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Accurate and quantitative information on soil properties of each and every location is essential for site specific sustainable management of land resources. A study was conducted to predict the different key soil properties of Northern Karnataka as per GlobalSoilMap specifications using Quantile Regression Forest (QRF) Model. Along with Sentinel-2 data, terrain attributes such as elevation, slope, aspect, topographic wetness index, topographic position index, plan and profile curvature, multi-resolution index of valley bottom flatness, multi-resolution ridge top flatness and vegetation factors like NDVI and EVI were used as covariates. Equal-area quadratic splines were fitted to soil profile datasets to estimate soil properties viz. pH, OC, CEC, clay, sand, silt, field capacity and permanent wilting point at six standard soil depths (0-5, 5-15, 15-30,30-60, 60-100 and 100-200 cm) as per GlobalSoilMap specifications. The coefficient of determination (R 2 ), mean error (ME) and root mean square error (RMSE) were calculated in order to assess model performance. Prediction interval coverage percentage (PICP) was calculated to evaluate the associated uncertainty predictions.

The predicted soil properties are reliable with minimum errors and the QRF model captured maximum variability for most of the soil properties.

Introduction

Soil properties are assessed through resource inventorisation with the main objective to delineate areas which need uniform management practices and provide users with information on soil properties. Assessment of spatial distribution of soil properties for each location is important for site-specific land management, land evaluation and land suitability analysis [START_REF] Gessler | Modeling soillandscape and ecosystem properties using terrain attributes[END_REF][START_REF] Jackson | Spatial soil information systems and spatial Soil inference systems: perspectives for digital soil mapping[END_REF]. Although several spatial soil databases are developed throughout the world, they are neither exhaustive nor precise enough for ensuring enlightened decisions. For example, though digitized soil maps are available for most of the world [START_REF] Grunwald | Digital soil mapping and modeling at continental scales: Finding solutions for global issues[END_REF], those information are at very small scale (1:1 million or coarser) for many areas and do not adequately represent soil variability in a format that is useful for a non-pedologists [START_REF] Sanchez | Digital soil map of the world[END_REF]. Digital soil mapping (DSM) represents a ground-breaking solution compared to conventional soil survey by its ability to exploit large sets of spatial data, to produce uncertainty estimates associated with soil predictions and can be revised once new data are collected [START_REF] Jackson | Spatial soil information systems and spatial Soil inference systems: perspectives for digital soil mapping[END_REF]. Soil database generated through field sampling and laboratory analysis are used to feed a DSM model that predicts soil properties in areas not sampled. Digital soil maps also provide the uncertainties associated with such predictions. The overall uncertainty of the prediction is estimated by combining uncertainties of input data, spatial inference, and soil functions (Dharumarajan et al., 2019a). Uncertainties are essential for understanding and dealing with risk in decision-making.

DSM has moved from a largely academic towards an operational activity through GlobalSoilMap project (http://www.globalsoilmap.net/). The project aims to map the several key soil properties of globe onto a three-dimensional grid at fine spatial resolution with local uncertainty estimates [START_REF] Arrouays | GlobalSoilMap: towards a fine-resolution global grid of soil properties[END_REF]. The first versions of GlobalSoilMap products have already been produced in various countries [START_REF] Mulder | National versus global modelling the 3D distribution of soil organic carbon in mainland France[END_REF][START_REF] Grundy | Soil and landscape grid of Australia[END_REF][START_REF] Adhikari | Constructing a soil class map of Denmark based on the FAO legend using digital techniques[END_REF][START_REF] Poggio | 3D mapping of soil texture in Scotland[END_REF] with spatial inference functions using globally available landscape parameters such as Digital Elevation Models, multispectral remote sensing, geology maps, and legacy soil maps as inputs.

In India, ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS&LUP), Nagpur has recently launched an ambitious program called "IndianSoilGrids" with the objective to develop soil properties map as per GlobalSoilMap Specifications. In recent past, effort has been made to compile the legacy soil data in the form of harmonized databases and stored in NBSS&LUP Geoportal. Besides pursuing the storage effort, IndianSoilGrids project paved the ways to exploit legacy soil data through DSM models. In this context, the present exploratory study was carried out to produce a fine resolution map of major GlobalSoilMap soil properties such as organic carbon, pH, CEC, clay, sand, silt, field capacity and permanent wilting point in part of Northern Karnataka Plateau region representing semi arid tropics of south India using Quantile Regression Forest Model techniques.

