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1 Abstract10

Contamination of durum wheat grain by cadmium (Cd) threatens food safety and is of in-11

creasing concern because regulations concerning Cd are becoming stricter due to its toxicity.12

This work aimed at using soil variables and cultivar types to build models to predict whether13

durum wheat grain Cd will conform with current and possibly lower regulatory thresholds. We14

combined multiple Gaussian and logistic regressions and the random forest algorithm to take15

advantage of their strength. Models tested using cross-validation produced excellent perfor-16

mances including for the lowest regulatory threshold of 0.1 mg Cd/kg, half of the current one:17

79-85% of the non-conformity cases were detected and the reliability of predictions was 69-82%.18

The models enabled identification of a x1.4 variability in grain Cd content between cultivars19
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that do not have the low Cd accumulation allele of the Cdu1 gene. The models confirmed20

that for the grain Cd content, the between-cultivar variability had much less influence than the21

phytoavailability of Cd in soil, the critical contexts of which were characterized by the models.22

For farmers, these models are valuable tools to predict whether durum wheat production will23

conform with existing and future Cd regulation in foodstuffs.24

Keywords: Cadmium; Durum wheat; Genetic variability; Models; Phytoavailability25

2 Introduction26

Cadmium (Cd) is a highly toxic and carcinogenic metal found naturally in soils. It is taken27

up by plant roots and transferred to edible plant parts and is therefore a major threat to food28

safety (Clemens et al., 2013). In 2009, the European Food Safety Authority (EFSA) published29

a scientific opinion recommending a tolerable weekly intake (TWI) for Cd of 2.5 µg kg−1 body30

weight, almost three times lower than the previous one set by the World Health Organization,31

which was 7 µg kg−1 (Alexander et al., 2009). Durum wheat concentrates more Cd in grain than32

bread wheat (Greger and Lofstedt, 2004). Durum wheat is a major contributor of Cd to human33

food intake as it is widely consumed in pasta and semolina (Clarke et al., 2010). For instance,34

9 Mt of durum wheat are consumed in Europe, which is also the world’s main exporter at 8 Mt35

(FranceAgrimer, 2020). Following the downward revision of the TWI by EFSA, the European36

commission also revised the directive EC1881/2006, which fixes the maximum content of Cd in37

some foodstuffs (DGSANCO, 2011). For durum wheat, 0.1 and 0.15 mg Cd kg−1 were originally38

considered but the project was abandoned because of the strong economic negative impact the39

decision would have. However, the European countries were asked to conduct research and40

develop practices aimed at monitoring and reducing crop contamination (EC EC 488/2014,41

2014). Recently, new downwards revisions of the level of Cd in cereals including for durum42

wheat have again been the subject of discussions (ARVALIS-Institut du végétal, pers. comm.).43

Crop uptake of Cd depends on its phytoavailability in soils, i.e. on the flux of Cd2+ at the44

root surface, assuming that the free ion is the main species absorbed by root cells (Clemens,45

2019). In aerobic agricultural soils, Cd phytoavailability is mainly determined by sorption onto46

the solid organic and mineral phases (clay and oxides), by complexation with soluble ligands,47
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generally organic compounds, and by transport to plant roots by diffusion and advection (Lin48

et al., 2016; Antoniadis et al., 2017; Vega et al., 2010). Soil Cd, pH, organic matter and to a49

lesser extent clay and oxides have been found to be the major regressors of statistical models to50

predict the soluble soil Cd and its accumulation by plants (Adams et al., 2004; de Vries et al.,51

2011; Groenenberg et al., 2010; Horn et al., 2006). Except oxides, these variables are commonly52

measured in soil testing, and therefore, predicting plant Cd by using statistical models based53

on these variables is of great interest (for example, Hough et al., 2003; Tudoreanu and Phillips,54

2004; Viala et al., 2017). According to the literature, one major drawback of such models is55

that they have not been tested on new data (cross-validation). Their real predictive value for56

new data is consequently not known, which is an obstacle to their practical use in the field.57

Furthermore, because of the log-log relationship, the variance of the predictions inflates when58

the mean increases (Newman, 1993), making it difficult to rule on the conformity of critical grain59

samples with high Cd content. Binary classification models that predict conformity (yes/no)60

could be much more efficient because they concentrate on predicting the class, whereas log-log61

models are optimized to predict continuous variations in grain Cd. Among binary classification62

models, two have been shown to be particularly efficient: logistic regression and classification63

trees (Hastie et al., 2009). Logistic regression predicts the probability that an observation is64

positive (actually, the log of the odds) from a linear combination of predictors. If the predicted65

probability is greater than a cutoff threshold (generally p=0.5), the case is classified as positive,66

and conversely as negative. Classification trees are a set of hierarchical decision rules that split67

data into two classes based on cutoff values of the most relevant predictors. In contrast to68

logistic regression, classification trees are a non-parametric method and may better model a69

complex boundary between the two conformity classes. However, they are very sensitive to70

the training dataset (high variance). To cope with this problem, Breiman (2001) proposed the71

random forest approach, which consists in aggregating the predictions of a large number of72

trees (i.e. a forest) that are uncorrelated by bootstrapping the training dataset.73

Soil conditions and particularly soil pH, strongly influence the contamination of crops by metals74

by controlling the phytoavailability of the latter (Kabata-Pendias, 2004). Reducing the phy-75

toavailability of metals is often difficult, especially if the soil pH is already high. This is typically76

the case of calcareous soils, on which durum wheat is usually grown in France. Therefore, it77
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is worth taking advantage of any between-cultivar variability in Cd accumulation by crops (Li78

et al., 1997; Li and Zhou, 2019). Due to the strong importance of durum wheat in Canada,79

genetic selection of cultivars that accumulate little Cd in their grain began in the 1990s when80

international discussions about setting Cd limits in food products started (Clarke et al., 2010).81

