

Electrochemical, surface and computational studies on the inhibition performance of some newly synthesized 8-hydroxyquinoline derivatives containing benzimidazole moiety against the corrosion of carbon steel in phosphoric acid environment

Mohamed El Faydy, Brahim Lakhrissi, Charafeddine Jama, Abdelkader Zarrouk, Lukman Olasunkanmi, Eno Ebenso, Fouad Bentiss

▶ To cite this version:

Mohamed El Faydy, Brahim Lakhrissi, Charafeddine Jama, Abdelkader Zarrouk, Lukman Olasunkanmi, et al.. Electrochemical, surface and computational studies on the inhibition performance of some newly synthesized 8-hydroxyquinoline derivatives containing benzimidazole moiety against the corrosion of carbon steel in phosphoric acid environment. Journal of Materials Research and Technology, 2020, 9 (1), pp.727-748. 10.1016/j.jmrt.2019.11.014 . hal-02914101

HAL Id: hal-02914101 https://hal.inrae.fr/hal-02914101

Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Electrochemical, surface and computational studies on the 1 performance of some newly inhibition synthesized 2 8-hydroxyquinoline derivatives containing benzimidazole 3 moiety against the corrosion of carbon steel in phosphoric 4 acid environment 5

6

M. El Faydy ^a, B. Lakhrissi ^a, C. Jama ^b, A. Zarrouk ^c, L.O. Olasunkanmi ^{d,e}, 7 E.E. Ebenso^{d,e}, F. Bentiss^{b,f,*} 8

9 ^a Laboratory of Agricultural Resources, Polymer and Process Engineering, Ibn Tofail University, 10 Department of chemistry, B.P. 133, Kenitra, Morocco 11

^b Univ. Lille, CNRS, INRA, ENSCL, UMR 8207, - UMET - Unité Matériaux et Transformations, 12 13 F-59000 Lille, France

^c Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V 14 University, Av. Ibn Battouta, PO Box 1014 Agdal-Rabat, Morocco 15

^d Department of Chemistry, School of Chemical and Physical Sciences, Faculty of Natural and 16

Agricultural Sciences, North-West University, Private BagX2046, Mmabatho 2735, South Africa 17

^e Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Natural and 18

Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa 19

20 ^f Laboratory of Catalysis and Corrosion of Materials, Faculty of Sciences, Chouaib Doukkali 21 University, PO Box 20, M-24000 El Jadida, Morocco

24

- 25
- 26
- 27
- 28
- 29

- 30
- 31
- 32

- E-mail address: fbentiss@gmail.com 34
- 35 36

³³ * Corresponding authors.

2 Four 8-hydroxyquinoline derivatives, namely 5-((1H-benzimidazol-2-3 new yl)methyl)quinolin-8-ol (BIMQ), 5-((5-methyl-1H-benzimidazol-2-yl)methyl)quinolin-8-ol 4 (MBMQ), 5-((5-chloro-1H-benzimidazol-2-yl)methyl)quinolin-8-ol (CBMQ) and 5-((5,6-5 dichloro-1H-benzimidazol-2-yl)methyl)quinolin-8-ol (DCBMQ) were prepared in moderate 6 to good yields through the condensation of 5-(carboxymethyl)-8-hydroxyquinoline and 7 substituted o-phenylenediamine. ¹H, ¹³C NMR and Elemental analysis confirm the formation 8 of the desired compounds. The anti-corrosive potential of these heterocyclic compounds has 9 been studied on carbon steel in 2 M phosphoric acid (H₃PO₄) electrolyte by means of 10 11 electrochemical measurements. The inhibition efficiency of these heterocyclic compounds was strongly linked to the concentration and the structure of the molecules; reached a 12 maximum of 94.7% for DCBMQ at 10⁻³ M. Data generated from potentiodynamic revealed 13 14 that the investigated 8-hydroxyquinoline derivatives are mixed type inhibitors. The influence of temperature on the corrosion behaviour was assessed. The four quinoline derivatives 15 adsorbed according to the Langmuir's adsorption isotherm. Surface analysis (SEM and XPS) 16 confirmed the formation of a protective layer adsorbed on the steel surface. DFT calculations 17 suggested that 8-hydroxyquinoline derivatives adsorb on the metal via the 8-hydroxyquinoline 18 19 ring and their corrosion inhibition potential have some linear correlation with the degree of co-planarity of the benzimidazole and hydroxyquinoline rings. Monte Carlo simulations 20 showed that the molecules adsorbed on Fe(110) surface through the 8-hydroxyquinoline in a 21 22 near-flat mode and the adsorption energies both in the absence and presence of aqueous phosphate ions agree with the observed trends of inhibition efficiencies. 23

24

Keywords: 8-Hydroxyquinoline; Carbon steel; Phosphoric acid; Corrosion inhibition, EIS,
XPS, Theoretical calculations.

1 1. Introduction

2 Carbon steel is by definition an alloy of iron that operates under various conditions in several industries where aqueous media, especially acids, are inevitably utilized for different 3 advantageous purposes [1-3]. Hence, corrosion of carbon steel in acidic solution notably with 4 regard to the use of organic inhibitors is a pioneering technical in the field of corrosion 5 science [4-6]. In this context, several reviews about various types of organic inhibitors have 6 been previously documented [7-16]. However, the existing data show that the more efficient 7 organic compounds are suitable to contain heteroatoms such as nitrogen, sulphur, oxygen and 8 also other parameters such as unsaturated bonds and plane conjugated systems comprising 9 10 any kinds of aromatic rings [17-19]. Moreover, the organic inhibitors act by adsorption on the metal surface and the latter depends on the nature of the surface charge of metal, the 11 allocation of charge on the entire inhibitor molecule [20]. 12

Phosphoric acid (H₃PO₄) is largely used in several industrial sectors such as removal of oxide film, chemical and electrolytic polishing... In other words, phosphoric acid is known by its strong corrosiveness on iron-based materials, hence the need to protect or to limit the attack of metallic materials. However, little works have been done on the corrosion inhibition of steel in H₃PO₄ solution using organic molecules [21-34].

18 Quinoline derivatives are first actives ingredients in the anti-malarial drugs and have particular biological properties and who poses no significant risk to environment [34-19 36]. However, the literature uncovers that information with respect to the utilization of 20 8-hydroxyquinoline and its derivatives as corrosion inhibitor for steel in H₃PO₄ are extremely 21 rare. To the best of our knowledge, 8-hydroxyquinoline and its derivatives have never been 22 used as corrosion inhibitors for steel in H₃PO₄. In this context, the target of this work is to 23 assess the anti-corrosive capability of newly synthesized 8-hydroxyquinoline derivatives, 24 5-((1H-benzimidazol-2-yl)methyl)quinolin-8-ol 5-((5-methyl-1Hnamely, (BIMO), 25

benzimidazol-2-yl)methyl)quinolin-8-ol (MBMQ), 5-((5-chloro-1H-benzimidazol-2-1 2 yl)methyl)quinolin-8-ol (CBMQ) and 5-((5,6-dichloro-1H-benzimidazol-2yl)methyl)quinolin-8-ol (DCBMQ) each representing two aromatic rings, 8-hydroxyquinoline 3 ring fused to a heterocyclic (benzimidazol) ring on carbon steel in 2 M H₃PO₄ by means 4 potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS), scanning 5 electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques. 6 Theoretical density functional theory (DFT) calculations and Monte Carlo simulations were 7 likewise performed on 8-hydroxyquinoline derivatives so as to associate the corrosion 8 inhibition capacity with their molecular structures. 9

10

11 **2. Experimental**

12 2.1. Inhibitors

13 2.1.1. General informations

All reagents and solvents are imported from Sigma-Aldrich. The kinetics of the reactions were examined by TLC. Melting points were defined through Fargo MP-2D. Flash column chromatography was carried out together with silica gel (0.040-0.063 mm) by elution with hexane–acetone mixture. NMR spectra have been made by Bruker 300 WB spectrometer. C, H, N analyses were realized using a Perkin-Elmer Model 2400 CHNS/O Series.

20

21 2.1.2. Chemical synthesis

The synthesis procedure of four kinds of 8-hydroxyquinoline derivatives containing benzimidazole moiety is described in Scheme 1. First, 8-hydroxyquinoline was converted to 5-chloromethyl-8-hydroxyquinoline hydrochloride as described by Burckhalter [37]; the 5chloromethylquinolin-8-ol hydrochloride was transformed to 5-cyanomethyl-8hydroxyquinoline (2) thereafter. [38]. The acid hydrolysis of 5-cyanomethyl-8hydroxyquinoline (2) leads to 5-(carboxymethyl)-8-hydroxyquinoline hydrochloride (3) [39],
which was condensed with 4,5-substituted derivatives of o-phenylenediamine (4a-d) in HCl
solution (37 %) to give the desired hydroxyquinolines compounds (5a-d).

5

7

6 **Scheme 1.** Synthesis of 8-hydroxyquinoline derivatives containing benzimidazole moiety.

So, the general procedure for the synthesis of 8-hydroxyquinoline derivatives 8 containing a benzimidazole moiety (5a-d) has been developed as follows; an equimolar 9 mixture of 4-substituted derivative of o-Phenylenediamine (4a-d), 5-(carboxymethyl)-8-10 hydroxyquinolin hydrochloride (3) was refluxed in 4 N HCl for 8 h, after cooling, the 11 precipitate was obtained after addition of aqueous sodium hydroxide, the separated product 12 was purified through Flash column chromatography. The structures of 8-hydroxyquinoline 13 derivatives were identified by NMR and elemental analysis and their spectra are attached in 14 supplementary data. Spectral and analytical data of synthesized 8-hydroxyquinoline 15 16 derivatives containing a benzimidazole moiety are summarised in Table 1.

17

1 **Table 1**

- 2 Abbreviation, molecular structure, spectral and analytical data of synthesized
- 3 8-hydroxyquinoline derivatives containing a benzimidazole moiety.