Materials and methods

Study area

The present study was carried out in part of Koppal and Gadag districts of Northern Karnataka Plateau (Fig. 1). The study area is located in 14° 56' to 15 ° 37' N latitude and 75 °23' to 76 ° 25' longitude with an area of 3655 km 2 . The study region represents hot-semi arid climate with rainfall range of 600-750 mm and potential evapo-transpiration (PET) of 1600-1700 mm. The average annual rainfall is 672 mm. This area includes mountainous, expansive plateau with substantial area is underlined by basalts with continuation of Deccan trap of Maharashtra. The major area comes under rainfed cultivation with crops like Sorghum, Pigeon pea and Pearl millet. The major soils represented by shallow to deep vertisols, alfisols and inceptisols.

Sampling methodology

The profiles studied under Sujala III (Karnataka Watershed Development Project II) project were used for mapping of soil properties. Sixty soil profiles were studied upto 2m or hard rock based on variability in landform and land use. The soil horizons were demarcated and from the representative soil horizons, soil samples were collected for laboratory analysis.

Collected soil samples were air dried in shade and passed through 2 mm sieve by gently ground with a wooden mallet. The samples were analysed for particle-size distribution following International Pipette method [START_REF] Richards | Diagnosis and improvement of saline and alkali soils[END_REF], pH and electrical conductivity (EC) in 1:2.5 soil:water suspension [START_REF] Jackson | Spatial soil information systems and spatial Soil inference systems: perspectives for digital soil mapping[END_REF]. Organic carbon was estimated by [START_REF] Walkley | An estimation of the method for determining soil organic matter and a proposed modification of the chromic acid titration method[END_REF] method. The cation exchange capacity (CEC) and exchangeable cations were determined as described by [START_REF] Jackson | Soil Chemical Analysis[END_REF]. Field capacity (FC) and permanent wilting point (PWP) were estimated using pressure plate apparatus [START_REF] Richards | Physical processes determining water loss from soil[END_REF]. The profile soil properties were pre-processed by harmonization of soil depth interval (GlobalSoilMap depth specification) predictions using equal-area spline functions [START_REF] Bishop | Modelling soil attribute depth functions with equal-area quadratic smoothing splines. A comparison of prediction methods for the creation of field-extent soil property maps[END_REF].

Environmental covariates and models used

A Digital elevation model (DEM) with 30 m resolution was obtained from SRTM and processed using ArcGIS10 data management tool box. The primary and secondary derivates of DEM like elevation, slope, aspect, curvatures (plan and profile), topographic wetness Index (TWI) and topographic position index (TPI), LS factor, Multi-resolution Ridge Top Flatness (MrRTF) and Multi-resolution Index of Valley Bottom Flatness (MrVBF) were derived by using Saga-GIS 6.3.0 version. Along with DEM attributes, all the bands of Sentinel-2 imagery (13 bands), Normalized Difference Vegetation Index (NDVI) and Enhanced vegetation index (EVI) (MOD13Q1) were used as covariates for prediction of soil properties (Table .1). The environmental variables were intersected for all the sampling points for prediction of soil properties.

Fig.1. Study area with profile locations

Table.1. Different covariates used in the model

Quantile regression forest (QRF) model was used for prediction of soil properties and uncertainty estimates in the study area. QRF is an extension of Random forest model and the advantage of QRF over Random Forest model (RFM) is for each node in each tree, RFM keeps only the mean of the observations that fall into this node and neglects all other information whereas QRF keeps the value of all observations in this node, and assesses the conditional distribution based on the information [START_REF] Meinshausen | Quantile regression forests[END_REF][START_REF] Vaysse | Using quantile regression forest to estimate uncertainty of digital soil mapping products[END_REF]Dharumarajan et al., 2019a). For the present study, ranger package was used for running the QRF algorithm in R environment. Ranger package helps to identify the best RF properties for running the model. Ten folds cross validation techniques with 20 times repetition was used to evaluate the performance of QRF model. The performance of QRF was evaluated using indicators such as Coefficient of determination (R 2 ), Root Mean Square Error (RMSE), mean error (ME). Prediction interval coverage percentage (PICP) was used to evaluate the uncertainty of prediction. Sentinel-2 13 bands of Sentinel 2 data 10-60m
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Results and Discussion

Summary statistics of soil properties

Summary of the soil properties are presented in Table . 2. The soil pH ranged from 4.7 to 9.9 with a mean and standard deviation of 8.2 and 1.1, respectively. The organic carbon content ranged between 0.11 and 1.16% with mean of 0.5 % and standard deviation of 0.23%.

