W. R. Anderegg, T. Klein, M. Bartlett, L. Sack, A. F. Pellegrini et al., Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe, Proceedings of the National Academy of Sciences, vol.113, pp.5024-5029, 2016.

W. Anderegg and F. C. Meinzer, Wood anatomy and plant hydraulics in a changing climate, pp.235-253, 2015.

F. H. Barrios-masias, T. Knipfer, and A. J. Mcelrone, , 2015.

M. K. Bartlett, T. Klein, S. Jansen, B. Choat, and L. Sack, The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought, Proceedings of the National Academy of Sciences, vol.113, pp.13098-13103, 2016.

M. K. Bartlett, C. Scoffoni, and L. Sack, The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis, Ecology Letters, vol.15, pp.393-405, 2012.

C. J. Blackman, S. Pfautsch, B. Choat, S. Delzon, S. M. Gleason et al., Toward an index of desiccation time to tree mortality under drought, Plant, Cell & Environment, vol.39, pp.2342-2345, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02638403

T. J. Brodribb, D. J. Bowman, S. Nichols, S. Delzon, and R. Burlett, Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit, New Phytologist, vol.188, pp.533-542, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02663810

T. J. Brodribb and N. M. Holbrook, Stomatal closure during leaf dehydration, correlation with other leaf physiological traits, Plant Physiology, vol.132, pp.2166-2173, 2003.

T. J. Brodribb, N. M. Holbrook, E. J. Edwards, and M. V. Gutiérrez, Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees, Plant, Cell & Environment, vol.26, pp.443-450, 2003.

T. J. Brodribb, R. P. Skelton, S. A. Mcadam, D. Bienaimé, C. J. Lucani et al., Visual quantification of embolism reveals leaf vulnerability to hydraulic failure, New Phytologist, vol.209, pp.1403-1409, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01391634

T. N. Buckley, S. Martorell, A. Diaz-espejo, M. Tomàs, and H. Medrano, Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine (Vitis vinifera), Plant, Cell & Environment, vol.37, pp.2707-2721, 2014.

G. S. Campbell, A simple method for determining unsaturated conductivity from moisture retention data, Soil science, vol.117, pp.311-314, 1974.

L. Cattivelli, F. Rizza, F. W. Badeck, E. Mazzucotelli, A. M. Mastrangelo et al., Drought tolerance improvement in crop plants: an integrated view from breeding to genomics, Field Crops Research, vol.105, pp.1-4, 2008.

G. Charrier, S. Delzon, and J. C. Domec, , 2018.

M. M. Chaves, O. Zarrouk, R. Francisco, J. M. Costa, T. Santos et al., Grapevine under deficit irrigation: hints from physiological and molecular data, Annals of Botany, vol.105, pp.661-676, 2010.

B. Choat, Predicting thresholds of drought-induced mortality in woody plant species, Tree Physiology, vol.33, pp.669-671, 2013.

B. Choat, T. J. Brodribb, C. R. Brodersen, R. A. Duursma, R. López et al., Triggers of tree mortality under drought, Nature, vol.558, pp.531-539, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01840984

B. Choat, W. M. Drayton, C. Brodersen, M. A. Matthews, K. A. Shackel et al., Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species, Plant, Cell & Environment, vol.33, pp.1502-1512, 2010.

A. Coupel-ledru, E. Lebon, C. A. Gallo, A. Gago, P. Pantin et al., Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine, Proceedings of the National Academy of Sciences, vol.113, pp.8963-8968, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01350492

A. Coupel-ledru, S. D. Tyerman, D. Masclef, E. Lebon, C. A. Edwards et al., Abscisic acid down-regulates hydraulic conductance of grapevine leaves in isohydric genotypes only, Plant Physiology, vol.175, pp.1121-1134, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604427

D. Creek, L. J. Lamarque, J. M. Torres-ruiz, C. Parise, R. Burlett et al., Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique, Journal of Experimental Botany, vol.71, pp.1151-1159, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02625168