Compound	Abbreviation	Structure	Spectral and analytical data
<u>5a</u>	BIMQ		Yield 60 %, M.P. 206 °C, brown of solid. ¹ H NMR (300 MHz, Me ₂ SO-d6), $\delta ppm = 5.0$ (s, 2H, -CH ₂ -); 7.0-8.89 (m, 9H _{arm}); 12.15 (1s, 1H, NH). ¹³ C NMR (300 MHz, Me ₂ SO-d6), $\delta ppm = 37,18(HQ-CH_2-benzimidazole);$ 111.32-152.74 (CH _{arm} and C _{arm}). Elemental analysis for C ₁₇ H ₁₃ N ₃ O: calcd.: C, 74.17; H, 4.76; N, 15.26; Found: C, 74.1 3; H, 4,75; N, 15.28%.
<u>5b</u>	MBMQ [Yield 70 %, M.P. 211 °C, brown of solid. ¹ H NMR (300 MHz, Me ₂ SO-d6), $\delta ppm = 2.36$ (s, 3H, -CH ₃); 4.64 (s, 2H, -CH ₂ -); 6.94-8.83 (m, 8 H _{arm}); 12.27(s, 1H, NH). ¹³ C NMR (300 MHz, Me ₂ SO-d6), $\delta ppm = 22.13$ (CH ₃); 30.56 (-CH ₂ -); 112.93-155.5 (CH _{arm} and C _{arm}). Elemental analysis for C ₁₈ H ₁₅ N ₃ O: calcd.: C, 74.72; H, 5.23; N, 14.52; Found: C, 74.70; H, 5.26; N, 14.54%.
<u>5c</u>	CBMQ [Yield 72 %, M.P. 195 °C, brown of solid. ¹ H NMR (300 MHz, Me ₂ SO-d6), $\delta ppm = 4,50$ (s, 2H,-CH ₂ -); 6.65-8.81 (m, 8 H _{arm}); 12.20(s, 1H, NH). ¹³ C NMR (300 MHz, Me ₂ SO-d6), $\delta ppm = 34,69(-CH_2-)$; 110.84-154.01 (CH _{arm} and C _{arm}). Elemental analysis for C ₁₇ H ₁₂ N ₃ OCl: calcd.: C, 65.92; H, 3.90; N, 13.57; Found: C, 65.85; H, 3.86; N, 13.59%.
<u>5d</u>	DCBMQ		Yield 80 %, M.P. 180 °C, brown of solid. ¹ H NMR (300 MHz, Me ₂ SO-d6), $\delta ppm = 4.23(s, 2H, -CH2-); 6.95-8.94 (m, 6Harm). 13C NMR (300 MHz, Me2SO-d6), \delta ppm = 30,63(-CH2-);111.90-153.26 (CHarm and Carm). Elemental analysis for C17H11N3OCl2: calcd.: C, 59.32; H, 3.22; N, 12.21; Found: C, 59.36; H, 3.20; N, 12.23%.$

4

5 2.2. Materials

The material, on which the review is based, is of the type carbon steel (CS), including
its the composition (in wt%) of 0.02 % P, 0.02 % Al, 0.10 % Si, 0.50 % Mn, 0.36 % C, 0.01
% S, 0.2 % Cr and the remainder iron (Fe). 1 cm² of working electrode was exposed at
aggressive media, this surface area was abraded with different grit SiC paper. This one's was
then washed with bi-distilled water and decreased with ethanol.

11

1 2.3. Solutions

2 2 M H₃PO₄ solutions were prepared by dilution of an analytical reagent grade HCl 3 85% H₃PO₄ with distilled water. The exposure concentrations ranged from 10⁻⁶ M to 10⁻³ M, 4 these two extremes are used due to the solubility and the minimum protection.

5

6 2.4. Electrochemical measurements

7 The 1 cm² of CS surface is employed as working electrode. A platinum wire was 8 operated as a counter electrode; a saturated calomel electrode was employed as a reference 9 electrode booster by Luggin capillary.

At the beginning, the exposed area of steel was immersed in electrolyte for half hour till you get steady state open circuit potential (E_{ocp}), and that is when the electrochemical measurements were carried out. The electrochemical assays were carried out under aerated solution and thermostatic conditions. The EIS assays were realized in the frequency interval of 10⁵ Hz to 0.1 Hz at E_{ocp} with amplitude of 10 mV. The ZView software was used to precede impedance spectra. The protection efficiency $\eta_Z(\%)$ of EIS is defined by the formula below:

17
$$\eta_Z(\%) = \frac{R_{P(i)} - R_p}{R_{P(i)}} \times 100$$
 (1)

where R_p and $R_{p(i)}$ are the ac polarization resistance of CS electrode without and with synthesized molecules, respectively.

The Tafel curves were registered from cathodic to the anodic direction, with a scan rate of 0.5 mV s⁻¹ and analyzed by means of Voltamaster 4 software. The inhibition efficiency for three kinds of 8-hydroxyquinoline derivatives was also elaborated according to the Tafel curves:

1
$$\eta_{\text{Tafel}}(\%) = \frac{i_{\text{corr}} - i_{\text{corr}(i)}}{i_{\text{corr}}} \times 100$$
 (2)

where i_{corr} and $i_{corr(i)}$ are the corrosion current densities in the absence and the presence of 8-hydroxyquinoline derivatives, respectively.

4

5 2.5. Surface analyses

Scanning Electron Microscopy (JEOL 5300) was employed in assessing the surface
quality of CS substrate without and with four kinds of 8-hydroxyquionline and after been
immersed in 2 M H₃PO₄.

X-ray photoelectron spectroscopy (XPS) spectra were registered using XPS KRATOS,
 AXIS Ultra^{DLD} spectrometer Thermo Scientific K-Alpha XPS system. The XPS test and
 treatment were made according to the same procedures previously described [40,41].

12

13 2.6. Density functional theory calculations

Molecules of BIMQ, CBMQ, DCBMQ and MBMQ were modelled with GaussView 14 5.0 and subjected to geometry optimizations without symmetry constraints using the 15 B3LYP/6-31+(d,p) model [42-44]. Since the experimental studies were carried out in aqueous 16 phosphoric acid medium, all geometry optimizations were conducted in phosphoric acid 17 medium, which was simulated by setting the solvent parameters of aqueous H₃PO₄ as 62.4 18 19 and 2.054 for static and optical dielectric constants respectively. The static dielectric constant was extracted from literature [45], while the optical dielectric constant was approximated as 20 the square of refractive index (n20/D = 1.433) of phosphoric acid as previously proposed in 21 22 the literature [46,47]. All the calculations were carried out using Gaussian 09 [48] and the polarizable continuum model (PCM) using the integral equation formalism variant (IEFPCM) 23 implemented in Gaussian 09 was used to treat the solvent. Relevant quantum chemical 24

parameters were derived from the frontier molecular orbitals (FMOs) energies, that is, highest occupied molecular orbital energy (E_{HOMO}) and lowest unoccupied molecular orbital energy (E_{LUMO}) of the optimized structures based on the following relations [49]:

4 (Energy gap, ΔE): $\Delta E = E_{LUMO} - E_{HOMO}$ (3)

$$\eta = -\frac{1}{2} \left(E_{LUMO} - E_{HOMO} \right) \tag{4}$$

- 5 (Global hardness, η): 2
 - (Global electronegativity, χ) $\chi = -\frac{1}{2} (E_{LUMO} + E_{HOMO})$ (5)

7 (Fraction of electron transferred)
$$\Delta N = \frac{\phi_{Fe} - \chi_{inh}}{2(\eta_{Fe} + \eta_{inh})}$$
(6)

8 where $\Phi_{\text{Fe}(110)}$ and η_{Fe} are the work function and hardness of Fe respectively, while χ_{inh} and 9 η_{inh} are the electronegativity and hardness of the inhibitor molecule respectively. A value of 10 4.82 eV for $\Phi_{\text{Fe}(110)}$ (previously reported for body center cubic (bcc) crystal structure of 11 Fe(110)) [50,51] and a value of 0 eV/mol [52] for η_{Fe} were used in Equation 6 based on 12 previous studies [49-52].

13

6

14 2.7. Monte Carlo simulation

Adsorption of BIMQ, CBMQ, DCBMQ and MBMQ molecules on mild steel surface 15 in phosphoric acid medium was using the adsorption locator module available in Materials 16 Studio 2106. Mild steel is essentially iron, and thus, steel surface was represented by (1 1 0) 17 18 cleaved plane of Fe, which has been adjudged the most reasonable crystal plane for the metal. The optimized structures of the inhibitor molecules obtained from the DFT study were used in 19 the Monte Carlo simulations. To ensure that the simulation was as close as possible to the 20 experimental study, the adsorption of each inhibitor molecule on Fe(110) was simulated in the 21 presence of phosphoric acid solution, which was represented by H_3O^+ and PO_4^{3-} ions. 22

23

Iron crystal was first cleaved into $(1\ 1\ 0)$ plane, optimized and expanded into a 10×10

supercell having 6 layers of crystals in a 10 Å vacuum slab. H_3O^+ and PO_4^{3-} were optimized using the Universal force field in Forcite module. Adsorption of 60 molecules of H_3O^+ and 60 molecules of PO_4^{3-} (since H⁺ and PO_4^{3-} are in ratio 3:1 in one mole of the acid) on Fe(110) was first simulated in a simulated annealing using the COMPASSII force field. The simulation was carried out for 5 cycles at 50000 steps per cycles. Thereafter the inhibitor molecule was adsorbed using the same computational details. The adsorption energy was calculated according to equation (7):

8
$$E_{ads} = E_{complex2} - E_{complex1}$$
 (7)

9 where E_{complex2} is the total energy of the Fe (110)/inhibitor/20 PO₄³⁻/60 H₃O⁺ complex and 10 E_{complex1} is the total energy of the Fe (110)/20 PO₄³⁻/60 H₃O⁺ complex.

11

12 **3. Results and discussion**

13 *3.1. Corrosion inhibition studies*

14 *3.1.1. Polarization measurements*

15 The cathodic and anodic Tafel curves for working electrode dipped in 2 M H₃PO₄ including and excluding different concentrations of BIMO, MBMO, CBMO and 16 DCBMQ are illustrated in Fig. 1, it is clear that this is a significant decrease in the two 17 cathodic and cathodic densities after addition of these four 8-hydroxyquinoline derivatives, 18 which implies that the synthesized 8-hydroxyquinoline derivatives prevents both the iron 19 dissolution and the cathodic hydrogen evolution. On the other hand, the prevention of the 20 cathodic reaction is important in comparison that anodic reaction to cause a shift of corrosion 21 potential towards the negative direction, The negative displacement of $E_{\rm corr}$ after adding 22 8-hydroxyquinoline derivatives is ≤ 85 mV, indicating that these 8-hydroxyquinoline 23 derivatives are acting like mixed-type inhibitors with predominant cathodic effectiveness [53]. 24 Various extrapolated parameters from Tafel curves are included in Table 2. 25

Fig. 1. Tafel plots for CS in 2 M H₃PO₄ prior to and after adding of various concentrations of
BIMQ, MBMQ, CBMQ and DCBMQ.

Results in Table 2 indicate a significant reduction of i_{corr} upon addition of four kind 8hydroxyquinoline compared with that of the blank electrolyte. This large reduction is approximately forty-two times in case of DCBMQ at 10^{-3} M, the increase in concentration causing a protective film covers the CS surface producing a decrease in corrosion current density. The values of β_c are changed following the addition of four kinds of 8-hydroxyquinoline which suggests that this is an alteration of cathodic reaction [54,55].

The effectiveness ranking of four studied organic compounds at all concentrations is as per the following: DCBMQ > CBMQ > MBMQ > BIMQ, this order is assigned to the differences in the structures among the four 8-hydroxyquinoline derivatives. Additionally, it's

clear that all the inhibitors tested have a similar structure with the exception of alkyl 1 substituent carrying by the phenyl of benzimidazole. An extensively, it is found that the 2 substitution of H in aromatic ring of benzimidazole moiety of compound BIPQ by methyl in 3 MBMQ, chlorine in CBMQ and two chlorine atoms in DCBMQ change the protection 4 efficiency. The presence of chlorine atoms which are donor by mesomeric effect (+M) in 5 aromatic ring of CBMQ and DCBMQ increases the delocalization of electron density in the 6 molecule, which makes the molecule more stable. This adsorption can be stabilized by 7 participation of π -electrons of aromatic ring and free electron pair in the heteroatom. 8

9

10 **Table2**

Various extrapolated parameters of CS prior to and after adding different concentrations of
 8-hydroxyquinoline derivatives in 2 M H₃PO₄ electrolyte.

