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Abstract
Viroids are minute unencapsidated non-coding circular 
RNAs known to be present and to cause diseases only in 
plants. Infections were associated with the occurrence of 
specific single-stranded RNAs similar in size to miRNAs and 
endogenous small interfering RNAs, and viroid pathogenic-
ity is suspected to occur through RNA interference. We 
looked for sequence similarities between viroids and the 
seed region of human microRNAs (hsa-miRNAs). Viroid ge-
nomes were retrieved from GenBank and mature hsa-mi-
RNAs were retrieved from miRBase. Two hundred 300-nucle-
otide-long sequences were randomly generated as controls. 
BLAST searches were performed using viroids as queries and 
hsa-miRNAs as subjects with relaxed parameters, and match-
es involving hsa-miRNA seed regions were considered. A to-
tal of 81,021 matches were found, and 1,501 that showed 
100% identity with whole hsa-miRNA seed regions were se-
lected. The most frequent matches involved Chrysanthe-
mum stunt viroid or Hop stunt viroid species with hsa-
miR-4286, in 365 and 207 cases, respectively. Three hsa-mi-

RNAs (miR-4286, miR-6808-5p, and miR-3622a-3p) were 
involved in 47% of all matches between viroids and hsa-mi-
RNAs. Taken together, these findings warrant further inves-
tigation on the potential of viroids and their derived small 
RNAs to cross kingdoms and interact with nucleic acids in 
humans. © 2020 S. Karger AG, Basel

Introduction

Very few connections have been made between vegetal 
and animal pathogens, which are studied by distinct re-
searchers [1]. Thus, viroids are very particular entities 
that are pathogenic for crop plants and have only been 
studied in plants [2, 3]. They are minute (246–401 nucle-
otides [nt] long) unencapsidated non-coding circular 
RNAs endowed with autonomous replication [3, 4]. They 
are highly stable due to high levels of intrasequence com-
plementarities [5]. The mechanisms by which viroids 
cause diseases in plants are suspected to involve RNA in-
terference, and RNA interference machineries from host 
cells [6, 7]. Several structural and functional similarities 
have been highlighted between viroids and pre-micro-
RNAs (pre-miRNAs), which are hairpin-shaped stem-
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loop double-stranded RNA precursors of miRNA [8]. 
This is for instance the case between Potato spindle tuber 
viroid and human pre-miRNA-146a. In their mature 
form, miRNAs are non-coding regulatory sequences that 
are small, 18–25 nt in size, and interfere with host target 
genes in cells from plants, insects, nematodes, and verte-
brates, including humans [9, 10]. A nucleotide motif lo-
cated at miRNA positions 2–7 or 8, called the “seed re-
gion,” plays an active role in this RNA interference [11]. 
It is complementary to the 3′- or 5′-untranslated regions 
(UTR) that are conserved regions of host messenger 
RNAs (mRNAs) [10, 12]. It was shown that a perfect com-
plementarity between this seed region and its target can 
induce RNA silencing in mammals [13]. Moreover, mi-
RNA seed-matching regions have been described as being 
conserved in multiple mRNAs from mammals, including 
humans [10, 14]. Here, we sought similarities between 
viroids and the seed region of mature human (hsa, for 
Homo sapiens) miRNAs.

Materials and Methods 

We first retrieved all viroid genomes available from the NCBI 
GenBank nucleotide sequence database (https://www.ncbi.nlm.nih.
gov) and all available mature miRNA sequences from the miRBase 
database (www.mirbase.org) [15]. In addition, through the RAND-
NA tool [16], we generated 200 random sequences with a size of 300 
nt, similar to that of viroids, to use as controls. They consisted of 5 
groups of 40 sequences with a G+C content of 40, 45, 50, 55, and 
60%, chosen to cover the range of G+C-contents found in viroids. 
We performed BLAST searches using viroid sequences as queries 
and all mature miRNA sequences as subjects, with relaxed param-
eters including 4 as word size, 1,000 as e-value threshold, and no 
filter. The ten best BLAST results were thereafter filtered by keeping 
only viroids matching with mature hsa-miRNAs. The same protocol 
was used by handling the random sequences. BLAST results were 
sorted based primarily on a match involving the seed region of hsa-
miRNAs (2–7 nt), as well as thresholds for the BLAST scores, the 
length of the sequence alignments, the percentage of identity be-
tween viroids and mature hsa-miRNAs, and the e-value (Fig. 1). Fi-
nally, information on hsa-miRNAs whose seed region matched with 
viroid RNAs according to our criteria were searched for through the 
miRBase database and the NCBI PubMed database (https://www.