S. Delzon, New insight into leaf drought tolerance, Functional Ecology, vol.29, pp.1247-1249, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02635517

S. Delzon and H. Cochard, , 2014.

M. J. Devi and V. R. Reddy, , 2018.

R. A. Duursma, C. J. Blackman, R. Lopéz, N. K. Martin-stpaul, H. Cochard et al., On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls, New Phytologist, vol.221, pp.693-705, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02627387

B. E. Ewers, R. Oren, N. Phillips, M. Strömgren, and S. Linder, Mean canopy stomatal conductance responses to water and nutrient availabilities in Picea abies and Pinus taeda, Tree Physiology, vol.21, pp.841-850, 2001.

G. A. Gambetta, J. Fei, T. L. Rost, T. Knipfer, M. A. Matthews et al., Water uptake along the length of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport, Plant Physiology, vol.163, pp.1254-1265, 2013.

E. Gerzon, I. Biton, Y. Yaniv, H. Zemach, Y. Netzer et al., Grapevine anatomy as a possible determinant of isohydric or anisohydric behavior, American Journal of Enology and Viticulture, vol.66, pp.340-347, 2015.

D. H. Greer, Modelling leaf photosynthetic and transpiration temperature-dependent responses in Vitis vinifera cv. Semillon grapevines growing in hot, irrigated vineyard conditions, AoB Plants, p.9, 2012.

G. Guyot, C. Scoffoni, and L. Sack, Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control, Plant, Cell & Environment, vol.35, pp.857-871, 2012.

W. M. Hammond, K. Yu, L. A. Wilson, R. E. Will, W. Anderegg et al.,

, Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality, New Phytologist, vol.223, pp.1834-1843

U. Hochberg, C. Albuquerque, S. Rachmilevitch, H. Cochard, R. David-schwartz et al., Grapevine petioles are more sensitive to drought induced embolism than stems: evidence from in vivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation, Plant, Cell & Environment, vol.39, pp.1886-1894, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01369353

U. Hochberg, A. G. Bonel, R. David-schwartz, A. Degu, A. Fait et al., Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability, Planta, vol.245, pp.1091-1104, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01535191

U. Hochberg, J. C. Herrera, H. Cochard, and E. Badel, , 2016.

U. Hochberg, F. E. Rockwell, N. M. Holbrook, and H. Cochard, Iso/ anisohydry: a plant-environment interaction rather than a simple hydraulic trait, Trends in Plant Science, vol.23, pp.112-120, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02626847

U. Hochberg, C. W. Windt, A. Ponomarenko, Y. J. Zhang, J. Gersony et al., Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems, Plant Physiology, vol.174, pp.764-775, 2017.

D. W. Hopper, R. Ghan, and G. R. Cramer, A rapid dehydration leaf assay, 2014.

N. Martin-stpaul, S. Delzon, and H. Cochard, Plant resistance to drought depends on timely stomatal closure, Ecology Letters, vol.20, pp.1437-1447, 2017.

S. Martorell, H. Medrano, M. Tomàs, J. M. Escalona, J. Flexas et al., Plasticity of vulnerability to leaf hydraulic dysfunction during acclimation to drought in grapevines: an osmotic-mediated process, Physiologia Plantarum, vol.153, pp.381-391, 2015.

N. G. Mcdowell, Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality, Plant Physiology, vol.155, pp.1051-1059, 2011.

F. C. Meinzer, D. M. Johnson, B. Lachenbruch, K. A. Mcculloh, and D. R. Woodruff, Xylem hydraulic safety margins in woody plants: co, 2009.

J. L. Monteith and M. H. Unsworth, Principles of environmental physics, 1990.

K. A. Mott and P. J. Franks, The role of epidermal turgor in stomatal interactions following a local perturbation in humidity, Plant, Cell & Environment, vol.24, pp.657-662, 2001.

A. Nardini and S. Salleo, Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation?, Trees, vol.15, pp.14-24, 2000.

Ü. Niinemets, Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs, Ecology, vol.82, pp.453-469, 2001.