It is known that a large part of phenotypic variability in durum wheat grain Cd is linked to82

the Cdu1 locus of chromosome 5B, which is involved in Cd sequestration in roots (Knox et al.,83

2009; Wiebe et al., 2010). One deficient allele of the gene coding for the HMA3 transporter84

that transfers Cd and Zn from the root cytosol into the vacuole is thought to have been selected85

inadvertently during breeding because it promoted growth of durum wheat in Zn-deficient soils86

(Maccaferri et al., 2019). As a consequence of reduced sequestration in root vacuoles due to87

this deficient allele, more Cd is allocated to aboveground organs, including the grain. To our88

knowledge, selection of low Cd durum wheat cultivars has not yet begun in Europe but thanks89

to some markers of the Cdu1 locus (AbuHammad et al., 2016; Oladzad-Abbasabadi et al., 2018;90

Salsman et al., 2018), many common European cultivars have been assessed, and the results91

show that a large proportion of all cultivars are high Cd accumulators (Zimmerl et al., 2014).92

Therefore, as suggested by preliminary results obtained in controlled conditions (Perrier et al.,93

2016), it would certainly be worth characterizing the variability of grain Cd content among94

high Cd cultivars to discard the highest accumulators, if this is possible with respect to other95

agronomic performances.96

Based on these elements, the present work had two goals. The first was to build sensitive and97

reliable models to predict durum wheat grain Cd conformity using soil analysis variables. We98

hypothesized that soil analysis variables combined with highly efficient statistical approaches99

would make it possible to obtain predictive models that are sufficiently sensitive and reliable100

for practical use in the field. The second goal was to identify possible solutions in the case101

of predicted non-conformity. To this end, we investigated the variability of Cd accumulation102

between cultivars that do not possess the low Cd allele of the Cdu1 gene and we used the103

model simulations to identify the soil conditions that could lead to an excessive contamination104

of durum wheat grain by Cd.105
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3 Materials and Methods106

3.1 Collection and analysis of paired soil and grain samples from107

farms and of grain samples from trials comparing cultivars108

Between 2012 and 2018, 420 paired samples of soil and durum wheat grain were collected in109

farms and in ARVALIS-Institut du végétal trials across the regions that are representative of110

the French production. There were 192 different soil samples because several cultivars were111

grown on the same soil. The cultivars we studied had either been characterized as high Cd ac-112

cumulators (Zimmerl et al., 2014) or had not yet been characterized (Table SI1, Supplementary113

Information). Composite soil samples were made by mixing 12 sub-samples taken from the 0-25114

cm topsoil layer on a grid representative of each plot. The composite soil samples were air-dried,115

sieved at 2 mm before the common characteristics of agricultural soil testing were determined116

by a certified Inrae soil analysis laboratory (https://www6.hautsdefrance.inrae.fr/las). The to-117

tal soil Cd was quantified by ICP-MS after solubilization by fluorhydric and perchloric acids118

(NF X 31–147). Soil pH was measured in a 1:5 soil to water solution. Total soil organic carbon119

(SOC) was quantified by dry combustion and corrected for carbonate content (NF ISO 10694).120

The Robinson pipette method (NF X 31–107) was used for soil texture (5 size classes). Total121

soil CaCO3 content was obtained using the acid neutralization method (NF X 31–105). In122

France, no other oxides are usually analyzed in soil testing even though they could play an sig-123

nificant role in controlling Cd phytoavailability (Sun et al., 2017). The descriptive statistics of124

the studied soils are listed in Table 1. Grain samples, that were selected as being representative125

of the plot harvest, were analyzed by Capinov certified laboratory (https://www.capinov.fr/)126

without further drying as stated by the European regulation EC466/2001 (2001). Total grain127

Cd was quantified by atomic absorption spectroscopy (AAS) after wet digestion in a mixture of128

nitric acid (10% v:v) and hydrogen peroxide (4% v:v). Both the Capinov and Inrae laboratories129

are certified by Cofrac for quality controls (https://www.cofrac.fr/en/).130

To rank durum wheat cultivars with respect to their capacity to accumulate Cd, additional131

grain samples were collected in 2016, 2017 and 2018 from experimental plots located in three132

ARVALIS-Institut du végétal research centers. These trials are conducted annually to assess133

the agronomic performances of durum wheat cultivars. The trials are located in the south-west134
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(Bergerac, 43° 25’ 0.12’’E 0° 9’ 0’’), south (Montesquieu-Lauragais, 43° 25’ 0.12’’E 0° 9’ 0’’) and135

center (Thizay, 47° 10’ 0.12’’E 0° 0’ 0’’) of France, the main French durum wheat production136

regions. Grain Cd content was quantified using the same procedure as that described above.137

No soil was collected and these samples were not used for modeling.138

3.2 Modeling durum wheat grain conformity with respect to the Cd139

regulatory threshold140

The goal of the models was to use soil characteristics to predict if a grain sample of a particular141

durum wheat cultivar will complie (0) or not (1) with the regulatory threshold (RT). Seven soil142

variables were selected as predictors and combined hierarchically based on the following ranking143

Cd>pH>SOC>Clay>{Fine silt, calcareous}>coarse loam. The database has a minimum of 75144

positive cases for the RT of 0.2 mg Cd kg−1 grain. Therefore, a maximum of 7 predictors145

were considered, based on the guidelines proposed by Peduzzi et al. (1996), which state that at146

least 10 positive cases per predictor are required for a correct estimation of effects in a logistic147

regression. In total, nine combinations of predictors were tested, from the simplest including148

only the soil Cd to the full model including the 7 soil predictors. All models also include the149

cultivar as a categorical predictor.150

Three statistical modeling approach were tested. The first approach was the mixed-effects151

logistic regression (MELR), which predicted the log-odds of the non-conformity of the grain Cd152

as a function of the log of the scaled soil variables (fixed effects) and of the cultivar (random153

effect for the intercept).154

log
(

p
1−p

)
= log(a0) +

∑
ailog

(
Xi

mean(xi)

