E. Aa, J. P. Townsend, R. I. Adams, K. M. Nielsen, and J. W. Taylor, Population structure and gene evolution in Saccharomyces cerevisiae, FEMS Yeast Res, vol.6, pp.702-715, 2006.

W. Albertin, P. Marullo, M. Aigle, A. Bourgais, M. Bely et al., Evidence for autotetraploidy associated with reproductive isolation in Saccharomyces cerevisiae: Towards a new domesticated species, J. Evol. Biol, vol.22, pp.2157-2170, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02657083

D. Avram and A. T. Bakalinsky, SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae, J. Bacteriol, vol.179, pp.5971-5974, 1997.

M. Avramova, A. Cibrario, E. Peltier, M. Coton, E. Coton et al., Brettanomyces bruxellensis population survey reveals a diploidtriploid complex structured according to substrate of isolation and geographical distribution, Sci. Rep, vol.8, p.4136, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01900511

M. Borlin, Diversity and Population Structure of Yeast Saccharomyces cerevisiae at the Scale of the Vineyard of Bordeaux?: Impact of Different Factors on Diversity, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01293834

M. Börlin, P. Venet, O. Claisse, F. Salin, J. Legras et al., Cellar-associated Saccharomyces cerevisiae population structure revealed high-level diversity and perennial persistence at sauternes wine estates, Appl. Environ. Microbiol, vol.82, pp.2909-2918, 2016.

A. R. Borneman, A. H. Forgan, R. Kolouchova, J. A. Fraser, and S. A. Schmidt, Whole genome comparison reveals high levels of inbreeding and strain redundancy across the spectrum of commercial wine strains of Saccharomyces cerevisiae, G3, vol.6, pp.957-971, 2016.

A. R. Borneman and I. S. Pretorius, Genomic insights into the Saccharomyces sensu stricto complex, Genetics, vol.199, pp.281-291, 2014.

C. Brion, C. Ambroset, I. Sanchez, J. Legras, and B. Blondin, Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks, BMC Genomics, vol.14, p.681, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00939593

N. Cheraiti, S. Guezenec, and J. Salmon, Very early acetaldehyde production by industrial Saccharomyces cerevisiae strains: a new intrinsic character, Appl. Microbiol. Biotechnol, vol.86, pp.693-700, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02659575

M. Chernova, W. Albertin, P. Durrens, E. Guichoux, D. J. Sherman et al., Many interspecific chromosomal introgressions are highly prevalent in Holarctic Saccharomyces uvarum strains found in humanrelated fermentations, Yeast, vol.35, pp.141-156, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01585808

K. J. Clowers, J. Heilberger, J. S. Piotrowski, J. L. Will, and P. Gascha, Ecological and genetic barriers differentiate natural populations of Saccharomyces cerevisiae, Mol. Biol. Evol, vol.32, pp.2317-2327, 2015.

B. Divol, M. Du-toit, and E. Duckitt, Surviving in the presence of sulphur dioxide: Strategies developed by wine yeasts, Appl. Microbiol. Biotechnol, vol.95, pp.601-613, 2012.

E. K. Engle and J. C. Fay, Divergence of the yeast transcription factor FZF1 affects sulfite resistance, PLoS Genet, vol.8, p.2763, 2012.

A. Fleiss, S. O'donnell, T. Fournier, W. Lu, N. Agier et al., Reshuffling yeast chromosomes with CRISPR/Cas9, PLoS Genet, vol.15, p.1008332, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02303598

R. Franco-duarte, F. Bigey, L. Carreto, I. Mendes, S. Dequin et al., Intrastrain genomic and phenotypic variability of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments, FEMS Yeast Res, vol.15, p.63, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837750

E. García-ríos and J. M. Guillamón, Sulfur dioxide resistance in Saccharomyces cerevisiae: beyond SSU1, Microb. Cell, vol.6, pp.527-530, 2019.

E. García-ríos, M. Nuévalos, E. Barrio, S. Puig, and J. M. Guillamón, A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite, Environ. Microbiol, vol.21, pp.1771-1781, 2019.

N. Goto-yamamoto, K. Kitano, K. Shiki, Y. Yoshida, T. Suzuki et al., SSU1-R, a sulfite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence, J. Ferment. Bioeng, vol.86, issue.98, pp.80146-80149, 1998.