R. Oren, J. S. Sperry, G. G. Katul, D. E. Pataki, B. E. Ewers et al., Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapor pressure deficit, Plant, Cell & Environment, vol.22, pp.1515-1526, 1999.

N. V. Pammenter and C. Van-der-willigen, A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation, Tree Physiology, vol.18, pp.589-593, 1998.

A. Peccoux, B. Loveys, J. Zhu, G. A. Gambetta, S. Delrot et al., Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine, Tree Physiology, vol.38, pp.1026-1040, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02537980

N. Phillips and O. R. , A comparison of daily representations of canopy conductance based on two conditional time-averaging methods and the dependence of daily conductance on environmental factors, Annales des Sciences Forestieres, vol.55, pp.217-235, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00883198

A. Pou, H. Medrano, M. Tomàs, S. Martorell, M. Ribas-carbó et al., Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour, Plant and Soil, vol.359, pp.335-349, 2012.

J. Read, G. D. Sanson, G. Md, and T. Jaffré, Sclerophylly in two contrasting tropical environments: low nutrients vs. low rainfall, American Journal of Botany, vol.93, pp.1601-1614, 2006.

P. B. Reich, The world-wide 'fast-slow' plant economics spectrum: a traits manifesto, Journal of Ecology, vol.102, pp.275-301, 2014.

S. Y. Rogiers, D. H. Greer, J. M. Hatfield, R. J. Hutton, S. J. Clarke et al., Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid, Tree Physiology, vol.32, pp.249-261, 2012.

S. Y. Rogiers, D. H. Greer, R. J. Hutton, and J. J. Landsberg, Does nighttime transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar?, Journal of Experimental Botany, vol.60, pp.3751-3763, 2009.

L. Sack and J. Pasquet-kok, Leaf pressure-volume curve parameters, 2011.

H. R. Schultz, Differences in hydraulic architecture account for nearisohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought, Plant, Cell & Environment, vol.26, pp.1393-1405, 2003.

H. R. Schultz and M. Stoll, Some critical issues in environmental physiology of grapevines: future challenges and current limitations, Australian Journal of Grape and Wine Research, vol.16, pp.4-24, 2010.

A. C. Schuster, M. Burghardt, and M. Riederer, The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions, Journal of Experimental Botany, vol.68, pp.5271-5279, 2017.

C. Scoffoni, C. Vuong, S. Diep, H. Cochard, and L. Sack, Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance, Plant Physiology, vol.164, pp.1772-1788, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01017635

K. A. Simonin, E. Burns, B. Choat, M. M. Barbour, T. E. Dawson et al., Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf, Journal of Experimental Botany, vol.66, pp.1303-1315, 2015.

F. Tardieu and T. Simonneau, Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours, Journal of Experimental Botany, vol.49, pp.419-432, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02839176

M. T. Tyree and H. T. Hammel, The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique, Journal of Experimental Botany, vol.23, pp.267-282, 1972.

M. T. Tyree and J. S. Sperry, Vulnerability of xylem to cavitation and embolism, Annual Review of Plant Biology, vol.40, pp.19-36, 1989.

, by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 12, 2020.

M. Urli, A. J. Porté, H. Cochard, Y. Guengant, R. Burlett et al., , 2013.

R. K. Vandeleur, G. Mayo, M. C. Shelden, M. Gilliham, B. N. Kaiser et al., The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine, Plant Physiology, vol.149, pp.445-460, 2009.

M. T. Van-genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1, Soil Science Society of America Journal, vol.44, pp.892-898, 1980.

J. Zhang, H. T. Nguyen, and A. Blum, Genetic analysis of osmotic adjustment in crop plants, Journal of Experimental Botany, vol.50, pp.291-302, 1999.

S. D. Zhu, Y. J. Chen, Q. Ye, P. C. He, H. Liu et al., Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits, Tree Physiology, vol.38, pp.658-663, 2018.

, by INRAE Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement user on 12, 2020.