The organic carbon skewed positively whereas pH skewed negatively showed that asymmetrical distribution. The higher variability in pH is mainly attributed to soil pedological factors and land management. The soil hydraulic properties such as field capacity and permanent wilting point were ranged from 6 to 60% and 1.5 to 43.7% with mean and standard deviation of 29.2, 18.5 and 12.2, 10.5 % respectively. Cation exchange capacity of the soil varied from 2.0 to 80.9 cmol(+) kg -1 with mean and SD of 32.3 and 20.5 cmol(+) kg Soil hydraulic properties are important for irrigation scheduling and proper landuse planning (Dharumarajan et al., 2019b). Soil hydraulic properties such as field capacity and permanent wilting point determines the availability and retention of the water for crop growth. Field capacity and permanent wilting point were well predicted by QRF model.

Compared to field capacity (R 2 =30-38%), permanent wilting point was predicted with high accuracy (R 2 =41-49%). [START_REF] Hong | Predicting and mapping soil available water capacity in Korea[END_REF] recorded digital soil mapping approach for prediction of soil hydraulic property with maximum accuracy (R 2 -61%) whereas Román Dobarco (2019) reported prediction accuracy (R 2 ) of FC and PWP were 21 and 29 % respectively.

Prediction interval coverage probability (PICP) is an indication of efficiency of uncertainty measurements. The present predictions found that the PICP values ranged from 83.2 to 92.2 %. Overall, the prediction performance of this model was high for soil hydraulic properties. Higher sample density is required for better results in tropical countries where soil pattern is complex due to the geological uplift than other regions [START_REF] Junior | A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment[END_REF].

Importance of predictor variables for predicting soil properties

RFM model estimates the importance of covariates based on how best or worse the prediction would be if one or more variable is removed and also it protects elimination of good predictor variables which are important for the model [START_REF] Prasad | Newer classification and regression tree techniques: bagging and random forests for ecological prediction[END_REF]. Figures 3a-h shows the variable importance rankings of Random Forest model for pH, OC, clay, sand, silt, CEC, FC and PWP. Elevation is emerged as top predictor for prediction of clay and organic carbon.

MRVBF and TWI are ranked as most important predictor for prediction of pH and PWP.

Different bands of Sentinel -2 imagery occupies in the top position for prediction of majority of soil properties. Different researchers recorded usefulness of Sentinel-2 imageries in prediction of different soil properties [START_REF] Castaldi | Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands[END_REF][START_REF] Gholizadeh | Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging[END_REF][START_REF] Vaudour | Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems[END_REF]. Recently, [START_REF] Gomez | Use of Sentinel-2 Time-Series Images for Classification and Uncertainty Analysis of Inherent Biophysical Property: Case of Soil Texture Mapping[END_REF] showed good discrimination ability of time series

Sentinel-2 images in identifying different texture class and associated uncertainty. 32.6 % respectively. High sand content recorded in North-eastern part of study area and high clay and silt content recorded in north-western part. The high sand content of surface soils in North-eastern part might be due to severity of the erosion where finer particles are moved into the low lying areas. The predicted cation exchange capacity varied from 4.7 -62.3 % and recorded low CEC in north-eastern part. Predicted hydraulic properties viz., field capacity and permanent wilting point ranged from 9.1-41 % and 3.2-29.5% respectively. The spatial prediction of soil properties suggested that distribution of soil properties on the surface are highly variable due to variations in environmental factors, land management and land use. The spatial resolution of the maps helps to assess and monitor the soil health and preparation of proper land use plan.

Spatial prediction of soil properties

Conclusion

The prediction of soil properties and uncertainty by QRF model was reasonable and varied from 8-51% for surface and 0-56% for subsoil. Except pH and OC, the present model predicted better for most of the soil properties compared to previous studies. Weak variations in soil properties, mixed lithologic occurrence and sparse sample density are linked with performance of the model. The data augmentation certainly helps in reducing the uncertainty and over fitting and to improve model accuracy further. The prediction can also be improvised by increasing the environment covariates such as geology map and climatic datasets.