Inhibitor	C_{inh}	$-E_{\rm corr}$	$i_{\rm corr}$	-βc	$\eta_{ ext{Tafel}}$
	(M)	(mV/SCE)	$(\mu A/cm^2)$	(mV/dec)	(%)
Blank		419	2132.0	219.6	
BIMQ	10-3	477	156.2	137.3	93.0
	10-4	481	382.0	162.5	82.1
	10-5	490	420.0	168.6	80.3
	10-6	482	615.3	170.7	71.1
MBMQ	10-3	472	120.0	136.9	94.4
	10-4	476	184.5	138.2	91.3
	10-5	482	232.6	138.5	89.1
	10-6	483	521.4	161.8	75.5
CBMQ	10-3	469	112.0	146.8	94.7
	10-4	469	199.5	147.0	90.6
	10-5	479	382.0	156.8	82.1
	10-6	478	429.5	160.0	79.8
DCBMQ	10-3	467	51.0	127.2	97.6
	10-4	486	71.2	146.4	96.7
	10-5	505	161.7	158.7	92.4
	10-6	507	397.9	166.2	81.3

13

14 *3.1.2. Electrochemical impedance spectroscopy studies (EIS)*

15 *3.1.2.1. Effect of inhibitor concentration*

Nyquist diagrams of CS in H₃PO₄ electrolyte in the absence and presence diverse
 concentrations of 8-hydroxyquinoline derivatives are provided in Fig. 2. All diagrams showed

two semicircles, one at the high frequency (HF) and the other at the low frequency (LF)region. The obtained semicircle at high frequency is allocated to the charge-transfer anddouble layer capacitance at the CS/electrolyte interface for the corrosion mechanism [56-58].While that the inductive loop at low frequency may be assigned to the relaxation processachieved through adsorption of the chemical species like products of the corrosion reaction(exp. ferric phosphate), an oxidizable or reducible intermediate [59] or neutral or/and ionic

8 The existing HF loops are slightly depressed in real axis and non-perfect semi-circles 9 demonstrate the roughness and/or inhomogeneity of the CS surface [61]. As consequence, 10 CPE was inserted in the equivalent circuit to substitute the double layer capacitance in order 11 to obtain a good fit and which is defined through next formula [62-64]:

12
$$Z_{CPE} = A^{-1} (i\omega)^{-n}$$
 (8)

where *A* and *n* presents the constant and exponent of CPE, respectively. *i* is the imaginary number and ω (rad s⁻¹) is the radial frequency.

The selected equivalent circuit (Fig. 3) to fit the experimental EIS data consists of electrolyte resistance (R_s) in series with CPE in parallel with charge transfer resistance (R_{ct}) in series with an inductive resistance R_L in parallel with an inductance (L). However, the ($R_{ct} + R_L$) present the polarization resistance (R_p). These cited parameters are summarized in Table 3.

These cited parameters are summarized in Table 3. From this table, there are also the values of C_{dl} which are derived from the CPE constant by virtue of the next formula [65, 66]:

²²
$$C_{\rm dl} = (AR_{\rm p}^{1-n})^{1/n}$$
 (9)

The collected value of C_{dl} and R_p are exploited to establish the relaxation time constant (τ_d) in line with to the following equation [67,68]:

1
$$\tau = C_{\rm dl} R_{\rm p}$$

Fig. 2. Nyquist plots of the CS substrate in 2 M H₃PO₄ with BIMQ, MBMQ, CBMQ and
 DCBMQ at different concentrations at 303 K.

2 Fig. 3. Equivalent circuit employed for adjusting the impedance data.

3

The fits of our data using the present circuit are very satisfactory; a typical example of 4 Nyquist and Bode diagrams fitted is presented in Fig. 4. Based on the Table 3, the assembled 5 values of A and C_{dl} are inversely proportionate to with inhibitor concentration, while R_{p} , R_{L} , n, 6 L, τ_d , $\eta_Z(\%)$ are diverse in the same manner with the concentration of four 8-7 hydroxyquinoline derivatives. The increasing R_p achieved 330.42 (Ω cm²) in case of DCBMQ 8 9 involves the formation of the protective film [69]. Furthermore, the rise of the values of nafter addition of synthesized compounds when compared with 2 M H₃PO₄ could be explained 10 away by certain decrease of the working electrode surface heterogeneity because of the 11 occupation of most active adsorption sites by 8-hydroxyquinoline derivatives. The C_{dl} values 12 in presence of studied molecules are lower than that of blank electrolyte could be through the 13 14 reduction in local dielectric constant as a result of a substitution of H₂O by inhibitors molecules at CS surface [70]. Moreover, the augmentation of the relaxation time constant (τ_d) 15 with 8-hydroxyquinoline derivatives concentration suggests that the time of adsorption 16 17 process gets slower. The corresponding L values for CS are observed to improve with addition of 8-hydroxyquinoline derivatives in 2 M H₃PO₄ electrolyte that may be due to an increase of 18 oxidizable or reducible intermediate of 8-hydroxyquinoline derivatives in the electrolyte. 19 Considering the EIS results, it's obvious that the η_Z (%) with increases with concentration for 20 four kinds of 8-hydroxyquinoline derivatives, this might be because the protonation of the 21 heteroatoms (the aromatic amino group) presents in inhibitory molecules reducing the 22 concentration of the hydrogen proton of electrolyte. From EIS findings, the sequence of 23 inhibitor performance is DCBMQ > CBMQ > MBMQ > BIMQ. This is consistent with the 24

obtained data by potentiodynamic polarization experiments. Obviously, the maximum
 effeteness corresponding at 10⁻³M for the four inhibitors and therefore, this optimum
 concentration was chosen to investigate the influence of temperature.

Table 3

EIS results for CS in 2 M H₃PO₄ in the absence and presence of different concentrations of the synthesized 8-hydroxyquinoline derivatives at 303 K.

Inhibitor	C_{inh}	Rs	R _{ct}	$R_{ m L}$	$R_{\rm p}$	$10^4 A$	п	L	$C_{ m dl}$	$ au_{ m d}$	η_{Z}	θ
	(M)	$(\Omega \ cm^2)$	$(\Omega \ cm^2)$	$(\Omega \ cm^2)$	$(\hat{\Omega} \ \mathrm{cm}^2)$	$(\Omega^{-1}S^ncm^2)$		(H cm ⁻²)	$(\mu F \ cm^{-2})$	(ms)	(%)	
2 M H ₃ PO ₄		5.21 ± 0.02	9.71 ± 0.06	2.01 ± 0.08	11.72	2.43 ± 0.09	0.880 ± 0.005	0.19 ± 0.02	109.2	1.22		_
	10-6	7.27 ± 0.07	19.58 ± 0.27	5.83 ± 0.37	25.41	0.75 ± 0.07	0.898 ± 0.010	0.14 ± 0.17	36.8	0.94	53.8	0.54
BIMQ	10^{-5}	7.85 ± 0.06	27.30 ± 0.36	4.88 ± 0.53	32.20	0.73 ± 0.05	0.892 ± 0.010	0.33 ± 0.08	32.5	1.05	63.6	0.64
	10-4	8.40 ± 0.06	28.41 ± 0.38	6.40 ± 0.48	34.81	0.62 ± 0.04	0.901 ± 0.009	0.38 ± 0.13	30.0	1.10	66.3	0.66
	10-3	8.67 ± 0.06	56.53 ± 0.42	7.65 ± 0.52	64.18	0.60 ± 0.03	0.905 ± 0.007	0.43 ± 0.18	28.1	1.80	81.7	0.82
	10-6	6.39 ± 0.06	19.44 ± 0.35	3.61 ± 0.41	23.05	0.83 ± 0.08	0.890 ± 0.020	0.20 ± 0.03	35.7	0.82	49.1	0.49
MBMQ	10-5	6.43 ± 0.05	32.97 ± 0.53	3.99 ± 0.63	36.96	0.78 ± 0.07	0.898 ± 0.010	0.41 ± 0.03	35.1	1.29	68.3	0.68
	10-4	6.90 ± 0.06	34.34 ± 0.59	5.20 ± 0.68	39.54	0.68 ± 0.05	0.899 ± 0.009	0.52 ± 0.10	30.3	1.20	70.3	0.70
	10-3	6.92 ± 0.06	67.05 ± 0.62	15.77 ± 0.73	82.82	0.62 ± 0.03	0.908 ± 0.006	2.31 ± 0.40	26.0	2.15	86.0	0.86
	10-6	6.63 ± 0.06	22.71 ± 0.29	5.67 ± 0.39	28.38	0.66 ± 0.05	0.897 ± 0.001	0.77 ± 0.12	29.4	0.83	60.5	0.60
CBMQ	10-5	6.96 ± 0.06	26.79 ± 0.37	5.49 ± 0.46	32.28	0.65 ± 0.05	0.892 ± 0.009	1.52 ± 0.10	28.6	0.92	63.7	0.64
	10-4	7.04 ± 0.06	41.25 ± 0.43	10.80 ± 0.64	52.05	0.59 ± 0.03	0.896 ± 0.008	2.16 ± 0.30	28.2	1.46	77.4	0.77
	10-3	7.22 ± 0.05	77.33 ± 0.83	18.56 ± 0.89	95.89	0.56 ± 0.03	0.906 ± 0.006	2.72 ± 0.41	21.5	2.06	88.3	0.88
	10-6	7.22 ± 0.05	32.02 ± 0.61	2.22 ± 0.61	34.24	0.68 ± 0.04	0.894 ± 0.008	0.71 ± 0.47	33.1	1.13	65.7	0.66
DCBMQ	10-5	7.24 ± 0.06	73.68 ± 0.63	14.02 ± 1.34	87.20	0.57 ± 0.02	0.901 ± 0.006	4.54 ± 0.60	31.4	2.73	86.5	0.86
	10-4	7.46 ± 0.06	176.00 ± 0.59	32.61 ± 0.30	208.61	0.33 ± 0.01	0.920 ± 0.005	11.75 ± 0.65	21.4	4.46	94.4	0.94
	10-3	7.60 ± 0.06	284.60 ± 0.67	45.82 ± 0.91	330.42	0.31 ± 0.09	0.950 ± 0.004	30.05±0.91	18.7	6.17	96.4	0.96

1 *3.1.2.2. Effect of electrolyte temperature*

Figs. 5 and 6 show Nyquist graphics for CS in 2 M H₃PO₄ pre- and post- addition of 10⁻³ M of DCBMQ, CBMQ, MBMQ and BIMQ at 303 K-333 K range. A really good fit for all collected EIS data was obtained with the model proposed early.

5

Fig. 6. Nyquist plots for CS in 2 M H₃PO₄ medium containing 10⁻³ M of various synthesized
 8-hydroxyquinoline derivatives at different temperatures.

The spectrum impedance in both prior to and subsequent to the addition of 4 8-hydroxyquinoline derivatives exhibit also two single, the first capacitive loop at a high-5 6 medium frequency and the second inductive loop at low frequency. The high-medium frequency capacitive semi-circle is connected to the charge transfer process. The low-7 frequency inductive semi-circle may be a result of the relaxation process brought about by the 8 ions of the inhibitors. The size of the capacitive loop declines with increasing temperature in 9 both inhibited and uninhibited electrolytes. The extracted corrosion parameters are collected 10 11 in Table 4. The inspection of the latter demonstrated that, the temperature rise prompts a diminishing of R_p values, initially explained by the increase of the rate of metal dissolution, 12 secondly by the displacement of the adsorption/desorption equilibrium verse the inhibitor 13 14 desorption and consequently an abatement of surface coverage degree. Besides, the n value declined with temperature increasing, which construed as a proves for the surface 15 inhomogeneity increase. Furthermore, the η_Z (%) for four synthesized 8-hydroxyauinoline 16 derivatives reveals a smaller fall at 303-333K range (decreased to 90.8% for DCBMQ, 82.2% 17 for both CBMQ/MBMQ and 77.2% for BIMQ at optimum concentration in 333 K), indicating 18

that the four synthesized 8-hydroxyauinoline derivatives keep their stability and their the
inhibitive performance under these conditions.

