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Abstract 10 

Accurate and quantitative information on soil properties of each and every location is 11 

essential for site specific sustainable management of land resources. A study was conducted 12 

to predict the different key soil properties of Northern Karnataka as per GlobalSoilMap 13 

specifications using Quantile Regression Forest (QRF) Model.  Along with Sentinel-2 data, 14 

terrain attributes such as elevation, slope, aspect, topographic wetness index, topographic 15 

position index, plan and profile curvature, multi-resolution index of valley bottom flatness, 16 

multi-resolution ridge top flatness and vegetation factors like NDVI and EVI were used as 17 

covariates. Equal-area quadratic splines were fitted to soil profile datasets to estimate soil 18 

properties viz. pH, OC, CEC, clay, sand, silt, field capacity and permanent wilting point at six 19 

standard soil depths (0-5, 5-15, 15-30,30-60, 60-100 and 100-200 cm) as per GlobalSoilMap 20 

specifications. The coefficient of determination (R2), mean error (ME) and root mean square 21 

error (RMSE) were calculated in order to assess model performance. Prediction interval 22 

coverage percentage (PICP) was calculated to evaluate the associated uncertainty predictions. 23 

The predicted soil properties are reliable with minimum errors and the QRF model captured 24 

maximum variability for most of the soil properties. 25 
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 28 

1. Introduction 29 

 Soil properties are assessed through resource inventorisation with the main objective 30 

to delineate areas which need uniform management practices and provide users with 31 

information on soil properties. Assessment of spatial distribution of soil properties for each 32 

location is important for site-specific land management, land evaluation and land suitability 33 

analysis (Gessler et al., 2000; McBratney et al., 2003). Although several spatial soil databases 34 

are developed throughout the world, they are neither exhaustive nor precise enough for 35 

ensuring enlightened decisions. For example, though digitized soil maps are available for 36 

most of the world (Grunwald et al., 2011), those information are at very small scale (1:1 37 

million or coarser) for many areas and do not adequately represent soil variability in a format 38 

that is useful for a non-pedologists (Sanchez et al., 2009). Digital soil mapping (DSM) 39 

represents a ground-breaking solution compared to conventional soil survey by its ability to 40 

exploit large sets of spatial data, to produce uncertainty estimates associated with soil 41 

predictions and can be revised once new data are collected (Lagacherie and McBratney, 42 

2007). Soil database generated through field sampling and laboratory analysis are used to 43 

feed a DSM model that predicts soil properties in areas not sampled. Digital soil maps also 44 

provide the uncertainties associated with such predictions. The overall uncertainty of the 45 

prediction is estimated by combining uncertainties of input data, spatial inference, and soil 46 

functions (Dharumarajan et al., 2019a). Uncertainties are essential for understanding and 47 

dealing with risk in decision-making.  48 

 DSM has moved from a largely academic towards an operational activity through 49 

GlobalSoilMap project (http://www.globalsoilmap.net/). The project aims to map the several 50 

http://www.globalsoilmap.net/
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key soil properties of globe onto a three-dimensional grid at fine spatial resolution with local 51 

uncertainty estimates (Arrouays et al., 2014). The first versions of GlobalSoilMap products 52 

have already been produced in various countries (Mulder et al., 2016; Grundy et al., 2015; 53 

Adhikari et al., 2014; Poggio & Gimona., 2017) with spatial inference functions using 54 

globally available landscape parameters such as Digital Elevation Models, multispectral 55 

remote sensing, geology maps, and legacy soil maps as inputs. 56 

 In India, ICAR-National Bureau of Soil Survey and Land Use Planning 57 

(ICAR-NBSS&LUP), Nagpur has recently launched an ambitious program called 58 

"IndianSoilGrids” with the objective to develop soil properties map as per GlobalSoilMap 59 