)
random = log(a0)|cultivar

p = p(Cdgrain ≥ RT ) = p(Y = 1)

(1)

Continuous predictors were log (natural) transformed to i) ensure the normality of the residuals155

and to ii) model interactions between soil variables since the sum of log of variables is the log156

of the product of the variables. In order to correctly estimate the model intercept, the soil157

variables were first scaled by dividing them by their mean before log transformation. For each158
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of the nine models, the predicted log-odds from the calibration dataset allowed us to calculate159

the probabilities of non-conformity p(Y = 1). Then, each probability was individually tested160

as a cutoff (ctf ) to code all predicted probabilities in conformity classes: 0 if p ≤ ctf and 1161

if p > ctf . The predicted conformity classes were compared to the actual classes to calculate162

the confusion matrix, i.e. the scores for the true positives (TP), true negatives (TN), false163

positives (FP) and false negatives (FN). The performances of the model for a given cutoff were164

assessed using the Youden’s J statistic (0 ≤ J ≤ 1) and the Matthews correlation coefficient165

MCC (−1 ≤ MCC ≤ 1):166

J =
TP

TP + FN
− FP

TN + FP
(2)

MCC =
TP.TN − FP.FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3)

For both statistics, a value of 1 indicates a perfect model with no FN nor FP. The MCC167

considers the four scores of the confusion matrix (TP, TN, FP, FN) and thus makes it possible168

to identify models with good performances in both the detection and reliability of predictions of169

actual positive and negative cases. By contrast, the Youden index concentrates on the predicted170

positive class (TP and FP) and favors the selection of models that have the best performances171

in detecting positive cases. The two best cutoffs, each maximizing either the J or the MCC172

statistics were identified and used to make future class predictions.173

The second approach was random forest (RF) modeling (Breiman, 2001). For each of the nine174

models, 501 classification trees were trained with bootstrap samples that were stratified based175

on the (0,1) frequencies of the training dataset. The number of variables randomly sampled as176

candidates at each split was equal to the square root of the total number of predictors of the177

model. The minimum number of observations in terminal nodes was 1. For each observation178

of the calibration dataset, the predicted probability that the grain Cd is above the regulatory179

threshold was estimated by the frequency of the positive class predicted by the 501 trees for180

this observation. Like for logistic modeling, each predicted probability was tested as a cutoff181

for coding into the (0,1) classes. The Youden and MCC statistics were again used to select the182

best cutoffs.183
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The third approach was the mixed effects Gaussian multiple linear log-log regression (MEMR).184

The log of the grain Cd content was predicted from the log of the scaled soil predictors (fixed185

effects) with the cultivar as a random effect for the intercept.186

log(Cdgrain) = log(a0) +
∑

ailog
(

Xi

mean(xi)

)
random = log(a0)|cultivar

(4)

The reasons for scaling using the median and for log transforming the continuous variables were187

the same as for the MELR. After back transformation, the predicted grain Cd (Cdgrain) was188

coded as follows: 0 if Cdgrain ≤ RT , otherwise 1.189

3.3 Ranking the predictive value of the models by 5-fold cross-190

validation191

The predictive values of the 9 models x 3 modeling approaches (RF, MELR and MEMR) were192

evaluated by a 5-fold cross-validation with 400 repetitions. A single design was used per RT193

(splitting the database into 5 groups 400 times). One repetition consisted in randomly splitting194

the database into five groups of 84 observations, each group having the same proportions of195

(0,1) as the whole database. Each of the five groups was individually used to make predictions196

from the model trained on the four remaining groups that were pooled. For each of the 420197

observations of the database, the 400 repetitions were bootstrapped 400 times to generate198

400 combinations of the 420 predictions for the whole database. This enabled to have 400199

repetitions of the J and MCC statistics to further calculate their mean and standard deviation200

in order to compare and group the 9 models x 3 modeling approaches at p=0.05 adjusted for the201

multiple comparisons (Tukey test). This was done for each regulatory threshold (RT): RT02,202

RT015, RT01. The best parsimonious models optimized by the J and MCC statistics were203

the models that had the lowest number of predictors while satisfying the following conditions:204

J/Jmax > 0.95 or MCC/MCCmax > 0.95.205
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3.4 Ranking cultivars based on their grain Cd contents206

The cultivars were ranked based on the random effects of the MELR best models at RT01 on207

the one hand, and from the field trials on the other. For field trials, grain Cd content was208

modeled as a function of the cultivar using a mixed-effects model with the year x location as209

a random effect for the intercept. The adjusted means of the grain Cd of the cultivars were210

grouped using the Tukey’s test at p=0.05, adjusted for multiple comparisons. For the cultivars211

that were the same in the modeling and in the field trials, the ranking of the two approaches212

was compared to examine consistency. The statistical models used in this work never accounted213

for an interaction between the cultivars (genotypes) and the environment i.e the soil variables214

for the modeling and the year x locations for the field trials. The interactions were tested but215

were not significant or led to over-parameterization of the mixed-effect models.216