Laurent Ruiz, Indo-French Cell for Water Sciences, Bangalore for his guidance in Indian digital soil mapping programme. 
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Performance of Quantile Regression Forest Model in predicting soil properties

  The performance of Quantile Regression Forest model was evaluated by calculating statistical indicators viz., Coefficient of determination (R 2 ), Mean error (ME) and Root Mean Square Error (RMSE). The cross validation results (Table3and Fig.2a-h) showed that the combination of different covariates explained the variability's of predicted soil properties viz., pH, organic carbon, CEC, clay, sand, silt, FC and PWP. The model could capture low to medium variability (R 2 =0-56%) while predicting pH, Organic carbon and CEC for different

	Table2. Statistical results of soil properties Properties Mean Min pH 8.2 4.7 3.2 Dharumarajan et al., 2019a). The prediction of particle size quantities viz., clay, sand and silt Max Std dev. Skewness Kurtosis 9.9 1.1 -1.2 0.9
	OC (%)	0.5	0.11	1.16	0.23	0.5	-0.35
	Clay(%) content were fairly good. Prediction accuracy for sand is 41-49 % with RMSE of 15.4-42.6 4.1 75.8 18.2 -0.1	-0.8
	Sand(%)	41.3	8.7	87.6	22	0.3	-1
	Silt(%) 17.9%.R 2 of silt varied from 29 to 49 %for different depth intervals. Similar results were 16.1 4.7 40.7 6.9 0.6	0.3
	CEC (C mol(+) kg -1 ) FC(%) observed by Akpa et al. (2014) who recorded R 2 value of 16-56 % for prediction of particle 32.3 2 80.9 20.5 0.3 29.2 6 60 12.2 0.3	-1.1 -0.6
	PWP(%)	18.5	1.5	43.7	10.5	0.5	-0.6

-1 

respectively. Except pH and silt content, all other soil properties had registered negative kurtosis. Similar way except, clay content and pH, all other properties showed positive skewness. The correlation analysis showed that field capacity and permanent wilting point has significant positive correlation with clay and silt and negative correlation with sand content. depth ranges. Among these soil properties, CEC prediction was good compared to pH and Organic carbon. The present model explained 31-56 % of variation for prediction of CEC in different depth intervals. Similar results were observed by different researchers

(Gallo et al., 

2018, R 2 =40%; Chagas et al., 2018, R 2 =47%;

[START_REF] Ghaemi | Using satellite data for soil cation exchange capacity studies[END_REF]

, R 2 =45-65%). In case of pH, only 8-23 % of variability was captured by the model. The poor prediction may be attributed to more variability in pH influenced by soil intrinsic (pedogneic) and extrinsic (land management) factors. Like, pH, the performance of the model for prediction of organic carbon is also very low (R 2 =0-27%). The poor performance may be related to the low levels of soil organic carbon compared to soils having high organic carbon

[START_REF] Lo Seen | Soil carbon stocks, deforestation and land-cover changes in the Western Ghats biodiversity hotspot (India)[END_REF][START_REF] Junior | A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment[END_REF][START_REF] Gastaldi | Mapping the occurrence and thickness of soil horizons within soil profiles[END_REF][START_REF] Dharumarajan | Spatial prediction of major soil properties using Random Forest techniques -A case study in semi-arid tropics of South India[END_REF] 

size fractions in Nigeria using RFM whereas

[START_REF] Santra | Digital soil mapping of sand content in arid western India through geostatistical approaches[END_REF] 

found only 21-28 % of variation in sand content captured by Random forest algorithm.

Table . 3 Performance of Quantile Regression Forest model for prediction of soil

 . 