Specifications. In recent past, effort has been made to compile the legacy soil data in the form 60 

of harmonized databases and stored in NBSS&LUP Geoportal. Besides pursuing the storage 61 

effort, IndianSoilGrids project paved the ways to exploit legacy soil data through DSM 62 

models. In this context, the present exploratory study was carried out to produce a fine 63 

resolution map of major GlobalSoilMap soil properties such as organic carbon, pH, CEC, 64 

clay, sand, silt, field capacity and permanent wilting point in part of Northern Karnataka 65 

Plateau region representing semi arid tropics of south India using Quantile Regression Forest 66 

Model techniques. 67 

 68 

2. Materials and methods 69 

2.1 Study area 70 

 The present study was carried out in part of Koppal and Gadag districts of Northern 71 

Karnataka Plateau (Fig.1). The study area is located in 14° 56’ to 15° 37’ N latitude and 72 

75°23’ to 76° 25’ longitude with an area of 3655 km2. The study region represents hot-semi 73 

arid climate with rainfall range of 600-750 mm and potential evapo-transpiration (PET) of 74 
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1600-1700 mm. The average annual rainfall is 672 mm. This area includes mountainous, 75 

expansive plateau with substantial area is underlined by basalts with continuation of Deccan 76 

trap of Maharashtra. The major area comes under rainfed cultivation with crops like 77 

Sorghum, Pigeon pea and Pearl millet. The major soils represented by shallow to deep 78 

vertisols, alfisols and inceptisols. 79 

2.2 Sampling methodology 80 

 The profiles studied under Sujala III (Karnataka Watershed Development Project II) 81 

project were used for mapping of soil properties. Sixty soil profiles were studied upto 2m or 82 

hard rock based on variability in landform and land use. The soil horizons were demarcated 83 

and from the representative soil horizons, soil samples were collected for laboratory analysis. 84 

Collected soil samples were air dried in shade and passed through 2 mm sieve by gently 85 

ground with a wooden mallet. The samples were analysed for particle-size distribution 86 

following International Pipette method (Richards, 1954), pH and electrical conductivity (EC) 87 

in 1:2.5 soil:water suspension (Jackson, 1962). Organic carbon was estimated by Walkley 88 

and Black (1934) method. The cation exchange capacity (CEC) and exchangeable cations 89 

were determined as described by Jackson (1973). Field capacity (FC) and permanent wilting 90 

point (PWP) were estimated using pressure plate apparatus (Richards, 1956). The profile soil 91 

properties were pre-processed by harmonization of soil depth interval (GlobalSoilMap depth 92 

specification) predictions using equal-area spline functions (Bishop et al., 1999). 93 

 94 

2.3 Environmental covariates and models used 95 

 A Digital elevation model (DEM) with 30 m resolution was obtained from SRTM and 96 

processed using ArcGIS10 data management tool box. The primary and secondary derivates 97 



5 
 

of DEM like elevation, slope, aspect, curvatures (plan and profile), topographic wetness 98 

Index (TWI) and topographic position index (TPI), LS factor, Multi-resolution Ridge Top 99 

Flatness (MrRTF) and Multi-resolution Index of Valley Bottom Flatness (MrVBF) were 100 

derived by using Saga-GIS 6.3.0 version. Along with DEM attributes, all the bands of 101 

Sentinel- 2 imagery (13 bands), Normalized Difference Vegetation Index (NDVI) and 102 

Enhanced vegetation index (EVI) (MOD13Q1) were used as covariates for prediction of soil 103 

properties (Table.1). The environmental variables were intersected for all the sampling points 104 

for prediction of soil properties. 105 

 106 

Fig.1. Study area with profile locations 107 

 108 

 109 
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Table.1. Different covariates used in the model 110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 

 118 

 119 

Quantile regression forest (QRF) model was used for prediction of soil properties and 120 

uncertainty estimates in the study area. QRF is an extension of Random forest model and the 121 

advantage of QRF over Random Forest model (RFM) is for each node in each tree, RFM 122 

keeps only the mean of the observations that fall into this node and neglects all other 123 

information whereas QRF keeps the value of all observations in this node, and assesses the 124 

conditional distribution based on the information (Meinshausen, 2006; Vaysse & Lagacherie, 125 