3.5 Characterization of the effects of soil variables and of the cultivar217

based on the conformity of grain Cd content218

Based on the performances of the models we tested (detailed in the results section), the random219

forest approach where the cutoff is optimized from the MCC statistics was used to simulate220

the conformity of the grain Cd content from the 7 soil variables and for the cultivar “Relief”,221

which was classified as the highest Cd accumulator and for the cultivar “Miradoux”, which222

was classified as the lowest accumulator (ranking is detailed in the results section). A factorial223

experimental design crossed 6 values chosen to cover realistic ranges for each of the 7 soil224

variables. For a given value of a given predictor Xi = xij, i ∈ {1, ....7} , j ∈ {1, ....6}, the225

probability of non-conformity p(Y = 1|Xi = xij) was the frequency of the non-conformity class226

among the 66 = 46656 predictions where Xi = xij and Xk = xkj, k ∈ {1, ...7}, k ̸= i. It was227

therefore not possible to directly derive a standard deviation for this probability. The effect of228

each predictor on the probability of non-conformity was characterized for the two cultivars and229

for the three RTs.230
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3.6 Calculations and statistical software231

All the data processing and statistical analyses were performed with R, version 3.6.2 (R Code232

Team, 2019). The following specific packages were used: randomForest (version 4.6-14) for233

the random forest modeling, lme4 (version 1.1-21) to fit the mixed effects models MELR and234

MEMR and the doParallel (version 1.0.15) for parallel computing. The residuals of MEMR were235

examined to check for heteroskedasticity and non-normality. When detected, heteroskedasticity236

was corrected by modeling the variance with the varPower() function of the nlme package237

(version 3.1-143)238

4 Results239

4.1 Descriptive statistics of the modeling database240

The ranges of variation in soil characteristics were typical of agricultural soils (Table 1). The241

median soil Cd content was 0.26 mg kg−1, slightly higher than the French national median of242

0.20 mg Cd kg−1 for agricultural soils (calculated from Saby et al., 2009), the contamination243

of which mainly originates from pedogenesis. Ninety-eight percents of soil samples had Cd244

contents below or equal to 1 mg Cd kg−1 (not shown). Most of the soils were alkaline (median245

pH=8.2) and only 10 had a pH of between 5.5 and 7. The soils with a pH below 7.5 did not246

have a significant calcareous content (Fig. SI1 in supplementary information). SOC and soil247

Cd were significantly correlated (Fig. SI1, R² = 0.40, p < 0.001, not shown). The log-log248

linear relationship between these two variables indicates that doubling the SOC is expected249

to correspond to a soil Cd content increased by a factor x1.36. For the French soil survey250

database limited to agricultural soils, the relationship is also significant but much weaker (R² =251

0.10, p < 0.001, n = 5201), and the magnitude of increase is x1.12 (calculated from Saby et al.,252

2009). The soils in the modeling database correctly reflect the fact that in France, durum253

wheat is mainly cultivated in alkaline and calcareous soils in the southern-half of the country254

(FranceAgrimer, 2020). As evidenced by a national soil survey, these soils are slightly richer in255

Cd, which is partly because the calcareous of these soils are naturally rich in Cd (Saby et al.,256

2009, 2011).257
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There were 36 distinct cultivars in the modeling database, each with between 1 to 85 observa-258

tions (Table 2). The cultivars with few observations were kept because they helped to estimate259

the fixed effects of soil variables on grain Cd conformity. By contrast, a lack of observations260

makes it difficult to estimates the random effect of the cultivar on the intercept of the model.261

As expected, the frequency of samples that did not comply with the regulation increased with262

decreasing RT, namely 18% for RT02, 26% for RT015 and 48% for RT01 (Table 2). These263

values were higher than the estimates made in a larger French national survey: 4%, 8% and264

22%, respectively. However, these values were in the range of some production areas where the265

phytoavailability of Cd is higher than average, for instance in the center of France (ARVALIS-266

Institut du végétal and France-AgriMer, unpublished statistics). Whatever the RT, there were267

marked variations in the frequency of non-conformity between the high Cd cultivars (Table 2).268

4.2 Model performances resulting from the K=5-fold cross-validation269

For RT02 and RT015, random forest (RF) was the most efficient modeling approach, followed270

by logistic regression (MELR) and then by Gaussian regression (MEMR) (Fig. 1). This ranking271

was reversed for RT01. For the three regulatory thresholds (RT02, RT015, RT01) and for both272

performance criteria (the Youden index J and Matthews correlation coefficient MCC), the best273

models in the absolute had between 5 and 7 soil predictors, and the most parsimonious ones had274

between 2 and 5 (Fig.1, Table 3). Regarding the parsimonious models, the number of predictors275

increased with lowering of the RT, indicating that more information is required to correctly276

predict low RTs. The parsimonious models always produced significantly lower performances277

than the best models, but less than 5% by definition (see materials and methods). By combining278

the modeling approaches and the set of predictors, it was possible to obtain models that have279

very good performances. Between 79% and 85% of the cases of non-conformity were detected,280

the sensitivity slightly decreasing with decreasing RT (True Positive Rate, TPR, Table 2).281

The reliability of the model predictions (Positive Predictive Value, PPV) was barely lower,282

between 67% and 82 % success. Reliability increased with lowering of the RT, in contrast283

to sensitivity. This revealed a trade-off between the detection capacity and the reliability of284

predictions. Concerning cases of conformity, the model performances were a little better than285

for non-conformity: between 83% and 92 % of successfuldetection (True Negative Rate, TNR,286
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Table 3) and between 81% and 97% for reliability (Negative Predictive Value, NPV), both287

decreased with lowering of theRT. Compared to the optimization of the models using the J288

statistics, optimization using the MCC increased the PPV (reliability) by around 2% at the289

expense of a decrease in the TPR (sensitivity) also of around 2%.290

It should be noted that the reliability performances of the models depends on the actual fre-291

quencies of samples that do not comply with the RT. Hence the PPV and NPV given in Table292

3 are conditioned by the percentages of samples above RT02, RT015 and RT01 in our database293

(18%, 26% and 48%, respectively). If the predictions are required in a context in which the294

frequency of non-conformity (prevalence: p) differs from that in the database used to train the295

models, the PPV and NPV must be corrected as follows:296

PPV ∗ =
pTPR

pTPR + (1− p)(1− TNR)
(5)