		15-30 cm	-0.04 ± 0.2	7.79 ± 0.15	37 ± 3	86.0 ± 1.6
		30-60cm	0.26 ± 0.16	8.49 ± 0.15	38 ± 2	85.7 ± 2.1
		60-100 cm 0.66 ± 0.37	10.1 ± 0.41	38 ± 5	89.6 ± 1.5
		100-200cm -0.29 ± 0.31	10.7 ± 0.41	40 ± 5	84.6 ± 2.4
	PWP	0-5 cm	0.26 ± 0.21	6.8 ± 0.2	41 ± 3	92.0 ± 1.5
	(%)	5-15 cm	0.3 ± 0.21	6.74 ± 0.25	41 ± 4	91.9 ± 1.4
		15-30 cm	0.3 ± 0.16	6.31 ± 0.13	43 ± 2	89.9 ± 1.7
		30-60cm	0.50 ± 0.17	6.91 ± 0.16	47 ± 3	91.6 ± 2.1
		Mean error 60-100 cm 0.79 ± 0.19	RMSE 8.62 ± 0.39	R 2 (%) 42 ± 5	PICP 90.8 ± 1.8
	pH	0-5 cm 100-200cm 0.84 ± 0.37 -0.19± 0.02	0.96 ± 0.02 8.89 ± 0.53	10± 5 49 ± 6	88.7± 1.3 90.6 ± 2.7
		5-15 cm	-0.18± 0.02	0.94± 0.03	13± 6	89.0 ± 0.78
		15-30 cm	-0.18± 0.02	0.95± 0.03	8± 9	90.0± 1.1
		30-60cm	-0.14± 0.03	1.00± 0.03	9± 6	88.3 ± 2.0
		60-100 cm -0.3± 0.02	1.02± 0.02	23±3	89.3 ±2.1
		100-200cm -0.23± 0.01	0.88± 0.03	4±8	86.4 ± 3.2
	OC	0-5 cm	-0.02 ± 0.0	0.22 ± 0.01	08 ± 6	87.5 ± 1.7
	(%)	5-15 cm	-0.02± 0.01	0.22± 0.01	07 ± 5	86.2 ± 1.9
		15-30 cm	0.0 ± 0.00	0.21 ± 0.01	10 ± 4	86.8 ± 2.3
		30-60cm	0.02 ± 0.01	0.20± 0.01	27± 4	88.6 ± 1.5
		60-100 cm 0.03± 0.01	0.19± 0.00	0± 2	89.4 ± 1.7
		100-200cm 0.03± 0.00	0.20± 0.00	5± 3	84.8 ± 2.1
	Clay	0-5 cm	0.19 ± 0.2	6.10 ± 0.29	37 ± 6	88.4 ± 2.3
	(%)	5-15 cm	2 0.22 ± 0.17	6.04 ± 0.22	39 ± 5	88.3 ± 2.0
		15-30 cm	0.59 ± 0.16	6.09 ± 0.20	39 ± 4	88.2 ± 1.2
		30-60cm	-0.04 ± 0.51	12.39 ± 0.42 43 ± 4	87.2 ± 2.3
		60-100 cm 0.0 ± 0.09	4.95 ± 0.1	18 ± 3	88.3 ±2.1
		100-200cm 0.05 ± 0.21	5.2 ± 0.22	0 ± 8	83.2 ± 1.6
	Sand	0-5 cm	1.54 ± 0.56	17.24 ± 0.59 48 ± 4	86.6 ± 1.7
	(%)	5-15 cm	2.25 ± 0.56	16.92 ± 0.72 49 ±4	87.6 ± 2.0
		15-30 cm	1.37 ± 0.44	16.10 ± 0.34 45 ± 2	85.3 ± 1.4
		30-60cm	40.04 ± 0.45	17.86 ± 0.43 42 ± 3	92.2 ± 1.2
		60-100 cm -0.24 ± 0.52	15.43 ± 1.18 45 ± 9	93.6 ± 1.3
		100-200cm 0.1 ± 0.92	16.66 ± 0.94 41± 7	88 ± 0.0
	Silt	0-5 cm	-0.20 ± 0.39	13.47 ± 0.5	49 ± 4	91.8 ± 1.5
	(%)	5-15 cm	0.05 ± 0.32	13.90 ± 0.44 45 ± 4	90.8 ± 1.6
		15-30 cm	-0.08 ± 0.31	13.45 ± 0.40 40 ± 4	89.5 ± 1.2
		30-60cm	0.57± 0.17	6.30 ± 0.21	29 ± 5	84.0 ± 1.8
		60-100 cm 0.53 ± 0.49	11.78 ± 0.58 52± 5	90.8 ± 1.3
		100-200cm 0.57± 0.17	6.30 ± 0.21	29 ± 5	84.0 ± 1.8
	CEC	0-5 cm	1.26 ± 0.27	13.48 ± 0.66 51 ± 5	87.6 ± 1.2
	(C	5-15 cm	1.19 ± 0.51	13.47 ± 0.42 51 ± 3	86.9 ± 1.5
	mol	15-30 cm	1.03 ± 0.38	12.27 ± 0.37 56 ± 3	87.6 ± 1.9
	kg -1 )	30-60cm	1.19 ± 0.67	14.88 ± 0.55 43 ± 4	87.1 ± 2.3
		60-100 cm 1.52 ± 0.61	15.98 ± 0.66 40 ± 5	88.8 ± 2.3
		100-200cm 1.55 ± 0.69	17.1 ± 0.71	31 ±6	87.1 ± 2.3
	FC	0-5 cm	0.03 ± 0.25	8.42 ± 0.29	36 ± 4	88 ± 2.9
	(%)	5-15 cm	0.12 ± 0.28	8.69 ± 0.21	30 ± 3	88.0 ± 2.5