2017; Dharumarajan et al., 2019a).  For the present study, ranger package was used for 126 

running the QRF algorithm in R environment. Ranger package helps to identify the best RF 127 

properties for running the model. Ten folds cross validation techniques with 20 times 128 

repetition was used to evaluate the performance of QRF model. The performance of QRF was 129 

evaluated using indicators such as Coefficient of determination (R2), Root Mean Square Error 130 

(RMSE), mean error (ME). Prediction interval coverage percentage (PICP) was used to 131 

evaluate the uncertainty of prediction. 132 

Predictor Source Resolution 

Elevation (m) SRTM DEM 30 m 

Slope (%) SRTM DEM 30 m 

Aspect SRTM DEM 30 m 

TPI SRTM DEM 30 m 

TWI SRTM DEM 30 m 

Plan curvature SRTM DEM 30 m 

Profile curvature SRTM DEM 30 m 

MrVBF SRTM DEM 30 m 

MrRTF SRTM DEM 30 m 

NDVI MOD13Q1(2011-2015) 250m _16 

days EVI MOD13Q1(2011-2015) 

Sentinel-2  13 bands of Sentinel 2 data 10-60m  
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3. Results and Discussion 133 

3.1 Summary statistics of soil properties 134 

Summary of the soil properties are presented in Table. 2. The soil pH ranged from 4.7 135 

to 9.9 with a mean and standard deviation of 8.2 and 1.1, respectively. The organic carbon 136 

content ranged between 0.11 and 1.16% with mean of 0.5 % and standard deviation of 0.23%. 137 

The organic carbon skewed positively whereas pH skewed negatively showed that 138 

asymmetrical distribution. The higher variability in pH is mainly attributed to soil 139 

pedological factors and land management. The soil hydraulic properties such as field capacity 140 

and permanent wilting point were ranged from 6 to 60% and 1.5 to 43.7% with mean and 141 

standard deviation of 29.2, 18.5 and 12.2, 10.5 % respectively. Cation exchange capacity of 142 

the soil varied from 2.0 to 80.9 cmol(+) kg-1with mean and SD of 32.3 and 20.5 cmol(+) kg-1 143 

respectively. Except pH and silt content, all other soil properties had registered negative 144 

kurtosis. Similar way except, clay content and pH, all other properties showed positive 145 

skewness.  The correlation analysis showed that field capacity and permanent wilting point 146 

has significant positive correlation with clay and silt and negative correlation with sand 147 

content. 148 

Table2. Statistical results of soil properties 149 

Properties Mean Min Max Std dev. Skewness Kurtosis 

pH 8.2 4.7 9.9 1.1 -1.2 0.9 

OC (%) 0.5 0.11 1.16 0.23 0.5 -0.35 

Clay(%) 42.6 4.1 75.8 18.2 -0.1 -0.8 

Sand(%) 41.3 8.7 87.6 22 0.3 -1 

Silt(%) 16.1 4.7 40.7 6.9 0.6 0.3 

CEC (C mol(+) kg-1) 32.3 2 80.9 20.5 0.3 -1.1 

FC(%) 29.2 6 60 12.2 0.3 -0.6 

PWP(%) 18.5 1.5 43.7 10.5 0.5 -0.6 

 150 

 151 
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 152 

3.2 Performance of Quantile Regression Forest Model in predicting soil properties 153 

The performance of Quantile Regression Forest model was evaluated by calculating 154 

statistical indicators viz., Coefficient of determination (R2), Mean error (ME) and Root Mean 155 

Square Error (RMSE). The cross validation results (Table 3 and Fig.2a-h) showed that the 156 

combination of different covariates explained the variability’s of predicted soil properties 157 

viz., pH, organic carbon, CEC, clay, sand, silt, FC and PWP. The model could capture low to 158 

medium variability (R2=0-56%) while predicting pH, Organic carbon and CEC for different 159 

depth ranges. Among these soil properties, CEC prediction was good compared to pH and 160 

Organic carbon. The present model explained 31-56 % of variation for prediction of CEC in 161 

different depth intervals. Similar results were observed by different researchers (Gallo et al., 162 