3 Values of R_p were utilized to estimated values of the corrosion current density (i_{corr}) at 4 divers' temperatures including and excluding of inhibitors using the next equation [49]:

5
$$i_{\rm corr} = RT (zFR_{\rm p})^{-1}$$
 (11)

6 where *R* is an ideal gas constant (R = 8.314 J mol⁻¹ K⁻¹), *F* is the Faraday constant 7 (F = 96485 C) and *z* is the valence of iron metal (z = 2).

Table 4

The corresponding EIS parameters at 303-333 K range of CS in 2 M H_3PO_4 including and excluding 10^{-3} M of four 8-hydroxyquinoline derivatives.

Inhibitor	Temp.	Rs	R _{ct}	RL	$R_{ m p}$	$10^4 A$	п	L	$C_{ m dl}$	$ au_{ m d}$	$\eta_{\rm Z}$
	(K)	$(\Omega \ cm^2)$	$(\Omega \text{ cm}^2)$	$(\Omega \text{ cm}^2)$	$(\Omega \text{ cm}^2)$	$(\Omega^{-1} \operatorname{S}^{n} \operatorname{cm}^{2})$		$({\rm H} {\rm ~cm}^{-2})$	$(\mu F cm^{-2})$	(ms)	(%)
	303	5.21 ± 0.02	9.710 ± 0.060	2.010 ± 0.080	11.72	2.430 ± 0.090	0.880 ± 0.005	0.19 ± 0.02	109.2	1.22	
2 M H ₃ PO ₄	313	4.28 ± 0.01	5.590 ± 0.044	0.560 ± 0.049	6.15	3.689 ± 0.360	0.879 ± 0.066	0.037 ± 0.036	159.6	0.98	
	323	2.79 ± 0.02	2.629 ± 0.054	0.723 ± 0.069	3.35	4.786 ± 0.730	0.878 ± 0.020	0.053 ± 0.011	195.7	0.66	
	333	3.79 ± 0.01	1.855 ± 0.019	0.416 ± 0.019	2.27	6.068 ± 0.270	0.875 ± 0.011	0.037 ± 0.004	236.0	0.54	_
	303	8.67 ± 0.06	56.530 ± 0.420	7.650 ± 0.520	64.18	0.600 ± 0.030	0.905 ± 0.007	0.43 ± 0.18	28.1	1.80	81.7
BIMQ	313	8.238 ± 0.070	29.420 ± 0.342	3.300 ± 0.510	32.72	0.748 ± 0.040	0.878 ± 0.009	0.47 ± 0.150	32.43	1.06	81.2
	323	7.617 ± 0.050	14.360 ± 0.317	2.250 ± 0.380	16.61	0.908 ± 0.090	0.873 ± 0.013	0.034 ± 0.01	35.28	0.58	79.8
	333	7.397 ± 0.050	08.100 ± 0.168	1.844 ± 0.200	9.94	1.027 ± 0.150	0.868 ± 0.017	0.020 ± 0.04	36.03	0.36	77.2
	303	6.92 ± 0.06	67.050 ± 0.620	15.770 ± 0.730	82.82	0.620 ± 0.030	0.908 ± 0.006	2.31 ± 0.40	26.0	2.15	86.0
MBMQ	313	7.010 ± 0.062	36.430 ± 0.520	06.710 ± 0.710	43.14	0.736 ± 0.050	0.850 ± 0.008	0.93 ± 0.13	26.67	1.19	85.7
	323	6.136 ± 0.060	18.580 ± 0.636	3.860 ± 0.681	22.45	0.910 ± 0.010	0.846 ± 0.014	0.04 ± 0.016	29.47	0.66	85.0
	333	7.169 ± 0.060	09.960 ± 0.247	2.839 ± 0.310	12.80	1.000 ± 0.020	0.845 ± 0.016	0.03 ± 0.006	29.49	0.37	82.2
	303	7.22 ± 0.05	77.330 ± 0.830	18.560 ± 0.890	95.89	0.560 ± 0.030	0.906 ± 0.006	2.72 ± 0.41	21.5	2.06	88.3
CBMQ	313	7.576 ± 0.060	32.870 ± 0.870	7.241 ± 0.840	40.11	0.640 ± 0.050	0.885 ± 0.009	0.193 ± 0.06	29.47	1.18	84.7
	323	6.703 ± 0.060	16.000 ± 0.420	4.100 ± 0.456	20.01	0.749 ± 0.080	0.883 ± 0.013	0.077 ± 0.02	31.66	0.64	83.3
	333	7.472 ± 0.050	10.460 ± 0.620	2.328 ± 0.520	12.78	0.935 ± 0.090	0.879 ± 0.014	0.023 ± 0.01	37.04	0.47	82.2
	303	7.60 ± 0.06	284.60 ± 0.67	45.82 ± 0.91	330.42	0.310 ± 0.090	0.950 ± 0.004	30.05±0.91	18.7	6.17	96.4
DCBMQ	313	6.433 ± 0.060	151.30 ± 0.59	14.23 ± 0.99	165.53	0.396 ± 0.010	0.900 ± 0.005	1.801 ± 0.93	22.65	3.74	96.2
	323	6.770 ± 0.060	73.12 ± 0.58	10.15 ± 0.94	83.27	0.683 ± 0.040	0.858 ± 0.007	0.587 ± 0.22	29.03	2.41	95.9
	333	7.080 ± 0.068	27.54 ± 0.53	06.61 ± 0.64	34.15	0.853 ± 0.070	0.855 ± 0.011	0.445 ± 0.09	30.92	1.05	90.8

1 The i_{corr} values are used to estimate the apparent activation energy E_a according to the 2 according to the formula below [71].

3
$$i_{\rm corr} = k \exp\left(\frac{-E_{\rm a}}{RT}\right)$$
 (12)

where k is the Arrhenius pre-exponential factor. Additionally, the variation of apparent enthalpy (ΔH_a) and apparent entropy (ΔS_a) for the establishment of the activation complex in the transition state possibly determined through the above transition-state

7 equation:
$$i_{corr} = \frac{RT}{Nh} \exp\left(\frac{\Delta S_a}{R}\right) \exp\left(-\frac{\Delta H_a}{RT}\right)$$
 (13)

8 where *N* and *h* are the Avogadro's and the Plank's constants, respectively.

9 The variation of i_{corr} as a function 1/T in both before and since the synthesized compounds match a straight line whose slope equal - E_a/R . A graphic of Ln (i_{corr}/T) versus 1/T10 match a straight line whose slope of $(-\Delta H_a/R)$ and intercept of $(\ln R/Nh + \Delta S_a/R)$. Both 11 graphics are illustrated in Figs. 7 and 6. The estimated values of E_a , ΔH_a and ΔS_a are 12 summariZed in Table 5. The estimated values of E_a for CS in the presence of four kinds of 8-13 hydroxyquinoline derivatives are superior to that of 2 M H₃PO₄ electrolyte. Szauer et al. have 14 clarified that the growing in E_a may be related to a reduced in the adsorption process with 15 increasing temperature [71]. Additionally, the increase value of the E_a may be explained by 16 the proceeding of specific interaction between inhibitor/electrode surface and with 17 electrostatic adsorption, correspondingly. The organic molecules studied have weak basic 18 properties, which promote their protonation in an acidic medium [72]. Mostly attacking the 19 nitrogen atom (N) in the rings imidazole and pyridine moieties, subsequently, they become 20 ionized, that are in equilibrium with the corresponding molecular form (Scheme 2): 21

Scheme 2. Protonation of DCMBQ molecule in 2 M H₃PO₄ medium.

3

Therefore, the solution will contain both the molecular and the cationic forms of the compounds, Moreover, there are specifically adsorbed phosphate ions (they come from the supporting electrolyte, which are usually characterized by low adsorbability). Thus, he appears reasonable to suggest an electrostatic type of adsorption.

8

9 Fig. 7. Ln (i_{corr}) versus 1/T in 2 M H₃PO₄ without and with of optimum concentration of 8-

10 hydroxyquinoline derivatives.

Fig. 8. $Ln(i_{corr}/T)$ versus 1/T in 2 M H₃PO₄ without and with of optimum concentration of synthesized 8-ydroxyquinoline derivatives.

4

5 Table 5

Activation parameters for CS substrate in 2 M H₃PO₄ in the absence and presence of optimum
 concentrations of 8-hydroxyquinoline derivatives.

Medium	R^2	E_{a}	ΔH_a	ΔS_a
		(kJ mol ⁻¹)	(kJ mol ⁻¹)	$(J mol^{-1} K^{-1})$
Blank	0.993	48.14	45.50	-36.02
BIMQ	0.998	55.32	52.68	-23.90
MBMQ	0.999	55.13	52.49	-29.75
CBMQ	0.984	59.39	56.75	-16.26
DCBMQ	0.988	65.39	62.74	-07.92

⁸

Based on the absolute value of ΔH_a it is possible to differentiate between the chemisorption 9 and the physisorption process. For a physisorption adsorption the enthalpy is equal to or lower 10 than 40 100 kJ mol⁻¹ while, a chemisorption it is equal to or higher than 100 kJ mol⁻¹ [72,73]. 11 The obtained values of ΔH_a for all synthesized compounds are superior 40 but lower than 100 12 kJ mol⁻¹ suggest that the adsorption model is combination of physisorption and chemisorption 13 [74]. The ΔS_a values of DCBMQ, CBMQ, MBMQ, BIMQ, and 1M HCl electrolyte are 14 negatives, which reveal that the activated complex in the rate-determining step stands for an 15 association rather than dissociation. The values of the activation energy are superior for 16

inhibited solutions than for uninhibited solution. This could be the result of the adsorption of
four kinds of benzimidazole derivatives on the CS surface, which could be considered a
replacement process of water molecules during adsorption of benzimidazole derivatives on
the CS surface. This observation is in agreement with the findings of other workers [75,20].

5

6 *3.2. Adsorption phenomenon*

7 The scanning electron microscopy (SEM) was realized so as to investigate the impact of different 8-hydroxyquinoline derivatives upon the steel surface morphology. The SEM 8 observations (Figs. 9a-f) of the CS substrate surfaces were taken at same amplification (× 9 10 1100) so as to see the progressions that occurred over corrosion process in the presence and non-attendance of the studied inhibitors in 2 M H₃PO₄ electrolyte. The immerged metal 11 surface in H₃PO₄ solution without inhibitor was emphatically harmed (Fig. 9b) compared to 12 13 the slick and uniform metal surface with just little scratches by abrasive grains before the immersion (Fig. 9a). After added 10⁻³ M of investigated compounds, the damage level of 14 metal surface is astoundingly decreased, which justify the effect inhibitive of studied 15 molecules. Besides, the metal surface in presence of DCBMQ is very smooth and less 16 damaged than other inhibitors. 17

Fig. 9. SEM micrographs of CS surface: a) just after being polished, b) after 6 h immersion in
2 M H₃PO₄ and after 6 h of immersion in 2 M H₃PO₄ containing 10⁻³ M of c) BIMQ, d)
MBMQ, e) CBMQ and f) DCBMQ.

