
∂

∂x

[
ψ∗(αk(η− x))

]
dη

=
√
αk

+∞∫
−∞

f (η) · (−αk) ·ψ ′
∗
(αk(η− x))dη

= (αk)
√
αk

+∞∫
−∞

f (η) · (iβ +αk(η− x)) ·ψ∗(αk(η− x))dη

= (αk)
√
αk

+∞∫
−∞

[(iβ −αkx)f (η)+αkηf (η)] ·ψ∗(αk(η− x))dη

= (αk)(iβ −αkx)W[f (x)](x,k)+ (αk)2W[xf (x)](x,k).

On the other hand, we have

∂

∂x
W[f (x)](x,k)=

∂

∂x

(
R(x,k)eiφ(x,k)

)
=

[
1
R

∂R

∂x
+ i

∂φ

∂x

]
Reiφ,

∂

∂x
Re(lnW[f (x)](x,k))=

1
R

∂R

∂x

= Re

(
1

W[f (x)](x,k)
∂

∂x
Wg[f (x)](x,k)

)
,

∂

∂x
Im(lnW[f (x)](x,k))=

∂φ

∂x

= Im
(

1
W[f (x)](x,k)

∂

∂x
W[f (x)](x,k)

)
.

Finally,

∂φ

∂x
= Im

{
(αk)(iβ −αkx)+ (αk)2

W[xf (x)](x,k)
W[f (x)](x,k)

}
,

∂φ

∂x
= (αk)β + (αk)2Im

{
W[xf (x)](x,k)
W[f (x)](x,k)

}
.

(B4)

The previous expression numerically avoids the derivative
of the function φ(x,k), which varies quickly for large
wavenumbers.

B2 The multivariate case

In the multivariate case, we should resolve Eq. (20), which
contains three derivatives to compute. The first one is already
done in the univariate case:

∂φi(x,k)

∂x
= (αk)β + (αk)2Im

{
W
[
xfi(x)

]
(x,k)

W
[
fi(x)

]
(x,k)

}
. (B5)

The second one is the computation of ∂
2φi (x,k)
∂k∂x

:

∂2φi(x,k)

∂k∂x
= (αβ)+ 2α2kIm

{
W
[
xfi(x)

]
(x,k)

W
[
fi(x)

]
(x,k)

}

+ (αk)2Im

{
∂

∂k

(
W
[
xfi(x)

]
(x,k)

W
[
fi(x)

]
(x,k)

)}
. (B6)

For that, we should develop ∂
∂k

(
W[xfi (x)](x,k)
W[fi (x)](x,k)

)
:

∂

∂k

(
W
[
xfi(x)

]
(x,k)

W
[
fi(x)

]
(x,k)

)
=

1
W
[
fi(x)

]
(x,k)

∂W
[
xfi(x)

]
(x,k)

∂k
−

W
[
xfi(x)

]
(x,k)

W
[
fi(x)

]
(x,k)2

∂W
[
fi(x)

]
(x,k)

∂k
. (B7)

We calculate each derivative:

∂W
[
fi(x)

]
(x,k)

∂k
=

(
1
√
k

∂
√
k

∂k

)
W
[
fi(x)

]
(x,k)

+
√
αk

+∞∫
−∞

f (η)
∂

∂k

[
ψ∗(αk(η− x))

]
dη

=

(
1

2k

)
W
[
fi(x)

]
(x,k)+

√
αk

+∞∫
−∞

f (η)α(η− x)ψ ′
∗
(αk(η− x))dη

=

(
1

2k

)
W
[
fi(x)

]
(x,k)+

√
αk

+∞∫
−∞

f (η)α(η− x)(iβ +αk(η− x))ψ∗

(αk(η− x))dη =
(

1
2k

)
W
[
fi(x)

]
(x,k)

+
√
αk

+∞∫
−∞

[(
iβ −α2kx2

)
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+

(
−iβα+ 2α2kx

)
η

−

(
α2k

)
η2
]
f (η)ψ∗(αk(η− x))dη

=

(
1

2k
+ iβαx−α2kx2

)
W
[
fi(x)

]
(x,k)

+

(
2α2kx− iβα

)
W
[
xfi(x)

]
(x,k)

−

(
α2k

)
W
[
x2fi(x)

]
(x,k).

We find a general formulation with p = 0 . . . N − 2:

∂W
[
fi(x)

]
(x,k)

∂k
=

(
1

2k
+ iβαx− 2α2kx2

)
W
[
xpfi(x)

]
(x,k)

+

(
2α2kx− iβα

)
W
[
xp+1fi(x)

]
(x,k)

−

(
α2k

)
W
[
xp+2fi(x)

]
(x,k). (B8)

The third one is the computation of ∂
3φi (x,k)

∂k2∂x
:

∂3φi(x,k)

∂k2∂x
= 2α2Im

{
W
[
xfi(x)

]
(x,k)

W
[
fi(x)

]
(x,k)

}

+ 4α2kIm

{
∂

∂k

(
W
[
xfi(x)

]
(x,k)

W
[
fi(x)

]
(x,k)

)}

+ (αk)2Im

{
∂2

∂k2

(
W
[
xfi(x)

]
(x,k)

W
[
fi(x)

]
(x,k)

)}
, (B9)

with

∂2

∂k2

(
W
[
xfi(x)

]
(x,k)

W
[
fi(x)

]
(x,k)

)
=

1
W
[
fi(x)

]
(x,k)

∂2W
[
xfi(x)

]
(x,k)

∂k2

−
W
[
xfi(x)

]
(x,k)

W
[
fi(x)

]
(x,k)2

∂2W
[
fi(x)

]
(x,k)

∂k2

−
2

W
[
fi(x)

]
(x,k)2

∂W
[
fi(x)

]
(x,k)

∂k

∂W
[
xfi(x)

]
(x,k)

∂k

and

∂2W
[
xpfi(x)

]
(x,k)

∂k2 =

(
−

1
2k2 −α

2x2
)

W
[
xpfi(x)

]
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(
2α2x

)
W
[
xp+1fi(x)

]
(x,k)−

(
α2
)

W
[
xp+2fi(x)

]
(x,k)

+

(
1

2k
+ iβαx−α2kx2

)
∂W

[
xpfi(x)

]
(x,k)

∂k

+

(
2α2kx− iβα

)
∂W

[
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]
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.
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Figure B1. Steps of determining the local wavenumber K(x) using the wavelet univariate ridge analysis of the velocity of the Olivet (3)
reach, represented in the four panels. (a) The phase function φ(x,k); (b) the power’s cone of influence of the wavelet to characterize the
region where there is a maximum variability of the velocity in the Neperian logarithm; (c) the function ∂φ

∂x
; (d) the function k.
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