2018, R2=40%; Chagas et al., 2018, R2=47%; Ghaemi et al., 2013, R2=45-65%).  In case of 163 

pH, only 8-23 % of variability was captured by the model. The poor prediction may be 164 

attributed to more variability in pH influenced by soil intrinsic (pedogneic) and extrinsic 165 

(land management) factors. Like, pH, the performance of the model for prediction of 166 

organic carbon is also very low (R2=0-27%). The poor performance may be related to the low 167 

levels of soil organic carbon compared to soils having high organic carbon (Lo seen et al., 168 

2010; Carvalho junior et al., 2014; Gastaldi et al., 2012; Dharumarajan et al., 2017; 169 

Dharumarajan et al., 2019a). The prediction of particle size quantities viz., clay, sand and silt 170 

content were fairly good. Prediction accuracy for sand is 41-49 % with RMSE of 15.4-171 

17.9%.R2 of silt varied from 29 to 49 %for different depth intervals. Similar results were 172 

observed by Akpa et al. (2014) who recorded R2 value of 16-56 % for prediction of particle 173 

size fractions in Nigeria using RFM whereas Santra et al. (2017) found only 21-28 % of 174 

variation in sand content captured by Random forest algorithm.  175 
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 176 

 177 

Table. 3 Performance of Quantile Regression Forest model for prediction of soil 178 

properties  179 

 Mean error RMSE R2(%) PICP 

pH 0-5 cm -0.19± 0.02 0.96 ± 0.02 10± 5 88.7± 1.3 

5-15 cm -0.18± 0.02 0.94± 0.03   13± 6 89.0 ± 0.78 

15-30 cm -0.18± 0.02 0.95± 0.03 8± 9 90.0± 1.1 

30-60cm -0.14± 0.03 1.00± 0.03 9± 6 88.3 ± 2.0 

60-100 cm -0.3± 0.02 1.02± 0.02 23±3 89.3 ±2.1 

100-200cm -0.23± 0.01 0.88± 0.03 4±8 86.4 ± 3.2 

OC 

(%) 

0-5 cm -0.02 ± 0.0 0.22 ± 0.01 08 ± 6 87.5 ± 1.7 

5-15 cm -0.02± 0.01 0.22± 0.01 07 ± 5 86.2 ± 1.9 

15-30 cm 0.0 ± 0.00   0.21 ± 0.01 10 ± 4 86.8 ± 2.3 

30-60cm 0.02 ± 0.01   0.20± 0.01   27± 4 88.6 ± 1.5 

60-100 cm 0.03± 0.01   0.19± 0.00 0± 2 89.4 ± 1.7 

100-200cm 0.03± 0.00 0.20± 0.00 5± 3 84.8 ± 2.1 

Clay 

(%) 

0-5 cm 0.19 ± 0.2 6.10 ± 0.29 37 ± 6 88.4 ± 2.3 

5-15 cm 2 0.22 ± 0.17   6.04 ± 0.22   39 ± 5 88.3 ± 2.0 

15-30 cm 0.59 ± 0.16   6.09 ± 0.20 39 ± 4 88.2 ± 1.2 

30-60cm -0.04 ± 0.51 12.39 ± 0.42 43 ± 4 87.2 ± 2.3 

60-100 cm 0.0 ± 0.09 4.95 ± 0.1 18 ± 3 88.3 ±2.1 

100-200cm 0.05 ± 0.21 5.2 ± 0.22 0 ± 8 83.2 ± 1.6 

Sand 

(%) 

0-5 cm 1.54 ± 0.56 17.24 ± 0.59 48 ± 4 86.6 ± 1.7 

5-15 cm 2.25 ± 0.56 16.92 ± 0.72 49 ±4 87.6 ± 2.0 

15-30 cm 1.37 ± 0.44 16.10 ± 0.34 45 ± 2 85.3 ± 1.4 

30-60cm 40.04 ± 0.45 17.86 ± 0.43 42 ± 3 92.2 ± 1.2 

60-100 cm -0.24 ± 0.52 15.43 ± 1.18 45 ± 9 93.6 ± 1.3 

100-200cm 0.1 ± 0.92 16.66 ± 0.94 41± 7 88 ± 0.0 

Silt 

(%) 