The new synthesized 8-hydroxyquinoline derivatives containing benzimidazole moiety restrain corrosion of the CS by adsorbing onto the metal surface in a corrosive electrolyte. To clear up this adsorption process, various models of adsorption isotherms can be utilized, a better fit of EIS data was obtained through the Langmuir isotherm, which is defined by Eq. 14 [76]:

10
$$\frac{C_{\rm inh}}{\theta} = \frac{1}{K_{\rm ads}} + C_{\rm inh}$$
(14)

11 where K_{ads} named the equilibrium constant for the adsorption process, θ is the surface 12 coverage which is represented by next formula (15):

$$1 \qquad \theta = \frac{\eta z(\%)}{100} \tag{15}$$

2 The K_{ads} values are connected with free energy of adsorption (ΔG_{ads}°) according to the 3 following equation [76]:

$$4 K_{ads} = \frac{1}{55.55} \exp\left(\frac{-\Delta G_{ads}^{\circ}}{RT}\right) (16)$$

5 where *R* is defined as constant molar gas and 55.55 is the concentration of water in solution in 6 mol L^{-1} .

The analysis of Fig. 10 shows that for all the compounds the variation of the ratio C_{inh}/θ as a function of C_{inh} is linear. This indicates that the adsorption of 8-hydroxyquinoline derivatives on the CS surface in phosphoric medium obeys the Langmuir adsorption isotherm. Therefore, the inhibition of corrosion is due to the formation of a single layer on the CS surface [77], limiting the access of the electrolyte. The regression coefficients (R^2) are all close to 1 ($R^2 > 0.999$), confirming the validity of the chosen model.

13

14

Fig. 10. Langmuir isotherm adsorption model of various synthesized 8-hydroxyquinoline derivatives on the CS surface in 2 M H₃PO₄.

17

1	From the intercepts of the straight lines C_{inh}/θ -axis, the K_{ads} values were determined
2	and given in Table 6. The great values of K_{ads} are usually interpreted as an indicator of the
3	adsorption strength between the inhibitor molecules and the CS surface [78]. The calculated
4	ΔG_{ads}^{o} values, using Eq. 16, were also listed in Table 6. The discrimination among
5	chemisorption and physisorption depends on the estimated value of ΔG_{ads}^{o} . For a physisorption
6	mechanism the ΔG_{ads}^{o} of adsorption ought to be equal to or under 20 kJ mol ⁻¹ while, for
7	chemisorption it is equivalent to or superior to 40 kJ mol ⁻¹ [79-81]. According to these
8	informations, the obtained ΔG_{ads}° values indicate that the adsorption mechanism of 8-
9	hydroxyquinoline derivatives on CS surface in phosphoric electrolyte is typical of
10	chemisorption. The negative value of DCBMQ indicates its strong adsorption on the CS
11	surface [82,83]. Moreover, $ \Delta G_{ads}^{\circ} $ of 8-hydroxyquinoline derivatives decreases in the order
12	DCBMQ > CBMQ > MBMQ > BIMQ, this is in great concurrence with the ranking of
13	inhibitive properties got from the electrochemical methods.

15 **Table 6**

16 Thermodynamic parameters for the adsorption of various synthesized 8-hydroxyquinoline 17 derivatives in 2 M H₃PO₄ on the CS at 303 K.

Inhibitor	R^2	K _{ads}	$\Delta G_{ m ads}^{ m o}$	$-Q_{ads}$	$\Delta S_{ m ads}^{ m o}$
		$(10 + M^{-1})$	(kJ mol ⁻¹)	(kJ mol ⁻¹)	(kJ mol ⁻¹)
BIMQ	0.999	9.08	-38.88	-7.64	103.10
MBMQ	0.999	10.07	-39.14	-7.55	104.26
CBMQ	0.999	14.47	-40.05	-11.89	92.94
DCBMQ	1.000	76.25	-44.24	-25.35	62.34

18

19 The estimation of the adsorption heat $(-Q_{ads})$ was assessed from the next equation [84,85]:

20
$$\left(\frac{\theta}{1-\theta}\right) = qC_{inh}\left(\frac{-Q_{ads}}{RT}\right)$$
 (17)

21 where *q* is a constant, C_{inh} is the inhibitor concentration, θ is the occupied, $(1 - \theta)$ is the 22 vacant site not occupied by the inhibitor [86]. Fig. 11. illustrates the variation of Ln $[\theta/(1 - \theta)]$

as a function of the inverse of the temperature for the different synthesized compounds. The 1 lines obtained have a slope equal to $(-Q_{ads}/R)$. The negative values of $-Q_{ads}$, given in Table 2 6, indicated that the adsorption of used inhibitors on the CS surface is exothermic. In other 3 words, the negative $-Q_{ads}$ values exhibit that the rate of adsorption and the inhibition 4 efficiency decreased with increase in temperature also supporting physical adsorption [87]. It 5 is reported that the adsorption heat might be approximately considered as the standard 6 enthalpy of adsorption (ΔH_{ads}^{o}) under studied conditions [60,88]. Therefore, the standard 7 adsorption entropy (ΔS_{ads}^{o}) was obtained based on following thermodynamic basic equation 8 [87,88]: 9

$$10 \qquad \Delta G_{\rm ads}^{\rm o} = \Delta H_{\rm ads}^{\rm o} - T \ \Delta S_{\rm ads}^{\rm o} \tag{18}$$

11 The obtained ΔS_{ads}^{o} values in the presence of studied compounds are huge and positive (Table 12 6), uncovers that a decline in disordering during the passage of from reactant to the activated 13 complex [89].

14

15

Fig. 11. Ln ($\theta/(1-\theta)$) vs. 1/*T* for adsorption of synthesized 8-hydroxyquinoline derivatives on the CS surface.

1 X-ray photoelectron spectroscopy (XPS) analysis was performed to provide insight to 2 the adsorption mechanism of the 8-hydroxyquinoline derivatives and to investigate the composition of the organic adsorbed layer on the CS surface in the phosphoric acid medium. 3 High-resolution XPS spectra (C 1s, N 1s, O 1s, Cl 2p, P 2p and Fe 2p), obtained from carbon-4 steel sample subsequent of immersion in 2 M H₃PO₄ with 10⁻³ M of inhibitor at 303 K are 5 shown in Fig. 12. Only XPS results of DCBMQ are presented. XPS spectra show complex 6 7 forms, which were assigned to the corresponding species through a deconvolution fitting procedure using the CASA XPS software. 8

The deconvolution of the C 1s spectrum may be fitted into four components, 9 10 indicating different carbon environments, located at 285.0, 286.0, 288.8 and 290.2 eV (Fig. 12, Table 7). The first component, has the largest contribution (61 %), can be assigned to the 11 C-C, C=C and C-H bonds in the DCBMQ molecule [90]. The second constituent is mainly 12 ascribed to the C–N, C=N and C-O bonds [91]. The third component can be associated to the 13 carbon atom of the $C=N^+$ in 8-quinolinol and in benzimidazole moieties in the DCBMQ 14 15 molecule [92], resulting probably from the protonation of the =N- structure, as described in the Scheme 2, and/or the coordination of nitrogen with the iron of steel surface. The last and 16 17 less intense component (2 %) at binding energy (290.2 eV) can be ascribed to shake-up satellite due to $\pi - \pi^*$ transitions in aromatic rings [93]. 18

The high-resolution Cl 2p core-level of CS substrate covered with DCMBQ is best resolved with at least two spin–orbit-split doublets (Cl $2p_{1/2}$ and Cl $2p_{3/2}$) as illustrated in Fig. 12, with binding energy for Cl $2p_{3/2}$ peak lying at about 200.5 eV [94]. This component can be associated to Cl–C bond of Cl₂C₆H₂ group [94], belonging to the DCMBQ molecule.

Fig. 12. High-resolution X-ray photoelectron deconvoluted profiles of C 1s, N 1s, Cl 2p,
 O 1s, P 2p and Fe 2p_{3/2} for DCBMQ treated CS substrate.

Table 7 1

3

Binding energies (eV), relative intensity and their assignment for the major core lines 2 observed of DCMBO treated CS substrate

Element	Position	Assignment		
	(eV)	-		
C 1s	285.0 (61 %)	С–Н / С–С / С=С		
	285.9 (25 %)	C-N / C=N / C-O		
	288.8 (12 %)	$C=N^+$		
	290.2 (2 %)	π – π * shakeup satellite		
N 1s	400.0 (79 %)	=N- structure, N-C		
	401.9 (21 %)	$=N^{+}H$		
O 1s	530.1 (12 %)	O^{2-} in Fe ₂ O ₃ / O=P in FePO ₄		
	531.6 (84 %)	OH ⁻ in FeOOH / (P–O in FePO ₄) / C–O		
	533.3 (4 %)	Adsorbed H ₂ O		
Cl 2p	200.5 (83 %)	Cl–C (Cl 2p _{3/2})		
_	202.0 (17 %)	Cl–C (Cl 2p _{1/2}		
P 2p	133.4 (72 %)	$P 2p_{3/2} (PO_4^{3-} in FePO_4)$		
-	134.3 (28 %)	P $2p_{1/2}$ (PO ₄ ³⁻ in FePO ₄)		
Fe 2p _{3/2}	707.1 (4 %)	Fe^0		
	710.9 (33 %)	Fe^{3+} in Fe_2O_3 and in FeOOH		
	711.6 (63 %)	Fe ³⁺ in FeOOH and in FePO ₄		

4

The investigated bare CS is nitrogen free [95] and therefore, the adsorption of 5 8-hydroxyquinoline derivatives on the steel surface can be explained based especially on the 6 N 1s signal presence. The surveyed spectrum for N 1s of protected carbon steel with DCBMQ 7 8 in 2 M H₃PO₄ can be fitted into two main components indicating therefore the presence of two chemical states of nitrogen (Fig. 12, Table 7). The presence of the N species demonstrates 9 that the investigated 8-hydroxyquinoline derivative (DCMBQ) molecules are adsorbed on the 10 steel surface. Indeed, the first N 1s component, located at 400.0 eV, has the largest 11 contribution (79%) and can be attributed to the C-N in the benzimidazole moiety and to the 12 unprotonated N atom (=N- structure) in the 8-quinolinol and benzimidazole moieties [96]. It 13 is significant that this component slightly shifted to higher binding energy side ($\Delta E_b = 0.51$ 14 eV) compared to that one observed in the case of pure DCMBQ (Fig. 13). The same trend is 15 shown in the case of the other 8-hydroxyquinoline derivatives (Table 8). This behavior was 16 explained by the coordination of the unprotonated N with the iron atom of steel surface, i.e. 17 formation of N-Fe bond complex, which leads to a positive polarization of the nitrogen atom, 18 19 and therefore a core-level chemical shift to higher binding energy is produced [97,98]. The

second N 1s component, located at 401.9 eV, component may be associated to the positively charged nitrogen, and could be related to protonated nitrogen atoms (=N⁺H–) in the 8quinolinol and benzimidazole moieties in the DCBMQ molecule [99,100]. On the basis on the N 1s XPS results, we can conclude that the adsorption occurs through chemical chelation of the vacant d orbitals of iron with the lone sp^2 electron pairs present on the N atom (=N– structure) in the 8-quinolinol and in benzimidazole moieties of the investigated inhibitors.

8

7

Fig. 13. High-resolution X-ray photoelectron deconvoluted profile of N 1s for a-pure
 DCBMQ and b- DCBMQ treated CS substrate in 2 M H₃PO₄ medium.

11

1 **Table 8**

2 Shift binding energy values for N 1s component (=N- structure) of 8-hydroxyquinoline 3 derivatives before and after immersion in 2 M H₃PO₄ medium.