200 randomly
generated sequences

2,097 raw hits

101 hits (4.8%)

46 hits (45.5%)

15,294 viroid
sequences

1,048,575 raw hits

81,016 hits (7.7%)

1,501 hits (1.9 %)

Bit score 23.3
Nt length 12

5 hits (10.9%) 

Bit score 25.1
Nt length 13
3 hits (6.5%)

Bit score 32.5
Nt length 17
1 hit (2.1%)

Filter #1: hits involving hsa.miRNAFilter #1: hits involving hsa.miRNA

Filter #2: hits covering the seed regionFilter #2: hits covering the seed region

E.value threshold ≤1: 171 hits (11.3%)E.value threshold ≤1: 171 hits (11.3%)

Bit score 25 
Nt length 13

130 hits (8.7%)

Bit score 23.3
Nt length 12

725 hits (48.3%)

Bit score 21.4
Nt length 11

644 hits (42.9%)

Bit score 27
Nt length 14
1 hit (0.07%) 

Bit score 32.5
Nt length 17
1 hit (0.07%)

Bit score 25
Nt length 13

130 hits (100%)

Bit score 23.3
Nt length 12

36 hits (5.0%)

Bit score 21.4
Nt length 11
2 hits (0.3%)

Bit score 27
Nt length 14
1 hit (100%)

Bit score 2.5
Nt length 17
1 hit (100%)

Additonal filtersAdditonal filters

BLAST search against 35,828 miRNA sequences
(miRbase database) 

BLAST search against 35,828 miRNA sequences
(miRbase database) 

No result No result Bit score 32.5
Nt length 17

1 hit (100.0%)

Fig. 1. Flowchart of the BLAST searches and matches for miRNA against all generated random sequences and all the viroid sequences.
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ncbi.nlm.nih.gov/pubmed). Nucleotide diversity at viroid regions 
matching with mature hsa-miRNA seed regions was represented us-
ing the WebLogo online tool version 2.8.2 [17]. Statistical analyses 
were performed with Openepi software (v.3.03a; http://www.ope-
nepi.com). Proportions were compared using χ2 or Fisher tests. p < 
0.05 was considered significant. 

Results

A total of 15,294 viroid sequences were used as queries 
for BLAST searches against a database of 35,828 mature 
miRNAs. This generated 1,048,575 hits (Fig. 1). Of them, 
81,021 (7.7%) corresponded to matches between viroids 
and hsa-miRNA seed regions. After considering cases 
where viroid fragments were 100% similar to the whole 
hsa-miRNA seed region from its start (position 1 or 2), 
1,501 hits (1.9%; 0.14% of the total number of hits)  
remained (online suppl. Table S1; for all online suppl.  

material, see www.karger.com/doi/10.1159/000509212). 
BLAST results were found to have an e value < 1 in 170 
(11.3%) cases. Among these 1,501 hits, 644, 725, 130, 1, 
and 1 had a nucleotide alignment length of 11, 12, 13, 14, 
and 17 nt, respectively. The longest match (17 nt) involved 
Potato spindle tuber viroid strain DI285387_1_KR_ 
1020130054489-A/33666 and hsa-miRNA-6774-5p, with 
a BLAST bit score of 32.5. The second longest match (14 
nt) was between Potato spindle tuber viroid strain A/2147 
and hsa-miRNA-3145-5p (BLAST bit score of 27). After 
removing duplicates, 25 different viroid species were in-
volved in matches with the seed region of 212 different 
hsa-miRNAs (Table 1). A same procedure was applied to 
the 200 random sequences of 300 nt used as controls for 
specificity assessment. BLAST searches using these se-
quences against the miRNA database generated 2,097 hits. 
Out of them, 101 (4.8%) involved the whole seed region of 
several hsa-miRNAs with an identity of 100%. Among 

Table 1. Top 31 most frequent matches (with a frequency ≥5) between viroids and seed regions of hsa-miRNAs

No. Acronyms Viroid species hsa-miRNA Frequency

1. CSVd Chrysanthemum stunt viroid hsa-miR-4286 365
2. HSVd Hop stunt viroid hsa-miR-6808-5p 207
3. PTSVd Potato spindle tuber viroid hsa-miR-3622a-3p 102
4. HSVd Hop stunt viroid hsa-miR-4441 65
5. CEVd Citrus exocortis viroid hsa-miR-9901 51
6. PLMVd Peach latent mosaic viroid hsa-miR-3689d 43
7. PLMVd Peach latent mosaic viroid hsa-miR-6799-5p 43
8. PLMVd Peach latent mosaic viroid hsa-miR-6825-5p 43
9. CDVd Citrus dwarfing viroid hsa-miR-9898 37