0-5 cm -0.20 ± 0.39 13.47 ± 0.5 49 ± 4 91.8 ± 1.5 

5-15 cm 0.05 ± 0.32 13.90 ± 0.44 45 ± 4 90.8 ± 1.6 

15-30 cm -0.08 ± 0.31 13.45 ± 0.40 40 ± 4 89.5 ± 1.2 

30-60cm 0.57± 0.17 6.30 ± 0.21 29 ± 5 84.0 ± 1.8 

60-100 cm 0.53 ± 0.49 11.78 ± 0.58 52± 5 90.8 ± 1.3 

100-200cm 0.57± 0.17 6.30 ± 0.21 29 ± 5 84.0 ± 1.8 

CEC 

(C 

mol 

kg-1) 

0-5 cm 1.26 ± 0.27 13.48 ± 0.66 51 ± 5 87.6 ± 1.2 

5-15 cm 1.19 ± 0.51 13.47 ± 0.42 51 ± 3 86.9 ± 1.5 

15-30 cm 1.03 ± 0.38 12.27 ± 0.37 56 ± 3 87.6 ± 1.9 

30-60cm 1.19 ± 0.67 14.88 ± 0.55 43 ± 4 87.1 ± 2.3 

60-100 cm 1.52 ± 0.61 15.98 ± 0.66 40 ± 5 88.8 ± 2.3 

100-200cm 1.55 ± 0.69 17.1 ± 0.71 31 ±6 87.1 ± 2.3 

FC 

(%) 

0-5 cm 0.03 ± 0.25 8.42 ± 0.29 36 ± 4 88 ± 2.9 

5-15 cm 0.12 ± 0.28 8.69 ± 0.21 30 ± 3 88.0 ± 2.5 



10 
 

15-30 cm -0.04 ± 0.2 7.79 ± 0.15 37 ± 3 86.0 ± 1.6 

30-60cm 0.26 ± 0.16 8.49 ± 0.15 38 ± 2 85.7 ± 2.1 

60-100 cm 0.66 ± 0.37 10.1 ± 0.41 38 ± 5 89.6 ± 1.5 

100-200cm -0.29 ± 0.31 10.7 ± 0.41 40 ± 5 84.6 ± 2.4 

PWP 

(%) 

0-5 cm 0.26 ± 0.21 6.8 ± 0.2 41 ± 3 92.0 ± 1.5 

5-15 cm 0.3 ± 0.21 6.74 ± 0.25 41 ± 4 91.9 ± 1.4 

15-30 cm 0.3 ± 0.16 6.31 ± 0.13 43 ± 2 89.9 ± 1.7 

30-60cm 0.50 ± 0.17 6.91 ± 0.16 47 ± 3 91.6 ± 2.1 

60-100 cm 0.79 ± 0.19 8.62 ± 0.39 42 ± 5 90.8 ± 1.8 

100-200cm 0.84 ± 0.37 8.89 ± 0.53 49 ± 6 90.6 ± 2.7 

 180 

Soil hydraulic properties are important for irrigation scheduling and proper landuse 181 

planning (Dharumarajan et al., 2019b). Soil hydraulic properties such as field capacity and 182 

permanent wilting point determines the availability and retention of the water for crop 183 

growth. Field capacity and permanent wilting point were well predicted by QRF model. 184 

Compared to field capacity (R2=30-38%), permanent wilting point was predicted with high 185 

accuracy (R2=41-49%). Hong et al. (2013) recorded digital soil mapping approach for 186 

prediction of soil hydraulic property with maximum accuracy (R2-61%) whereas Román 187 

Dobarco (2019) reported prediction accuracy (R2) of FC and PWP were 21 and 29 % 188 

respectively.  189 

Prediction interval coverage probability (PICP) is an indication of efficiency of 190 

uncertainty measurements. The present predictions found that the PICP values ranged from 191 