Table . 4. Summary statistics of predicted soil properties

 . 

		15-30 cm	39.9	7.3	64.1	8.6	0.0	0.2
		30-60cm	45.7	8.5	66.5	8.6	0.1	0.6
		60-100 cm	15.2	8.0	19.0	2.4	-1.3	-0.2
		100-200cm	17.2	12.1	21.7	1.7	1.6	-0.5
	Sand	0-5 cm	45.5	17.8	82.6	15.4	-0.7	0.7
	(%)	5-15 cm	45.3	17.7	82.9	15.0	-0.8	0.7
		15-30 cm	41.7	15.5	76.5	13.5	-1.0	0.5
		30-60cm	36.1	13.4	80.5	11.9	-0.6	0.3
		60-100 cm	38.4	12.4	57.8	13.9	-1.3	-0.3
		100-200cm	38.0	11.2	62.6	15.6	-1.4	-0.4
	Silt	0-5 cm	36.5	7.7	61.9	12.0	-0.8	-0.2
	(%)	5-15 cm	16.7	6.2	32.6	5.6	-0.7	0.2
		15-30 cm	17.5	7.1	35.6	6.4	-1.0	0.3
		30-60cm	15.8	8.7	27.5	4.2	-0.4	0.3
		60-100 cm	46.9	20.2	69.0	10.7	-1.2	0.4
		100-200cm	45.0	24.1	71.4	12.9	-1.5	0.3
	CEC	0-5 cm	27.5	4.7	62.3	14.0	-1.3	0.1
	(C	5-15 cm	27.5	5.2	62.3	14.5	-1.3	0.2
	mol	15-30 cm	29.9	5.0	64.0	14.6	-1.3	0.2
	kg -1 )	30-60cm	32.9	7.0	62.3	13.3	-1.2	0.1
		60-100 cm	32.4	10.6	65.3	14.9	-1.6	0.1
		100-200cm	31.0	13.9	54.5	14.7	-1.5	0.3
	FC							
	(%)							
			Mean Min	Max		stdev	kurtosis	skewness
	pH	0-5 cm	8.1	5.5	9.2	0.6	2.2	-1.5
		5-15 cm	8.2	5.9	9.2	0.4	1.8	-0.8
		15-30 cm	8.2	6.0	9.2	0.3	5.7	-1.6
		30-60cm	8.2	6.4	9.3	0.4	3.8	-0.9
		60-100 cm	8.5	6.5	9.2	0.3	5.3	-1.5
		100-200cm	8.6	8.0	9.1	0.2	1.7	-1.4
	OC	0-5 cm	0.61	0.35	0.83	0.08	0.9	1.3
	(%)	5-15 cm	0.60	0.40	0.84	0.07	3.0	1.7
		15-30 cm	0.59	0.37	0.83	0.10	-0.5	0.5
		30-60cm	0.59	0.28	0.80	0.11	-0.7	0.0
		60-100 cm	0.4	0.3	0.6	0.1	-0.9	-0.1
		100-200cm	0.4	0.3	0.6	0.0	9.9	0.9
	Clay	0-5 cm	16.2	5.5	32.6	5.1	-1.0	0.0
	(%)	5-15 cm	36.6	7.7	62.1	11.3	-0.7	-0.2
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