	Inhibitor	$\Delta E_{\rm b} ({\rm eV})$
	BIMQ	0.70
	MBMQ	0.63
	CBMQ	0.32
	DCBMQ	0.51
-		

The O 1s spectrum for CS surface after immersion in 2 M H₃PO₄ solution containing 5 DCMBQ can be resolved into three components (Fig. 12, Table 7). The first one, at 530.1 eV, 6 is attributed to oxygen double bonded to Fe³⁺ in the iron oxide (Fe₂O₃) [101] and non-7 bridging oxygen in the phosphate group (P=O) [94]. The second component, located at. 531.6 8 eV, is the most intense one (80 %), can be assigned to combined effects of singly bonded 9 10 oxygen (-O-) in Fe-O, in P-O and in C-O-H groups. Indeed, this component can be partly ascribable to OH⁻ of hydrous iron oxides, such as FeOOH [102] and to O-P in the adsorbed 11 phosphate group (PO_4^{3-}) [103] and partly assigned to singly bonded oxygen (-O-) in C-O and 12 in O-H which are present in the DCMBQ molecules [104]. However, the separation of 13 inorganic (O in FeOOH, phosphates) and organic oxygen (O in carbonyl groups) 14 15 contributions since O 1s signal is not possible [105]. The latest at 533.3 eV can be attributed to oxygen of adsorbed water [106], which remained on the surface after drying the sample. 16

The P 2p spectrum of CS surface after immersion in 2 M H₃PO₄ solution containing DCMBQ was fitted into two asymmetric main components ~0.9 eV apart, assigned to P $2p_{3/2}$ at 133.5 eV and P $2p_{1/2}$ at 134.4 eV, due to spin splitting, as given in Fig. 12. This is attributed to PO₄³⁻ in agreement with the presence of the FePO₄ as detected in the O 1s spectrum [103].

From the Fe2p signal in Fig. 12 for the CS surface covered with DCMBQ, two characteristic peaks $Fe2p_{1/2}$ at 725 eV (not given) and $Fe2p_{3/2}$ at 711 due to spin splitting are evident. The deconvolution of the high resolution Fe $2p_{3/2}$ XPS spectrum consists in three main components, as shown in Fig. 12 and Table 7, corresponding to the same groups combining oxygen to iron, observed in the case of the O 1s signal: Fe₂O₃, FeOOH and FePO₄.
The first one, at 707.1 eV, was attributed to metallic iron [92]. The second one at 710.9 eV
may be associated to ferric oxide species such as Fe₂O₃ (i.e., Fe³⁺ oxide) and/or to ferric
hydroxide species such as FeOOH [92]. The latest, at 711.6 eV, presents the highest
contribution (62 %), can be associated to the presence of FeOOH and FePO₄ [92,107].

XPS surface elemental analyses of DCMBQ extract and DCMBQ-treated steel 6 samples were also performed and given in Table 9. In both cases, the sum of the atom 7 concentrations was normalized to 100% in order to easily compare surface concentrations for 8 the different elements. Inspection of the obtained results shows the presence of N atom (3.72 9 10 %) on the steel surface probably due to the DCMBQ adsorption through chemical chelation of the lone sp² electron pairs present on the N atom of the hetercocyclic ring of 11 8-hydroxyquinoline derivative with the vacant d orbitals of iron. The atom concentration of 12 13 oxygen is high in the case of DCMBQ-treated steel sample (38.25 %) compared to that of DCMBQ powder (13.51 %) (Table 8). This difference is normally due to the formation of 14 oxidized species (Fe₂O₃, FeOOH and FePO₄) in 2 M H₃PO₄ and therefore DCMBQ molecules 15 are incorporated into the oxide/hydroxide iron layer formed on the CS surface. The 16 appearance of phosphorus element (4.56 %) on the steel surface confirms the formation of 17 FePO₄ due to the testing medium (2 M H₃PO₄). 18

The above XPS detail analyses (qualitative and quantitative) demonstrate that the presence of chemical (chemisorption) interactions between surface steel ions and DCMBQ and confirm the adsorption isotherm findings. The addition of this 8-hydroxyquinoline derivative in the corrosive solution promotes the formation of the stable metal-organic complex (DCMBQ/Fe) and an insoluble oxide layer leading to reduce the attack of acid ions as well as restraining the corrosion process simultaneously.

Table 9

Element	DCMBQ powder	DCMBQ treated-steel
С	72.66	49.05
0	13.51	38.25
Ν	7.71	3.72
Fe	_	4.41
Р		4.56
Cl	6.12	

2 Surface elemental concentrations (% At.) in DCMBQ powder and DCMBQ treated-steel

3.3. Quantum chemical calculations

DFT/B3LYP/6-31+G(d,p) optimized structures of BIMQ, CBMQ, DCBMQ and MBMQ are shown in Fig. 14. It was observed that the quinolin-8-ol ring and benzimidazole ring are not on the same plane as the two rings have a torsion angle of about 79°-82° depending on the molecule. In other words, there is a need to identify the ring moiety that has the maximum overlap with mild steel in the adsorption process. Though the variation in the dihedral angles (listed in Fig. 14) does not follow a particular trend, it is noteworthy that BIMQ with the largest torsion angle, -81.50° (between the two rings) has the lowest inhibition efficiency, while DCBMQ with the lowest torsion angle, 79.24° has the highest inhibition efficiency recorded from the experiments. This suggests that planarity of the molecules might influence their corrosion inhibition efficiency [108-110].

9 Fig. 14. Optimized structures of the neutral and protonated forms of the studied
 8-hydroxyquinoline derivatives.

The frontier molecular orbitals electron density isosurfaces are shown in Fig. 15. The 12 distribution of highest occupied molecular orbital (HOMO) electron density for the molecules 13 14 revealed that the major orbitals that contribute to the HOMO are those of the quinolin-8-ol moiety. Surprisingly the electron density of the lowest occupied molecular orbitals are also 15 distributed over the quinolin-8-ol ring. These observations could lead one to assume that the 16 17 inhibitor molecules would preferably interact with mild steel via the quinolin-8-ol. The adsorption of the inhibitor molecules on mild steel surface might be through the plane of 18 quinolin-8-ol ring. 19

- 20
- 21
- 22

Fig. 15. HOMO and LUMO electron density isosurfaces of the investigated
 8-hydroxyquinoline derivatives (isosurfave value = 0.02).

Selected quantum chemical parameters or reactivity indices of the studied inhibitor 4 molecules (both neutral and protonated) are listed in Table 10. The studied compounds are 5 more prone to protonation on the sp^2 benzimizable nitrogen since benzimidazole is more 6 7 basic (having a smaller pK_b) than quinoline [111]. Therefore, the protonated species were considered as those in which the proton is attached to the benzimidazole sp^2 nitrogen. For a 8 conventional corrosion inhibitor whose reactivity is governed by its frontier molecular 9 orbitals behavior, higher HOMO energy (E_{HOMO}) and lower LUMO energy (E_{LUMO}) are 10 associated with higher tendency to donate electron to vacant metallic orbital, and hence higher 11 corrosion inhibition efficiency [112]. Few instances of lower E_{LUMO} as an indication of 12 possible back-donation from occupied orbitals of the metal to the anti-bonding orbitals of the 13 inhibitor and a drive for improved adsorption of the inhibitor molecules on the metal surface 14 15 have also been documented [113,114].

16 The trend of E_{HOMO} values in Table 10 when compared with the order of inhibition 17 efficiencies does not support increasing inhibition efficiency with increasing E_{HOMO} . 1 However, a near linear correlation was observed for the E_{LUMO} values in comparison with the

2 order of inhibition efficiencies recorded from the experiments (DCBMQ > CBMQ > MBMQ

3 > BIMQ) such that DCBMQ with the lowest E_{LUMO} has the highest inhibition efficiency.

4

5 **Table 10**

6 Quantum chemical parameters for the neutral and protonated forms of of 8-hydroxyquinoline

7 derivatives obtained using the B3LYP/6-31+G(d,p)//IEFPCM model.

Parameters→	$E_{\rm HOMO}$	E_{LUMO}	ΔE	η	χ	ΔN	Dipole moment	
Inhibitor↓	(eV)	(eV)	(eV)	(eV)	(eV)		(Debye)	
Neutral species								
BIMQ	-6.116	-1.835	4.281	2.140	3.975	0.197	5.031	
CBMQ	-6.130	-1.842	4.288	2.144	3.986	0.195	3.767	
DCBMQ	-6.141	-1.850	4.291	2.145	3.995	0.192	5.309	
MBMQ	-6.107	-1.830	4.277	2.139	3.969	0.199	5.218	
			Proto	nated specie	es			
IMQ-H ⁺	-6.319	-1.978	4.341	2.171	4.148	0.155	13.364	
CBMQ-H ⁺	-6.328	-2.288	4.040	2.020	4.308	0.127	8.947	
DCBMQ-H ⁺	-6.338	-2.282	4.055	2.028	4.310	0.126	6.545	
MBMQ-H ⁺	-6.311	-1.972	4.339	2.169	4.142	0.156	12.352	

8

Furthermore, electronegativity is a measure of the ability of a molecule to retain its 9 10 pairs of electrons. The order of electronegativity of the inhibitors is DCBMQ > CBMQ > 11 MBMQ \approx BIMQ, which suggests than the corrosion inhibition potentials of the molecules might be related with the tendency of the molecules to accept electrons from occupied 12 metallic orbitals. The dipole moments for the neutral inhibitor molecules do not correlate with 13 the observed trend of inhibition efficiencies. However, the dipole moments for the protonated 14 species suggest that a protonated molecule with lower dipole moment is better disposed to 15 accumulation in the surface layer of the metal and therefore has higher corrosion inhibition 16 efficiency [112,115,116]. 17

- 19
- 20

2 Adsorption of the studied inhibitor molecules on mild steel surface was modelled in the absence and presence of phosphoric acid ions. The equilibirium configurations for the 3 adsorption the molecules on Fe(110) both in isolation and in the presence of $60 \text{ H}_3\text{O}^+$ and 204 PO₄³⁻ are shown in Fig. 16. It is evident from BIMQ/Fe(110), CBMQ/Fe(110), 5 DCBMQ/Fe(110) and MBMQ/Fe(110) that the inhibitor molecules adsorb on Fe(110) surface 6 7 via the plane of the quinolin-8-ol moiety as the plane of the ring lies nearly flat to the metallic surface. Since the inhibitor molecules would compete with acidic ions (H_3O^+ and PO_4^{3-}), the 8 adsorption of inhibitor molecules in the presence of these ions was also examined and the 9 10 equilibirium configurations in Fig. 16 revealed that the studied inhibitor molecules have good tendency of displacing the corrosive acidic ions from the metallic surface. Adsorption 11 energies of the optimized inhibitor-Fe(110) complexes without and with acidic ions are listed 12 13 in Table 11. The order of increasing magnitude of the adsorption energy (E_{ads}) for the adsorption of isolated inhibitor molecule (in the absence of corrosive acidic ions) is DCBMQ 14 $(E_{ads} = -666.99 \text{ kJ/mol}) > CBMQ (E_{ads} = -646.24 \text{ kJ/mol}) > MBMQ (E_{ads} = -642/77 \text{ kJ/mol}) >$ 15 BIMQ ($E_{ads} = -621.11$ kJ/mol). Similar trend was obtained for the adsorption of inhibitor 16 molecules in the presence of acidic ions. The simulation results are in good agreeement with 17 18 the experimentally observed trend of corrosion inhibition efficiencies.

19

20

- Δ

Table 11

Estimated energy values for the adsorption of 8-hydroxyquinoline derivatives on Fe(110)

surface in the absence and presence of 60 molecules of H_3O^+ and 20 molecules of PO_4^{3-} obtained from Monte Carlo simulation.