83.2 to 92.2 %.  Overall, the prediction performance of this model was high for soil hydraulic 192 

properties.  Higher sample density is required for better results in tropical countries where 193 

soil pattern is complex due to the geological uplift than other regions (Carvalho junior et al., 194 

2014). 195 

 196 

 197 
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3.3. Importance of predictor variables for predicting soil properties 198 

RFM model estimates the importance of covariates based on how best or worse the prediction 199 

would be if one or more variable is removed and also it protects elimination of good predictor 200 

variables which are important for the model (Prasad et al. 2006). Figures 3a-h shows the 201 

variable importance rankings of Random Forest model for pH, OC, clay, sand, silt, CEC, FC 202 

and PWP. Elevation is emerged as top predictor for prediction of clay and organic carbon. 203 

MRVBF and TWI are ranked as most important predictor for prediction of pH and PWP. 204 

Different bands of Sentinel -2 imagery occupies in the top position for prediction of majority 205 

of soil properties. Different researchers recorded usefulness of Sentinel-2 imageries in 206 

prediction of different soil properties (Castaldi et al., 2019; Gholizadeh et al., 2018; Vaudour 207 

et al., 2019). Recently, Gomez et al. (2019) showed good discrimination ability of time series 208 

Sentinel-2 images in identifying different texture class and associated uncertainty. 209 

 210 

4. Spatial prediction of soil properties 211 

Table. 4. Summary statistics of predicted soil properties 212 

 Mean Min Max stdev kurtosis skewness 

pH 0-5 cm 8.1 5.5 9.2 0.6 2.2 -1.5 

5-15 cm 8.2 5.9 9.2 0.4 1.8 -0.8 

15-30 cm 8.2 6.0 9.2 0.3 5.7 -1.6 

30-60cm 8.2 6.4 9.3 0.4 3.8 -0.9 

60-100 cm 8.5 6.5 9.2 0.3 5.3 -1.5 

100-200cm 8.6 8.0 9.1 0.2 1.7 -1.4 

OC 

(%) 

0-5 cm 0.61 0.35 0.83 0.08 0.9 1.3 

5-15 cm 0.60 0.40 0.84 0.07 3.0 1.7 

15-30 cm 0.59 0.37 0.83 0.10 -0.5 0.5 

30-60cm 0.59 0.28 0.80 0.11 -0.7 0.0 

60-100 cm 0.4 0.3 0.6 0.1 -0.9 -0.1 

100-200cm 0.4 0.3 0.6 0.0 9.9 0.9 

Clay 

(%) 

0-5 cm 16.2 5.5 32.6 5.1 -1.0 0.0 

5-15 cm 36.6 7.7 62.1 11.3 -0.7 -0.2 
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15-30 cm 39.9 7.3 64.1 8.6 0.0 0.2 

30-60cm 45.7 8.5 66.5 8.6 0.1 0.6 

60-100 cm 15.2 8.0 19.0 2.4 -1.3 -0.2 

100-200cm 17.2 12.1 21.7 1.7 1.6 -0.5 

Sand 

(%) 

0-5 cm 45.5 17.8 82.6 15.4 -0.7 0.7 

5-15 cm 45.3 17.7 82.9 15.0 -0.8 0.7 

15-30 cm 41.7 15.5 76.5 13.5 -1.0 0.5 

30-60cm 36.1 13.4 80.5 11.9 -0.6 0.3 

60-100 cm 38.4 12.4 57.8 13.9 -1.3 -0.3 

 100-200cm 38.0 11.2 62.6 15.6 -1.4 -0.4 

Silt 

(%) 

0-5 cm 36.5 7.7 61.9 12.0 -0.8 -0.2 

5-15 cm 16.7 6.2 32.6 5.6 -0.7 0.2 

15-30 cm 17.5 7.1 35.6 6.4 -1.0 0.3 

30-60cm 15.8 8.7 27.5 4.2 -0.4 0.3 

60-100 cm 46.9 20.2 69.0 10.7 -1.2 0.4 

100-200cm 45.0 24.1 71.4 12.9 -1.5 0.3 

CEC 

(C 

mol 

kg-1) 