NPV ∗ =
(1− p)TNR

(1− p)TNR + p(1− TPR)
(6)

Hence, in a prediction context where the prevalence could be lower than that of the modeling297

database, the reliability of the models will be reduced and conversely. TPR and TNR do not298

depend on prevalence.299

4.3 Ranking of predictors and analysis of their effects300

Fig. SI2 shows the estimated importance of the predictors for the random forest model with301

7 soil variables and the cultivars. On average, the importance of the predictors increases with302

lowering of the RT. The most influential predictors are soil Cd and pH, the least, the cultivar,303

and in an intermediate position, clay, fine silt (FS) and coarse silt (CS). The relative rank of304

SOC and of calcareous varied greatly depending on the RT, likely because they co-varied with305

soil Cd and pH, respectively.306

Fig. 2 shows the predicted frequencies of non-conformity as a function of the 5 most important307

predictors, for the three RT and for the lowest (Miradoux) and highest (Relief) Cd accumulator308

cultivar. The model predictions demonstrate the strong effect of soil Cd and pH followed by309

that of clay. The risk of non-conformity increases with soil Cd with an ’S-shaped’ response.310

12



The effect increases with lowering of the RT. For the highest soil Cd contents, depending on311

the cultivar, the risk of non-conformity for RT02 is low to moderate whereas it is always certain312

at RT01. In the case of low soil Cd, the lag phase of the risk is severely reduced at RT01. The313

differences between the two cultivars is predicted to be weak at low Cd at RT02, at low and314

high Cd at RT01 and irrespective of soil Cd at RT015.315

Concerning soil pH, on average, the risk was also predicted to increase with lowering of the RT.316

The models predicted a slight linear decrease in the risk at RT01 with little differences between317

cultivars. In contrasts, at RT02 and RT015, the risk was predicted to be maximum when318

the pH is below 6.5 with marked differences between the two cultivars, and then, to strongly319

decrease between pH=6.5 and pH=7 with few changes at higher pH. The mean predicted risk320

of non-conformity was mapped for different combinations of soil Cd and pH (Fig. 3). At RT02,321

estimated risk was always low for Miradoux (p<0.2) whereas it was more than 40% (p>0.4) for322

soil Cd > 1.25 mg kg−1 and pH<6.5 for Relief. With lowering of the RT, the soil Cd and pH323

area of high risk logically increase. At the same time, the differences between the two cultivars324

decrease considerably and at RT01, even for Miradoux, the lowest Cd accumulator cultivar,325

the safe area was very narrow. Finally, the model predicted that at RT01, at soil Cd>0.2 mg326

kg−1, even at high soil pH, the risk of non-conformity could be high.327

For both cultivars, SOC was predicted to have little effect at RT02 and RT015 but at RT01,328

increasing SOC is predicted to reduce the risk of non-conformity by around 40%, more markedly329

below 20 g C/kg (Fig. 2).330

The models did not predict marked effect of clay at RT01 (Fig. 2). At RT015, the risk was331

predicted to first decrease at between 50-400 g clay kg−1 soil and to increase with higher contents332

with marked differences between cultivars. At RT02, an increase above 400 g clay kg−1 soil was333

also predicted. The effects of fine silt were similar but less than the effect of clay.334

The random effects for the intercept of the model fitted to RT01 data allowed us to rank the335

cultivars in the modeling database (Fig. 4) showing a x1.4 factor of variation in grain Cd. On336

the other hand, field trials allowed us to establish groups of sensitivity to grain Cd accumulation337

in another set of cultivars with a x2.9 factor of variation between the two extreme groups (Fig.338

5). As shown in Fig. 6, for the cultivars that were used in the two approaches, ranking was339

consistent except for Babylone and Sculptur, which were, respectively more strongly over and340
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under classified by the models.341

5 Discussion342

5.1 The choice of the modeling approach depends on the regulatory343

threshold344

At the highest RTs (RT02 and RT015), the models concentrate on the highest phytoavailability345

of Cd in the soil, which, in these cases, is mainly controlled by the soil Cd and pH (Fig.2 and346

3, and see the parsimonious models, Table 3). As shown in Fig.2, at these RTs, the shape347

of the effects of soil Cd and pH cannot be completely modeled by the power mathematical348

model of the MELR and MEMR approaches. Because non-parametric classification trees are349

more flexible for modeling complex non-linear relationships, RF models consequently performed350

slightly better (Fig. 1 and Table 2) as it has also been reported in other studies (Covelo et al.,351

2008; Qiu et al., 2016). The use of classification trees to model complex and non monotonic352

responses (in this case, the boundary between non-conformity and conformity of the grain Cd353

content) increases the risk of obtaining over-fitted models with high variance. This pitfall is354

counteracted by using the RF approach, which aggregates the predictions of a large number355

of relatively uncorrelated trees (Breiman, 2001). In this way, the errors of prediction of some356

trees, in particular those due to over-fitting, are offset by the remaining good predictions. This357

is likely the reason why RF performed better than the logistic regression at RT02 and RT015.358

The cutoff optimization is one likely reason why RF and MELR performed better than MEMR359

at RT02 and RT015. At these two RTs, the actual frequencies of non-conformity are 18% and360

26%, far from 50% (Table 2). This imbalance between the conformity and non-conformity361

classes biases the models if a default cutoff probability of 0.5 is used and this is the reason362

why the bias is corrected by optimizing the cutoff (Kuhn and Johnson, 2013), as done in363

the RF and MELR models. By contrast, the grain Cd content predicted by the MEMR was364

directly transformed into conformity classes depending on whether it was above or below the365