10. CLVd Columnea latent viroid hsa-miR-4725-5p 30
11. HSVd Hop stunt viroid hsa-miR-1207-5p 26
12. HSVd Hop stunt viroid hsa-miR-4756-5p 26
13. PCFVd Pepper chat fruit viroid hsa-miR-4740-3p 26
14. PCFVd Pepper chat fruit viroid hsa-miR-6836-3p 25
15. ADFVd Apple dimple fruit viroid hsa-miR-9898 22
16. CEVd Citrus exocortis viroid hsa-miR-8072 17
17. CEVd Citrus exocortis viroid hsa-miR-4649-3p 16
18. ASSVd Apple scar skin viroid hsa-miR-6775-3p 10
19. GYSVd Grapevine yellow speckle viroid hsa-miR-1253 9
20. GYSVd Grapevine yellow speckle viroid hsa-miR-6878-3p 9
21. ELVd Eggplant latent viroid hsa-miR-514b-3p 8
22. PSTVd Potato spindle tuber viroid hsa-miR-3074-5p 8
23. CDVd Citrus dwarfing viroid hsa-miR-6758-5p 7
24. CEVd Citrus exocortis viroid hsa-miR-6787-3p 7
25. CBVd Coleus blumei viroid hsa-miR-191-5p 7
26. MPVd Mexican papita viroid hsa-miR-3622a-3p 7
27. PSTVd Potato spindle tuber viroid hsa-miR-4291 7
28. PSTVd Potato spindle tuber viroid hsa-miR-4649-5p 7
29. HSVd Hop stunt viroid hsa-miR-6876-5p 6
30. TMCVd Tomato chlorotic dwarf viroid hsa-miR-3622a-3p 6
31. PCFVd Pepper chat fruit viroid hsa-miR-3682-5p 5
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these 101 hits, 5, 3, and 1 had a nucleotide alignment 
length of 12, 13, and 17 nt, respectively. Hence, the pro-
portion of these hits with an alignment length ≥12 nt was 
higher for viroids than for controls (57 vs. 20%; p < 1e–3).

Overall, the most frequent matches involved Chrysan-
themum stunt viroid or Hop stunt viroid species (online 
suppl. Fig. S1) with hsa-miR-4286, in 365 and 207 cases, 
respectively (Table 1). Potato spindle tuber viroid species 
matched 102 times with hsa-miR 3622. Nineteen of the 25 
species of viroids for which fragments were found to 
match significantly with the seed region of hsa-miRNAs 
are known to infect fruits or vegetables that are common 
in human food, which suggests that humans can be ex-
posed to them (online suppl. Table S2). The other viroids 
have been described to infect flowers, which may also al-
low contacts with humans. The 10 viroid species most 
frequently involved in the 1,501 significant matches with 
seed regions of hsa-miRNAs were implicated in almost all 
matches, and 5 of them – Chrysanthemum stunt viroid, 

Hop stunt viroid, Potato spindle tuber viroid, Peach latent 
mosaic viroid, and Citrus exocortis viroid – represented 
83% of all matches (online Suppl. Fig. S1). Moreover, 
matches between 7 different viroid species and 10 hsa-
miRNAs represented 66% of all matches (Fig. 2).

Thirteen hsa-miRNAs were found to match with > 1 
viroid species (online Suppl. Table S3). The 10 hsa-mi-
RNAs whose seed regions most frequently matched with 
viroids were involved in 69% of all matches (online suppl. 
Fig. S2). Three hsa-miRNAs – miR-4286, miR-6808-5p, 
and miR-3622a-3p – were involved in almost half (47%) 
of all matches. MiR-4286 upregulation was reported in 
various types of malignancies, including pancreatic can-
cer, glioma, esophageal adenocarcinoma, and melanoma 
[18, 19]. MiR-6808 has been described as part of human 
splicing-derived miRNAs (“mirtrons”) and was notably 
found to target the DVL1 gene, the dysregulation of which 
is associated with the progression of numerous cancers 
[20, 21]. MiR-3622a-3p has been identified as significant-

Human miRNAs

Viroid RNAs

Fig. 2. Chord diagram representing the fre-
quency of matches between the 10 viroid 
species and hsa mature-miRNAs the most 
frequently involved in matches. Numbers 
on the inner circle indicate numbers of  
interactions between viroids and hsa-mi-
RNAs.
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ly expressed in patients suffering from bladder urothelial 
carcinoma and associated with longer survival times [22]. 
In addition, miR-4441, the fourth miRNA whose seed re-
gion most frequently matched with viroids, targets the 
human histone deacetylase 4 (HDAC4) gene that affects 
transcriptional regulation, cell cycle progression, and de-
velopmental events by altering or repressing access to tar-

get DNA promoters [23]. Finally, we analyzed the conser-
vation of the regions that perfectly matched with the seed 
regions of hsa-miRNAs in the genomes of various viroid 
isolates from 2 species. We observed that these regions 
were either conserved or varied between viroid isolates in 
the genomes from Chrysanthemum stunt viroid and Po-
tato spindle tuber viroid (Fig. 3).