System	E _{ads} (kJ/mol)
BIMQ/Fe(110)	-621.11
CBMQ/Fe(110)	-646.24
DCBMQ/Fe(110)	-666.99
MBMQ/Fe(110)	-642.77
$BIMQ + 60 H_3O^+ + 20 PO_4^{3-}/Fe(110)$	-775.38
$CBMQ + 60 H_3O^+ + 20 PO_4^{3-}/Fe(110)$	-856.85
$DCBMQ + 60 H_3O^+ + 20 PO_4^{3-}/Fe(110)$	-831.08
$MBMQ + 60 H_3O^+ + 20 PO_4^{3-}/Fe(110)$	-808.74

1 **4. Conclusions**

2 Four new the 8-ydroxyquinoline derivatives containing benzimidazole moiety were synthesized and identified by ¹H, ¹³C NMR and elemental analysis. The impact of these four 3 heterocyclic compounds on the corrosion inhibition for carbon steel in 2 M H₃PO₄ solution 4 was investigated using experimental and theoretical techniques. The experimental results 5 showed that the chemical structure of the 8-ydroxyquinoline derivatives containing 6 7 benzimidazole moiety impairs the inhibitory efficiency, generally they are good to excellent protection for steel corrosion. At the concentrations studied, inhibition performance follows 8 the sequence DCBMQ > CBMQ > MBMQ > BIMQ. The results obtained from 9 potentiodynamic polarization data indicate that the investigated compounds are mixed type 10 inhibitors. Impedance studies were analysed using an equivalent circuit for effects of 11 concentration and temperature for all tested inhibitors. All 8-ydroxyquinoline derivatives are 12 adsorbed on the metal surface according to Langmuir adsorption isotherm model and the 13 corresponding values of $\Delta G_{ads}^{\rm o}$ revealed that their adsorption mechanism on steel surface is 14 mainly due to chemisorption. XPS results confirm the thermodynamic findings and reveal the 15 16 formation of protective film on the carbon steel surface in 2 M H₃PO₄ medium, composed by an iron oxide/hydroxide/phosphates layer, in which the 8-hydroxyquinoline molecules are 17 incorporated. Both the computational DFT calculations and Monte Carlo simulations results 18 revealed that the inhibitor molecules adsorb on mild steel surface through the 8-19 hydroxyquinoline ring plane and the theoretical parameters correlate reasonably with the trend 20 21 of experimental inhibition efficiencies.

22

23 Conflicts of interest

24

25 The authors declare no conflicts of interest.

1 References

- 2
- 3 [1] M. El Faydy, F. Benhiba, B. Lakhrissi, M. Ebn Touhami, I. Warad, F. Bentiss, A. Zarrouk, J. Mol.
- 4 Liq. 295 (2019) 111629.
- [2] D.S. Chauhan, M.A. Quraishi, A.A. Sorour, S.K. Saha, P. Banerjee, RSC Adv. 9 (2019) 14990–
 15003.
- 7 [3] W. Guo, S. Chen, Y. Feng, C. Yang, J. Phys. Chem. C 111 (2007) 3109–3115.
- 8 [4] N.O. Eddy, E.E. Ebenso, Afr. J. Pure Appl. Chem. 2 (2008) 107–115.
- 9 [5] M. El Faydy, M.Galai, R. Touir, A. El Assyry, Touhami, B. Lakhrissi, A. Zarrouk, J. Mater.
- 10 Environ. Sci. 7 (2016) 1406–1416
- 11 [6] I.B. Obot, S.A. Umoren, N.O. Obi-Egbedi, Int. J. Electrochem. Sci. 7 (2012) 10215–10232.
- 12 [7] H. Zarrok, S. S. Al-Deyab, A. Zarrouk, R. Salghi, B. Hammouti, H. Oudda, M. Bouachrine, F.
- 13 Bentiss, Int. J. Electrochem. Sci. 7 (2012) 4047–4063.
- 14 [8] A. Zarrouk, B. Hammouti, H. Zarrok, M. Bouachrine, K.F. Khaled, S.S. Al-Deyab, T.B. Hadda,
- 15 Int. J. Electrochem. Sci. 6(2012) 6353–6364.
- 16 [9] H. Zarrok, K. Al Mamari, A. Zarrouk, R. Salghi, B. Hammouti, S. S. Al-Deyab, E. M. Essassi, F.
- 17 Bentiss, H. Oudda, Int. J. Electrochem. Sci. 7 (2012) 10338–10357.
- 18 [10] A.K. Singh, M.A. Quraishi, Mater. Chem. Phys. 123 (2010) 666–677.
- [11] M. El Faydy, M. Galai, A. El Assyry, A. Tazouti, R. Touir, B. Lakhrissi, M. Ebn Touhami, A.
 Zarrouk, J. Mol. Liq. 219 (2016) 396–404.
- 21 [12] A.K. Singh, B. Chugh, S.K. Saha, P. Banerjee, E.E. Ebenso, S. Thakur, B. Pani, Results. Phys. 14
- 22 (2019) 102383.
- 23 [13] H. Zarrok, H. Oudda, A. El Midaoui, A. Zarrouk, B. Hammouti, M. Ebn Touhami, A. Attayibat,
- 24 S. Radi, R. Touzani, Res. Chem. Intermediat. 38 (2012) 2051–2063.
- [14] A. Ghazoui, A. Zarrouk, N. Bencaht, R. Salghi, M. Assouag, M. El Hezzat, A. Guenbour, B.
 Hammouti, J. Chem. Pharm. Res. 6 (2014) 704–712.
- [15] H. Zarrok, A. Zarrouk, R. Salghi, H. Oudda, B. Hammouti, M. Assouag, M. Taleb, M. Ebn
 Touhami, M. Bouachrine, S. Boukhris, J. Chem. Pharm. Res. 4 (2012) 5056–5066.
- 29 [16] M.A. Hegazy, M. Abdallah, M.K. Awad, M. Rezk, Corros. Sci. 81 (2014) 54–64.
- 30 [17] M.H.M. Hussein, M.F. El-Hady, H.A.H. Shehata, M.A. Hegazy, H.H.H. Hefni, J. Surfactants
- 31 Deterg. 16 (2013) 233–242.
- [18] V.V. Torres, R.S. Amado, C.F. de Sá, T.L. Fernandez, C.A.S. Riehl, A.G. Torres, E. D'Elia,
 Corros. Sci. 53 (2011) 2385–2392.
- 34 [19] M.A. Hegazy, A.M. Badawi, S.S. Abd El Rehim, W.M. Kamel, Corros. Sci. 69 (2013) 110–122.
- 35 [20] I.B. Obot, N.O. Obi-Egbedi, Curr. Appl. Phys. 11 (2011) 382–392.
- 36 [21] M.E. Belghiti, Y. Karzazi, A. Dafali, I.B. Obot, E.E. Ebenso, K.M. Emran, I. Bahadur,
 37 B.Hammouti, F. Bentiss, J. Mol. Liq. 216 (2016) 874–886.
- 38 [22] H. About, M. El Faydy, F. Benhiba, Z. Rouifi, M. Boudalia, A. Guenbour, H. Zarrok, B.
- 39 Lakhrissi, H. Oudda, I. Warad, A. Zarrouk, J. Bio. Tribo. Corros. 5 (2019) 50
- 40 [23] X.H. Li, S.D. Deng, H. Fu, Corros. Sci. 53 (2011) 3704–3711.
- 41 [24] X.H. Li, S.D. Deng, H. Fu, Corros. Sci. 53 (2011) 664–670.
- 42 [25] H. Zarrok, A. Zarrouk, R. Salghi, B. Hammouti, M. Elbakri, M. Ebn Touhami, F. Bentiss, H.
- 43 Oudda, Res. Chem. Intermediat. 40 (2014) 801–815.
- [26] Y.J. Yang, Y.K. Li, L. Wang, H. Liu, D.M. Lu, L. Peng, Int. J. Electrochem. Sci. 14 (2019) 3375–
 3392.
- 46 [27] EG. Ebrahimi, J. Neshati, F. Rezaei, Prog .Org. Coat. 105 (2017) 1–8.
- 47 [28] T. Poornima, J. A. Nayak, N. Shetty, Corros. Sci. 53 (2011) 3688–3696.
- [29] M. Benabdellah, R. Touzani, A. Dafali, B. Hammouti, S. El Kadiri, Mater. Lett. 61 (2007) 1197–
 1204.
- 50 [30] D. Ben Hmamou, A. Zarrouk, R. Salghi, H. Zarrok, Eno E. Ebenso, B. Hammouti, M.M.
- 51 Kabanda, N. Benchat, O. Benali, Int. J. Electrochem. Sci. 9 (2014) 120–138.
- 52 [31] D. Ben Hmamou, R. Salghi, A. Zarrouk, H. Zarrok, B. Hammouti, S. S. Al-Deyab, A. El Assyry,
- 53 N. Benchat, M. Bouachrine, Int. J. Electrochem. Sci. 8 (2013) 11526–11545.
- 54 [32] M. Belayachi, H. Serrar, H. Zarrok, A. El Assyry, A. Zarrouk, H. Oudda, S. Boukhris, B.
- Hammouti, Eno E. Ebenso, A. Geunbour, Int. J. Electrochem. Sci. 10 (2015) 3010–3025.