RT. This is another possible explanation why MEMR performances were clearly the worst at366

at RT02 and RT015 (Fig. 1). At RT01, as the actual frequency of non-conformity was 48%,367

cutoff optimization was less necessary. Furthermore, this higher frequency provides much more368
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information to model the boundary between conformity and non-conformity with a parametric369

model, explaining why MEMR became the most efficient approach (Fig. 1)370

5.2 Sensitive and precise models for field prediction of durum wheat371

grain Cd conformity using soil variables372

Our work shows that it is possible to predict the conformity of durum wheat grain Cd content373

with respect to the regulatory thresholds of 0.2, 0.15 and 0.1 mg Cd kg−1 with high sensitivity374

(probability of detection) and high precision and consequently reliability (probability that a375

prediction is true). These models are of practical value for farmers because they only require376

variables already determined in soil testings plus the total soil Cd. Total soil Cd is rarely377

measured in France and we therefore recommend it is systematically included in all future soil378

analyses. On one hand, it would make it possible to use the models built in this work to predict379

possible risky situations and on the other hand, it would help monitor the background level of380

soil Cd to study in more detail should it increase as a result of agricultural practices, including381

fertilization with contaminated P fertilizers (Sterckeman et al., 2018; Six and Smolders, 2014).382

The trend in soil Cd in agricultural soil is a serious concern as shown by our results: at RT01383

and for sensitive cultivars, the models predict a strong risk of non-conformity for soil Cd above384

0.3 mg kg−1 even at high soil pH (Fig. 2 and 3). The combined analysis of soil and grain385

Cd contents is also advisable because the models can learn and improve from new data. The386

very good performances of the models at RTs ranging from 0.1 to 0.2 mg Cd kg−1 suggest that387

lowering the current regulatory threshold of 0.2 mg Cd kg−1 grain would not be an obstacle388

to the reliable detection of the great majority of cases of non-conformity. The models will also389

help identify possible solutions in the case of a predicted non-conformity. Mapping the risky390

contexts for soil variables (Fig. 2 and 3) would help decide if it is worth taking action on the391

phytoavailability of Cd by shifting cultivation to another location or by increasing soil pH, for392

instance. Ranking cultivars is also a valuable model to reduce the risk of non-conformity of393

grain Cd content. The models can easily be re-calibrated for a new RT, not tested in this study.394

If the RT is strongly revised downwards to RT01, the global performances of the models will395

be reduced (see MCC index, Fig. 1). The models will be a little less sensitive in the detection396

of both conformity and non-conformity cases (Table 3). As a counterpart, their reliability will397
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increase for non-conformity but not for conformity.398

From a practical point of view, the choice of the right model can be adjusted depending on399

priorities. If the cost of a prediction error is high, the model should be chosen to maximize400

reliability and therefore, the models optimized from the MCC statistics should be preferred401

(Table 3). On the other hand, if the priority is to maximize the detection of cases of non-402

conformity at the risk of overestimating the latter, the models optimized by the J index should403

be chosen. This decision rule does not concern MEMR models for RT01, for which the prediction404

class does not rely on an optimized cutoff.405

5.3 Phytoavailability of Cd in soil versus between-cultivar variability406

to manage the conformity of grain Cd content407

The marked effect of soil Cd observed in this study is due to the fact that in non-polluted408

agricultural soils, the Cd2+ concentration in the soil solution is generally low, around 0.1-1 nM409

(Schneider et al., 2019; Sauvé et al., 2000), compared to the capacity of roots to take up the410

metal (Lux et al., 2011). Therefore, the factor that limits uptake is generally the supply of Cd2+411

to the root surface (Lin et al., 2016). The latter is mainly controlled by the pool of soil Cd that412

can be exchanged with the solution and by the speciation of soluble Cd. The strong effect of soil413

pH modeled in our work illustrates the competition between H and Cd for sorption sites and for414

association with soluble ligands. The threshold for the pH effect of 6.5-7.0 is unlikely to be due415

to the formation of complexes between Cd and OH− or carbonates according to the stability416

constants of these compounds reported in the chemical databases (Tipping et al., 2011). The417

6.5-7.0 threshold could correspond to several mechanisms of Cd sorption. Regarding organic418

matter, based on the mean log of the dissociation constant of the proton (log KH) for humic419

substances (Tipping et al., 2011; Matynia et al., 2010), the 6.5-7.0 threshold could reflect the420

binding of Cd to OH groups that become increasingly deprotonated at high pH. The 6.5-7.0421

threshold could also be due to the favored binding of Cd to variable charge sites of Fe, Mn and422

Al oxyhydroxides and organo-mineral complexes associated with clay (Violante et al., 2010;423

Rasmussen et al., 2018). The pH of most French soils are above 6.5-7.0, especially for durum424

wheat, which is frequently grown on calcareous soils. Hence, because the models predict little425

effect of pH above 7, (Fig. 2), this soil variable is not an important lever to manage the grain426
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Cd content in French durum wheat. On the other hand, because for pH above 7, Fe, Mn and Al427

oxides are expected to have an increasing role in binding Cd, their contents should be included428

in soil testing to be able to possibly improve the models.429

SOC is generally found to strongly control Cd phytoavailability because it includes both solid430

and dissolved organic matter that sorbs and forms complexes with Cd. In our study, the431

correlation between Cd and SOC partly masked the effect of SOC but in agreement with the432

literature, the models predicted that SOC is expected to reduce the phytoavailability of Cd,433

particularly if the latter is low on average (RT01, Fig. 2). Adding organic matter to soil434

is encouraged for many reasons including improving fertility and storing carbon. Based on435

our study, this lever is also questionable because the effect is estimated to be moderate and436

considering the soil Cd-SOC correlation in our database, one may wonder if organic matter437

does not increase soil Cd, due to its own contamination or by sequestrating Cd deposited in438

soil by atmospheric fallouts or by agricultural inputs such as P fertilizers.439

Finally, clay and to a lesser extent fine silts were predicted to have a moderate effect on the440

predicted conformity of grain Cd, but only for the highest RTs. Clay and FS are involved in441

the reversible exchanges of Cd with the solution (buffer capacity). On one hand clay and FS442

are expected to reduce the background concentration of soluble Cd due to sorption but on the443

other hand, they facilitate the buffering of this concentration when the roots take up the Cd.444