Fig. 3. Conservation in the genomes from different isolates of 
Chrysanthemum stunt viroid and Potato spindle tuber viroid spe-
cies of the regions that matched with the seed regions of hsa-mi-
RNAs. Conservation in the genomes from different isolates of 
Chrysanthemum stunt viroid and Potato spindle tuber viroid spe-
cies of the regions that matched with the seed regions of hsa-mi-
RNAs were represented on a viroid circularized genome (a, d), on 
alignments of 5 viroid sequences (b, e), and as sequence logos 
showing the consensus sequences corresponding only to viroid re-

gions matching hsa-miRNA seed regions (c, f). These sequence 
logos were built using the WebLogo online tool version 2.8.2 [17], 
with 91 Chrysanthemum stunt viroid sequences and 341 Potato 
spindle tuber viroid sequences that were downloaded from the 
NCBI GenBank nucleotide sequence database using viroid names 
and “complete” and “genome” as search terms, and that were di-
rectly alignable on their full length (see also online suppl. Fig. S3, 
S4 showing sequence logos for full-length viroids, and online  
suppl. Materials with viroid full-length sequence alignments).
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Discussion

Here, we describe for the first time 100% identity be-
tween several viroid fragments and the seed region that 
acts in the RNA interference process of various human 
miRNAs. Previously, cross-kingdom similarities were 
also noted between human miRNAs and plant virus ge-
nomes [12]. Virus-encoded microRNAs have been de-
scribed or hypothesized to interact with host mRNAs [24, 
25]. For instance, human cytomegalovirus-encoded-
miR-UL112 was found to downregulate the major histo-
compatibility complex class I-related chain B gene ex-
pression during viral infection [24]. More recently, SARS-
CoV-encoded small RNAs were suspected to contribute 
to the lung pathology associated with viral infection [26]. 
Viroids have stem-loop-like conformations as pri- and 
pre-miRNAs, the miRNA precursors [3, 5]. Viroids and 
pri- and pre-miRNAs are both RNA unencapsidated enti-

ties with non-coding properties that involve ribonuclease 
and dicer complexes to produce small RNA units [27, 28]. 
As a matter of fact, viroid infection was recently associ-
ated with the appearance of specific single-stranded RNA, 
the size of which is similar to that of miRNAs and endog-
enous small interfering RNAs [7, 29]. Thus, viroid-specif-
ic small RNAs comprised by 21–24 nt were detected by 
Northern blots in infected plants for Potato spindle tuber 
viroid [28, 30], Citrus exocortis viroid [31], and Peach la-
tent mosaic viroid [32], while Potato spindle tuber viroid 
RNA was deemed to be opportunistic and suspected as 
capable of using different processing pathways in differ-
ent hosts [33].

Viroids were not detected previously in humans but 
they could have been missed. Interestingly, although vi-
roids were deemed to only replicate in higher plants, one 
of them (Avocado sunblotch viroid) was shown to be able 
to replicate in a cyanobacterium and in the yeast Saccha-
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romyces cerevisiae [33–35]. In addition, exogenous small 
RNAs such as miRNAs were shown to be capable of 
spreading between cells [36]. Moreover, it was demon-
strated that the miRNA-168a from rice was present in the 
serum samples of Chinese individuals whose main diet 
was based on this plant, could bind to the low-density li-
poprotein receptor adapter protein 1 (LDLRAP1) mRNA, 
and was able to downregulate its expression in hepato-
cytes [37]. 

Taken together, these findings question the potential 
of viroids and their derived small RNAs to cross king-
doms to interact with nucleic acids in humans. Viroids 
are prevalent in plants worldwide and could be ingested 
through consumption of fruits and vegetables. It can also 
be hypothesized that miRNA-like RNAs derived from 
these viroids can be either transferred from plants to hu-
mans or processed from viroids in human cells, and they 
could theoretically interact with human mRNAs. Further 
investigation is warranted to search for the presence of 
viroids in humans and test for their effect on mammalian 
cells in vitro.
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