0-5 cm 27.5 4.7 62.3 14.0 -1.3 0.1 

5-15 cm 27.5 5.2 62.3 14.5 -1.3 0.2 

15-30 cm 29.9 5.0 64.0 14.6 -1.3 0.2 

30-60cm 32.9 7.0 62.3 13.3 -1.2 0.1 

60-100 cm 32.4 10.6 65.3 14.9 -1.6 0.1 

100-200cm 31.0 13.9 54.5 14.7 -1.5 0.3 

FC 

(%) 

0-5 cm 24.9 9.0 41.0 6.8 -0.5 -0.7 

5-15 cm 25.6 10.1 39.0 6.3 -0.4 -0.6 

15-30 cm 26.7 12.1 39.9 5.7 -0.8 -0.2 

30-60cm 29.3 10.4 46.8 5.9 -1.1 0.4 

60-100 cm 32.2 18.8 45.7 7.9 -1.5 -0.2 

100-200cm 30.5 15.2 50.4 8.3 -1.4 0.3 

PWP 

(%) 

0-5 cm 14.6 3.2 29.5 5.7 -0.9 0.1 

5-15 cm 15.1 3.5 27.3 5.2 -0.9 0.3 

15-30 cm 16.3 4.8 27.9 4.7 -1.1 0.3 

30-60cm 18.5 2.9 36.1 5.7 -1.0 0.3 

60-100 cm 19.8 9.0 37.5 7.0 -1.3 0.1 

100-200cm 19.8 7.8 39.1 8.0 -1.5 -0.1 

 213 

Mapping of soil properties is a preliminary step due its variability for decision making 214 

such as the delineation of suitable crop growing areas or identification of degraded areas. 215 

Summary statistics of predicted soil properties are presented in Table.4. Predicted maps of 216 

sand, silt, clay, CEC, FC and PWP in the surface (0-5 cm) along with uncertainty using 217 

Quantile Regression Forest are presented in Fig.4&5. The predicted sand content in 0-5 cm 218 

varied from 17.8-82.6%. The predicted silt and clay content varied from 7.7-61.9 % and 5.5-219 
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32.6 % respectively. High sand content recorded in North-eastern part of study area and high 220 

clay and silt content recorded in north-western part. The high sand content of surface soils in 221 

North-eastern part might be due to severity of the erosion where finer particles are moved 222 

into the low lying areas. The predicted cation exchange capacity varied from 4.7 – 62.3 % 223 

and recorded low CEC in north-eastern part. Predicted hydraulic properties viz., field 224 

capacity and permanent wilting point ranged from 9.1-41 % and 3.2-29.5% respectively. The 225 

spatial prediction of soil properties suggested that distribution of soil properties on the 226 

surface are highly variable due to variations in environmental factors, land management and 227 

land use. The spatial resolution of the maps helps to assess and monitor the soil health and 228 

preparation of proper land use plan.  229 

4. Conclusion 230 

 The prediction of soil properties and uncertainty by QRF model was reasonable and 231 

varied from 8-51% for surface and 0-56% for subsoil. Except pH and OC, the present model 232 

predicted better for most of the soil properties compared to previous studies. Weak variations 233 

in soil properties, mixed lithologic occurrence and sparse sample density are linked with 234 

performance of the model. The data augmentation certainly helps in reducing the uncertainty 235 

and over fitting and to improve model accuracy further. The prediction can also be 236 

improvised by increasing the environment covariates such as geology map and climatic 237 

datasets. 238 
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Fig. 2(a-h). Observed soil properties Vs Predicted soil properties in 0-5 cm depth 
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Fig.3(a-h).  Variation importance ranking of Random forest model in prediction of different soil properties 
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Fig.4. Predicted sand, silt, clay and CEC content in 0-5 cm 

depth
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Fig.5. Predicted Organic carbon content, Field capacity and permanent wilting point in 0-5 

cm depth 