However, these antagonistic effects are unlikely to explain the slight negative effect of clay<400445

g kg−1 soil and the positive effect above this threshold. The buffer capacity of the solid phase446

for Cd is all the more involved as the phytoavailability of Cd is low and therefore, the effects447

of clay and FS should be stronger at RT01 compared to RT02, unlike in the simulations. The448

effect of clay and to a lesser extent of FS are probably due to a higher abundance of soil rich449

in Cd for soils with high clay contents, as shown by Fig. SI1.450

It is noteworthy that our models produced good performances although they use the total Cd451

content of soils and not the mobile Cd, suggesting that the relationship between the two pools452

was strong enough to allow correct prediction of the conformity of grain Cd. Furthermore,453

the error derived from approximating the mobile Cd by the total Cd is expected to have less454

negative impact when predicting a grain Cd binary class than when predicting grain Cd content.455

Modeling durum wheat grain Cd showed that soil variables governing Cd phytoavailability have456
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much more influence than the type of cultivar (Fig. SI2). This confirms previous observations457

(Li et al., 1997; Li and Zhou, 2019) and was probably more apparent in our work since most458

of the cultivars we investigated did not have the Cdu1 low accumulation allele, thus reducing459

between-cultivar variability. Hence, the model estimated a x1.4 factor between the lowest and460

highest Cd accumulator cultivar whereas field trials, which included at least one cultivar with461

the Cdu1 low Cd allele (Anvergur) showed a x3 factor of variation. The x1.4 factor of variation462

predicted by the models for cultivars without the low-Cd allele of the Cdu1 gene suggests that463

there is also variability in some mechanisms contributing to reduce grain Cd, other than the464

enhanced sequestration of Cd in roots. For example, modification of the rhizosphere, including465

changes in pH and the release of ligands such as low molecular weight organic acids by roots can466

significantly differ between wheat cultivars (Cieśliński et al., 1998; Greger and Landberg, 2008).467

Differences in Cd sequestration in the stem and nodes of different rice cultivars has also been468

observed (Fujimaki et al., 2010). It was shown in sunflower and wheat, that the partitioning469

of plant biomass, especially aboveground biomass and plant height could partly explain the470

intraspecific variability in the grain Cd content (Laporte et al., 2015; Pozniak et al., 2012;471

Perrier et al., 2016; Álvaro et al., 2008). Hence, understanding the reasons for the variability in472

grain Cd contents among high Cd cultivars merits further investigations, in particular because473

reducing the phytoavailability of Cd in soil is not an easy task.474

6 Conclusions475

This work confirms the marked influence of soil Cd and pH on the transfer of Cd to durum476

wheat grain. For this crop, we have shown that grain Cd can exceed the current and possible477

lower future regulatory thresholds even in alkaline soils with moderate total Cd contents below478

1 mg Cd kg−1 soil. Combining random forest, multiple logistic and Gaussian linear regressions479

enabled us to build models to predict grain Cd conformity that are both efficient and reliable.480

The model performances are also very good for the lowest RT that were considered by the481

downwards revision of the regulatory threshold. By adjusting the predicted grain Cd using482

the phytoavailability of Cd estimated from soil variables, the models also showed there was a483

x1.4 factor of variation between durum wheat cultivars that did not have the low Cd allele of484

the Cdu1 gene. Because the models only require variables available from soil analyses, they485
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are valuable tools to be able to predict possible problems of non-conformity of durum wheat486

production with respect to the regulation concerning Cd in foodstuffs. Further, considering the487

current trend towards a more restrictive regulation for food products, the approach used in this488

work can also be used for other heavy metals such as Ni which is currently targeted in relation489

with the baby foods.490
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Table 1: Characteristics of the soils used for modeling grain Cd in durum wheat. SOC : soil
organic carbon, Calc: soil calcareous, Cd: total soil Cd (mg kg−1). All variables but soil Cd
are in g kg−1. For calcareous, the values below the limit of quantification (<0.5 g kg−1) were
set to 0.5 g kg−1.

Clay Fine silt Coarse silt Fine sand Coarse sand SOC pH Calc Cd

Min 34 15 18 3 2 3.0 5.5 0.5 0.05
Q25 245 209 109 54 45 10.1 8.0 9.0 0.20

Median 300 258 139 122 104 13.3 8.2 106.8 0.26
Q75 381 310 202 181 180 18.1 8.4 276.5 0.36
Max 702 467 427 499 452 45.2 8.7 655.4 1.56
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Table 2: Occurrence of observed non-conformity of grain Cd for the three regulatory thresholds
of 0.2 (RT02), 0.15 (RT015) and 0.1 (RT01) mg Cd kg−1 grain and for the cultivars used for
modeling. Value are in % of total data (n). Cdu1 column indicates if the cultivar has the high
Cd allele of the Cdu1 gene or if it is unknown.