H. Hinze and H. Holzer, Analysis of the energy metabolism after incubation of Saccharomyces cerevisiae with sulfite or nitrite, Arch. Microbiol, vol.145, pp.27-31, 1986.

J. L. Legras, D. Merdinoglu, J. M. Cornuet, and F. Karst, Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history, Mol. Ecol, vol.16, pp.2091-2102, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02667071

S. Marsit and S. Dequin, Diversity and adaptive evolution of Saccharomyces wine yeast: a review, FEMS Yeast Res, vol.15, p.67, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837757

M. Martí-raga, P. Marullo, G. Beltran, A. Mas, M. Marti-raga et al., Nitrogen modulation of yeast fitness and viability during sparkling wine production, Food Microbiol, vol.54, pp.106-114, 2016.

P. Marullo, M. Bely, I. Masneuf-pomarède, M. Pons, M. Aigle et al., Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model, FEMS Yeast Res, vol.6, pp.268-279, 2006.

P. Marullo, C. Mansour, M. Dufour, W. Albertin, D. Sicard et al., Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach, FEMS Yeast Res, vol.9, pp.1148-1160, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02660871

R. K. Mortimer, P. Romano, G. Suzzi, and M. Polsinellif, Genome renewal: a new phenomenon revealed from a genetic study of 43 Strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts, YEAST, vol.10, pp.1543-1552, 1994.

T. Nardi, V. Corich, A. Giacomini, and B. Blondin, A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast, Microbiology, vol.156, pp.1686-1696, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02662574

M. Novo, F. Bigey, E. Beyne, V. Galeote, F. Gavory et al., , 2009.

, Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.16333-16338

. Oiv, Compendium of International Methods of Analysis of Wine and Musts, 2019.

H. Park and A. T. Bakalinsky, SSU1 mediates sulphite efflux in Saccharomyces cerevisiae, Yeast, vol.16, pp.881-888, 2000.

H. Park and Y. S. Hwang, Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae, J. Microbiol, vol.46, pp.542-548, 2008.

E. Peltier, V. Sharma, M. Marti-raga, M. Roncoroni, M. Bernard et al., Genetic basis of genetic x environment interaction in an enological context, BMC Genomics, vol.19, p.772, 2018.

E. Peltier, V. Sharma, M. M. Raga, M. Roncoroni, M. Bernard et al., Dissection of the molecular bases of genotype x environment interactions: a study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices, BMC Genomics, vol.19, p.772, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02620975

J. E. Pérez-ortín, A. Querol, S. Puig, and E. Barrio, Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains, Genome Res, vol.12, pp.1533-1539, 2002.

J. Peter, M. De-chiara, A. Friedrich, J. Yue, D. Pflieger et al., Genome evolution across 1,011 Saccharomyces cerevisiae isolates, Nature, vol.556, pp.339-344, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01872910

E. M. Raymond, F. Conti, and A. L. Rosa, Differences between indigenous yeast populations in spontaneously fermenting musts from V. vinifera L. and V. labrusca L. Grapes harvested in the same geographic location, Front. Microbiol, vol.9, p.1320, 2018.

D. Sicard and J. L. Legras, Bread, beer and wine: Yeast domestication in the Saccharomyces sensu stricto complex, Comptes Rendus Biol, vol.334, pp.229-236, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02653082

V. Tosato and C. V. Bruschi, Per aspera ad astra: When harmful chromosomal translocations become a plus value in genetic evolution. lessons from Saccharomyces cerevisiae, Microb. Cell, vol.2, pp.363-375, 2015.

E. Valero, D. Schuller, B. Cambon, M. Casal, and S. Dequin, Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-years study, FEMS Yeast Res, vol.5, pp.959-969, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02681123

N. Yuasa, Y. Nakagawa, M. Hayakawa, and Y. Iimura, Distribution of the sulfite resistance gene SSU1-R and the variation in its promoter region in wine yeasts, J. Biosci. Bioeng, vol.98, pp.394-397, 2004.

A. Zimmer, C. Durand, N. Loira, P. Durrens, D. J. Sherman et al., QTL dissection of lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite, PLoS One, vol.9, p.86298, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00986680