- 1 [33] M.A. Hegazy, J. Mol. Liq. 208 (2015) 227–236.
- 2 [34] R.S. Keri, S.A. Patil, Biomed. Pharmacother. 68 (2014) 1161–1175
- 3 [35] P. Singh, V. Srivastava, M.A. Quraishi, J. Mol. Liq. 216 (2016) 164–173.
- 4 [36] W. Zhang, R. Ma, H. Liu, Y. Liu, S. Li, L. Niu, J. Mol. Liq. 222 (2016) 671–679.
- 5 [36] N. Du, Q. Mei, M. Lu, Synthetic Met. 149 (2005) 193–197.
- 6 [38] B. Himmi, S. Kitane, A. Eddaif, J. Joly, F. Hlimi, F. Soufiaoui, M. Bahloul, A. Sebban, J.
- 7 Heterocyclic. Chem. 45 (2008) 1023–1026.
- [39] V. D.Warner, J. N. Sane, D. B. Mirth, S. S. Turesky, B. Soloway, J. Med. Chem. 19 (1976) 167–
 169.
- 10 [40] M. Tourabi, K. Nohair, M. Traisnel, C. Jama, F. Bentiss, Corros. Sci. 75 (2013) 123–133.
- 11 [41] D.A. Shirley, Phys. Rev. B 5 (1972) 4709–4714.
- 12 [42] A.D. Becke, J. Chem. Phys 98 (1993) 5648–5652.
- 13 [43] A. D. Becke, Phys. Rev. A 38 (1988) 3098–3100.
- 14 [44] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
- 15 [45] J.H. Christensen, A.J. Smith, R.B. Reed, K.L. Elmore, J. Chem. Eng. Data 11(1966) 60–63.
- [46] H.P.R. Frederiske, Dielectric measurements, in: T.F. Connolly (Ed.), Electr. Prop. Solids, first
 ed., Plenum Press, London, 1972, pp. 85–147.
- 18 [47] K.O. Sulaiman, A.T. Onawole, Comput. Theor. Chem. 1093 (2016) 73–80.
- 19 [48] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G.
- 20 Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al. Gaussian 09, Revision D.01; Gaussian, Inc.:
- 21 Wallingford CT, 2009.
- 22 [49] M. El Faydy, R. Touir, M. Ebn Touhami, A. Zarrouk, C. Jama, B. Lakhrissi, L. O. Olasunkanmi,
- 23 E. E. Ebenso, F. Bentiss, Phys. Chem. Chem. Phys. 20 (2018) 20167–20187.
- 24 [50] A. Kokalj, Chem. Phys. 393 (2012) 1–12.
- 25 [51] H. Lgaz, R. Salghi, I.H. Ali, Int. J. Electrochem. Sci. 13 (2018) 250–264.
- 26 [52] R.G. Pearson, Inorg. Chem. 27 (1988) 734–740.
- 27 [53] K. Marusic, H.O. Curkovic, H. Takenouti, Electrochim. Acta 56 (2011) 7491–7502.
- 28 [54] N.A. Negm, N.G. Kandile, I.A. Aiad, M.A. Mohammad, Colloid. Surface 391 (2011) 224–233.
- 29 [55] D.K. Yadav, M.A. Quraishi, B. Maiti, Corros. Sci. 55 (2012) 254–266.
- 30 [56] A.A. Hermas, M.S. Morad, M.H. Wahdan, J. Appl. Electrochem. 34 (2004) 95–102.
- [57] C.M. Palomar-Pardavé, M. Romero-Romo, H. Herrera-Hernández, M.A. Abreu-Quijano, N.V.
 Likhanova, J. Uruchurtu, J.M. Juárez-García, Corros. Sci. 54 (2012) 231–243.
- 33 [58] S.S. Abdel Rehim, H.H. Hassan, M.A. Amin, Appl. Surf. Sci. 187 (2002) 279–290.
- [59] M.A. Amin, S.S.A. El-Rehim, E.E.F. El-Sherbini, R.S. Bayoumi, Electrochim. Acta. 52 (2007)
 3588–3600.
- 36 [60] A.K. Singh, M.A. Quraishi, Corros. Sci. 52 (2010) 152–160.
- 37 [61] R.S. Goncalves, D.S. Azambuja, A.M. Serpa Lucho, Corros. Sci. 44 (2002) 467–479.
- [62] D.S. Chauhan, K.R. Ansari, A.A. Sorour, M.A. Quraishi, H. Lgaz, R. Salghi, Int. J. Biol.
 Macromol. 107 (2018) 1747–1757.
- 40 [63] M. Abdallah, M.A. Hegazy, M. Alfakeer, H. Ahmed, Green. Chem. Lett. Rev. 11(2018) 457–468.
- [64] R. Macdonald, D.R. Franceschetti, in: J.R. Macdonald (Ed.), Impedance Spectroscopy, Wiley,
 New York, 1987, p. 96.
- 43 [65] D.A. Lopez, S.N. Simison, S.R. de Sanchez, Acta 48 (2003) 845–854.
- 44 [66] S. Martinez, M. Metikoš-Huković, J. Appl. Electrochemi. 33 (2003) 1137–1142.
- [67] N. Labjar, M. Lebrini, F. Bentiss, N.E. Chihib, S. El Hajjaji, C. Jama, Mater. Chem. Phys. 119
 (2010) 330–336.
- [68] M. El Faydy, B. Lakhrissi, A. Guenbour, S. Kaya, F. Bentiss, I. Warad, A. Zarrouk, J. Mol. Liq.
 280 (2019) 341–359.
- [69] B. Chugha, A.K. Singh, S. Thakura, B. Panic, A.K. Pandeya, H. Lgaz, I.M. Chungd, E.E. Ebenso,
 J. Phys. Chem. C (2019) 22897–22917.
- [70] M. El Faydy, M. Rbaa, L. Lakhrissi, B. Lakhrissi, I. Warad, A. Zarrouk, I. B. Obot, Surf. Interf.
 14 (2019) 222–237.
- 53 [71] T. Szauer, A. Brandt., Electrochim. Acta 26 (1981) 1253–1256.
- 54 [72] A. Popova, M. Christov, A. Zwetanova, Corros. Sci. 49 (2007) 2131–2143.
- 55 [73] A. Popova, E. Sokolova, S. Raicheva, M. Chritov, Corros. Sci. 45 (2003) 33–41.

- 1 [74] C. Verma, A. Singh, G. Pallikonda, M. Chakravarty, M. A. Quraishi, I. Bahadur, E.E. Ebenso, J.
- 2 Mol. Liq. 209 (2015) 306–319.
- 3 [75] D.K. Yadav, M.A. Quraishi, Ind. Eng. Chem. Res. 51 (2012) 14966–14979.
- [76] F. Bentiss, M. Bouanis, B. Mernari, M. Traisnel, H. Vezin, M. Lagrenée, Appl. Sur. Sci. 253
 (2007) 3696–3704.
- [77] A.K. Singh, S. Thakur, B. Pani, E.E. Ebenso, M. A. Quraishi, A.K. Pandey, ACS Omega 3 (2018)
 4695–4705.
- [78] R. K. Gupta, M. Malviya, K.R. Ansari, H. Lgaz, D.S.Chauhan, M.A. Quraishi, Mater. Chem.
 Phys. 236 (2019) 121727.
- [79] F. Bentiss, M. Traisnel, H. Vezin, H.F. Hildebrand, M. Lagrenée, Corros. Sci. 46 (2004) 2781–
 2792.
- [80] F. Bentiss, M. Lebrini, M. Lagrenée, M. Traisnel, A. Elfarouk, H. Vezin, Electrochim. Acta
 52(2007) 6865–6872.
- 14 [81] I. Lukovits, A. Shaban, E. Kalman, Electrochim. Acta 50 (2005) 4128–4133.
- 15 [82] A. K. Singh, S. Thakur, B. Pani, G. Singh, New J. Chem. 42 (2018) 2113–2124.
- [83] M. El Faydy, M. Galai, M.E. Touhami, I.B. Obot, B. Lakhrissi, A. Zarrouk, J. Mol. Liq. 248
 (2017) 1014–1027.
- [84] F.H.M. Azahar, S. Mitra, A. Yabushita, A. Harata, B.B. Saha, K. Thu, Appl. Therm. Eng. 143(2018) 688–700.
- [85] E.E. Oguzie, V.O. Njoku, C.K. Enenebeaku, C.O. Akalezi, C. Obi, Corros. Sci. 50 (2008) 3480 3486.
- 22 [86] E. A. Noor, A. H. Al-Moubaraki, Mater. Chem. Phys. 110 (2008) 145–154.
- 23 [87] G. Avci, Colloid Surface A, 317 (2008), 730-736.
- 24 [88] S.M.A. Hosseini, A. Azimi, Corros. Sci. 51(2009), 728–732.
- 25 [89] M. Sahin, S. Bilgic, H. Yılmaz, Appl. Surf. Sci. 195 (2002) 1–7.
- [90] D. Briggs and M.P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron
 Spectroscopy, John Wiley & Sons Ltd., Sussex, 1983 (Section 9.4 and Appendix 2).
- [91] H. Ouici, M. Tourabi, O. Benali, C. Selles, C. Jama, A. Zarrouk, F. Bentiss, J. Electroanal. Chem.
 803 (2017) 125–134.
- 30 [92] M. Bouanis, M. Tourabi, A. Nyassi, A. Zarrouk, C. Jama, F. Bentiss, Appl. Surf. Sci. 389 (2016)
 31 952–966.
- [93] A.M. Puziya, O.I. Poddubnaya, R.P. Socha, J. Gurgul, M. Wisniewski, Carbon 46 (2008) 2113–
 2123.
- [94] F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in: J. Chastain (Ed.), Handbook of X-Ray
 Photoelectron Spectroscopy, Perkin-Elmer Corp., Minnesota, USA, 1992.
- [85] F.Z. Bouanis, F. Bentiss, S. Bellayer, M. Traisnel, J.B. Vogt, C. Jama, Mater. Chem. Phys. 127
 (2011) 329–334.
- [96] O. Olivares, N.V. Likhanova, B. Gómez, J. Navarrete, M.E. Llanos-Serrano, E.Arce, J.M. Hallen,
 Appl. Surf. Sci. 252 (2006) 2894–2909.
- 40 [97] O. Olivares, N.V. Likhanova, B. Gómez, J. Navarrete, M.E. Llanos-Serrano, E. Arce, J.M.
- 41 Hallen, Appl. Surf. Sci. 252 (2006) 2894–2909.
- 42 [98] Y. Kharbach, F.Z. Qachchachi, A. Haoudi, M. Tourabi, A. Zarrouk, C. Jama, L.O. Olasunkanmi,
- 43 E.E. Ebenso, F. Bentiss, J. Mol. Liq. 246 (2017) 302–316.
- 44 [99] G.A. Schick, Z.Q. Sun, Spectroscopic characterization of sulfonyl chloride immobilization on 45 silica, Langmuir 10 (1994) 3105–3110.
- 46 [100] N. El Hamdani, R. Fdil, M. Tourabi, C. Jama, F. Bentiss, Appl. Surf. Sci. 357 (2015) 1294–
 47 1305.
- [101] P. Bommersbach, C. Alemany-Dumont, J.P. Millet, B. Normand, Electrochim. Acta 51 (2005)
 1076–1084.
- 50 [102] W. Temesghen, P.M.A. Sherwood, Anal. Bioanal. Chem., 2002, 373, 601–608.
- 51 [103] X. Wu, K. Gong, G. Zhao, W. Lou, X. Wang, W Liu, RSC Adv. 8 (2018) 4595-4603.
- 52 [104] A.G. Kannan, N.R. Choudhury, N.K. Dutta, Polymer, 48 (2007) 7078–7086.
- [105] A.R. González-Elipe, A. Martínez-Alonso, J.M.D. Tascón, Surf. Interface Anal. 12 (1988)
 565–571.

- 1 [106] K. Babić-Samardžija, C. Lupu, N. Hackerman, A.R. Barron, A. Luttge, Langmuir 21 (2005)
- 2 12187–12196.
- 3 [107] G. Gunasekaran, L.R. Chauhan, Electrochim. Acta 49 (2004) 4387–4395.
- [108] C. Verma, M. A. Quraishi, L. O. Olasunkanmi, Eno E. Ebenso, RSC Adv. 5 (2015) 85417–
 85430.
- [109] E. E. Ebenso, M. M. Kabanda, L. C. Murulana, A. K. Singh, S. K. Shukla, Ind. Eng. Chem.
 Res., 51 (2012) 12940–12958.
- 8 [110] F. Bentiss, M. Lagrenée, J. Mater. Environ. Sci. 2(2011) 13–17.
- 9 [111] D.M Smith, G. Tennant, Benzimidazoles and Cogeneric Tricyclic Compounds, Part 1 edited by
- 10 P. N. Preston with contributions by John Wiley & Sons, New York, 1981. P. 582.
- [112] L.O. Olasunkanmi, I.B. Obot, M.M. Kabanda, E.E. Ebenso, J. Phys. Chem. C 119 (2015)
 16004–16019.
- [113] Y. Karzazi, M. El Alaoui Belghiti, A. Dafali, B. Hammouti, J. Chem. Pharm. Res. 6 (2014)
 689–696.
- 15 [114] K. Barouni, A. Kassale, A. Albourine, O. Jbara, B. Hammouti, L. Bazzi, J. Mater. Environ. Sci.
- 16 5 (2014) 456–463.
- 17 [115] N. Soltani, M. Behpour, E.E. Oguzie, M. Mahluji, M.A. Ghasemzadeh, RSC Adv. 5 (2015)
- 18 11145–11162.
- 19 [116] A. Popova, M. Christov, T. Deligeorigiev, Corrosion 59 (2003) 756–764.