Cultivar RT02 RT015 RT01 Cdu1 n

ACTISUR 50 50 75 High Cd 4
ALEXIS 29 43 62 High Cd 21
ATOUDUR 8 8 31 High Cd 26
AURIS 33 33 67 High Cd 6
AVENTUR 40 40 60 Unknown 5
BABYLONE 8 8 31 High Cd 13
BIENSUR 0 0 0 High Cd 2
CLOVIS 0 50 50 High Cd 2
COUSSUR 0 33 50 High Cd 6
CULTUR 38 46 62 High Cd 13
DAKTER 17 25 42 High Cd 12
DAURUR 50 50 100 High Cd 2
FABULIS 10 20 60 High Cd 10
FLORIDOU 33 33 56 Unknown 9
ISILDUR 0 8 42 High Cd 12
JOYAU 0 0 33 High Cd 3
KARUR 20 36 64 High Cd 25
LIBERDUR 0 100 100 High Cd 1
LUMINUR 62 62 75 High Cd 8
MEMODUR 100 100 100 Unknown 1
MIRADOUX 7 14 25 High Cd 85
MURANO 0 0 100 High Cd 1
NEFER 0 0 50 High Cd 2
NEMESIS 100 100 100 Unknown 1
PESCADOU 25 32 57 High Cd 28
PHARAON 0 100 100 High Cd 1
PICTUR 17 50 67 High Cd 6
QUALIDOU 20 20 40 Unknown 15
RELIEF 12 31 69 Unknown 16
SANTUR 50 50 50 Unknown 2
SCULPTUR 17 26 43 High Cd 35
SY BANCO 40 40 80 High Cd 5
SY CYSCO 20 20 53 High Cd 15
SY ENZO 0 100 100 Unknown 1
TABLUR 20 32 60 High Cd 25
YELODUR 0 0 0 High Cd 1
All 18 26 48 420

10
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1 Figure captions

Figure 1: Performances of the 9 models (y-axis) x 3 modeling approaches (different colors) for

the three regulatory thresholds of 0.2 (RT02), 0.15 (RT015) and 0.1 (RT01) mg Cd kg−1 grain.

RF: random forest, MELR: mixed-effect logistic regression, MEMR: mixed-effect multi-linear

regression. The model performances are expressed by the Youden statistics (J) or Matthew’s5

correlation coefficient (MCC), which have both 1 as maximum value for perfect models. From

right to left, the dashed lines correspond to the maximum J or MCC values (best model in

absolute) and to 95% of this maximum. Letters on the right of the bars are the mean grouping

by the Tukey test at p<0.05. The orange letter is the best parsimonious model, namely the

model with the least predictors while having performances greater that 95% of the best model10

in absolute (see materials and methods).

Figure 2: Simulations of the effect of individual soil variables on the probability of non-

conformity of durum wheat grain for the three regulatory thresholds of 0.2 (RT02), 0.15 (RT015)

and 0.1 (RT01) mg Cd kg−1 grain and for the highest (Relief) and the lowest (Miradoux) Cd

accumulator cultivar of the database. The simulations were obtained from the random for-15

est model with the following soil predictors : total soil Cd, soil pH, soil organic carbon, clay,

fine and coarse silt and soil calcareous. For a given value of a soil predictor, the graphs show

the frequency of non-conformity for all predictions when the other predictors vary based on a

factorial design (see materials and methods).

Figure 3: Simulations of the effect of soil Cd and pH on the probability of non-conformity20

of durum wheat grain for the three regulatory thresholds of 0.2 (RT02), 0.15 (RT015) and

0.1 (RT01) mg Cd kg−1 grain and for the highest (Relief) and the lowest (Miradoux) Cd

accumulator cultivar of the database. The simulations were obtained from the random forest

model with the following soil predictor : total soil Cd, soil pH, soil organic carbon, clay, fine

and coarse silt and soil calcareous. For a given value of a soil predictor, the graphs show25

the frequency of non-conformity for all predictions when the other predictors vary based on a

factorial design (see materials and methods).

Figure 4: Boxplots of the predicted grain Cd content of the different cultivars of the modeling

database for the regulatory thresholds of 0.1 mg Cd kg−1(RT01) and by using the mixed-effects

1

Figure Click here to
access/download;Figure;20200401_nguyen_et_al_figures.pdf

https://www.editorialmanager.com/hazmat/download.aspx?id=3262590&guid=dad42adc-d49a-47d2-8688-e53acbccefd6&scheme=1
https://www.editorialmanager.com/hazmat/download.aspx?id=3262590&guid=dad42adc-d49a-47d2-8688-e53acbccefd6&scheme=1


multi-linear regression with the following soil predictors : total soil Cd, soil pH, soil organic30

carbon, clay, fine and coarse silt and soil calcareous. The model predicts the grain Cd content

when the predictor values are set to their mean in the database and for 400 repetitions of the

5 folds cross-validation. Points are outliers extending outside 1.5 x the inter-quartile range

(whiskers).

Figure 5: Adjusted least squared means ± one standard deviation for the grain Cd contents of35

some cultivars grown in three field trials for three years. Letters and colors correspond to mean

grouping by the Tukey test at p<0.05. The trial location and year were considered as random

effects whereas the cultivar was the fixed effect.

Figure 6: Ranking of some durum wheat cultivars for their grain Cd content by two approaches :

data collected from field trials (y axis) and ranking from the mixed-effects multi-linear regression40

with the following soil predictors : total soil Cd, soil pH, soil organic carbon, clay, fine and

coarse silt and soil calcareous. High rank values indicate high grain Cd as illustrated by the

1:1 arrow.
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Figure SI1 : Matrix plot of correlations between the characteristics of the soils used for modeling

the conformity of durum wheat grain Cd content. Cd: total soil Cd content, FS: fine silt, CS:

coarse silt, SOC : soil organic carbon, Calc: soil calcareous. The bars on the diagonal show the

distribution of the variable. Values below the diagonal are the Pearson correlation coefficients

with two significant digits.50
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Figure SI2: Predictor importance estimated from the Random forest model with the following

soil predictors : total soil Cd, soil pH, soil organic carbon, clay, fine and coarse silt and soil

calcareous. The y-axis is the increase in the mean squared error of the model when the data of

a given variable are shuffled while keeping other the variables unchanged.55

13


