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A general global-local modelling framework for the deterministic optimisation of composite structures

Introduction

Last decades have seen an increasing interest in the study and in the use of composite materials, especially for aeronautical structures. Composites materials allow for a greater freedom in the design process when compared to metal alloys. In fact, the material itself can be tailored according to the requirements of the problem at hand. Furthermore, high specific stiffness and specific strength make composite materials appealing for the aeronautical industry.

Despite these advantages, many difficulties arise since the initial design phases. Issues are mainly related to the mathematical description of anisotropy, as well as to the scale separation between the most important physical responses to be integrated into the design process. As far as the mathematical description of the anisotropy is concerned, the most common multi-scale optimisation approaches available in the literature make use of the well-known lamination parameters (LPs) coupled with the parameters of Tsai and Pagano, see [START_REF] Jones | Mechanics of Composite Materials[END_REF]; Tsai and Pagano (1968); [START_REF] Tsai | Introduction to composite materials[END_REF]. These parameters unquestionably provide a compact representation of the stiffness tensors of the laminate; although, they are not all tensor invariants, as discussed in [START_REF] Tsai | Introduction to composite materials[END_REF]. Moreover, both LPs and Tsai and Pagano parameters have not an immediate physical meaning related to the elastic symmetries of the laminate stiffness tensor. A sound alternative for describing the anisotropic behaviour of composite materials and structures is represented by the polar formalism introduced by [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF]. Thanks to the polar formalism it is possible to represent any plane tensor by means of tensor invariants, referred as polar parameters (PPs), which are related to the symmetries of the tensor. In particular, for a fourth-order elasticity-like plane tensor (i.e. a tensor having both major and minor symmetries), all possible elastic symmetries can be easily expressed in terms of conditions on the tensor PPs. Moreover, the polar formalism offers a frame-invariant description of any plane tensor, see [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF]. Moreover, recently, the polar method has been generalised to the case of higher-order equivalent single layer theories in Montemurro (2015a,b,c). Regarding the intrinsic multi-scale nature of the design problem of composite structures, the most common approach used in the literature is to transform the design problem into a multi-scale twolevel optimisation problem, see for example [START_REF] Albazzan | Efficient design optimization of nonconventional laminated composites using lamination parameters: A state of the art[END_REF]. At the first level of the strategy, each laminate composing the structure is considered as a homogeneous anisotropic equivalent singlelayer plate: the goal is to find the optimal distribution of the geometrical and mechanical (i.e. LPs or PPs depending on the anisotropy description) design variables satisfying the requirements of the problem at hand. The second level of the strategy focuses on the laminate mesoscopic scale and aims at retrieving, at least, one optimum stacking sequence meeting the optimal stiffness properties resulting from the first-level problem. Some interesting works based on the LPs for describing the macroscopic response of the laminate can be found in [START_REF] Liu | A two-step optimization scheme for maximum stiffness design of laminated plates based on lamination parameters[END_REF]; Herencia et al. (2008). Conversely, the multi-scale two-level optimisation strategy (MS2LOS) based on the polar formalism has been originally introduced in Montemurro et al. (2012a,b). The MS2LOS, coupled with polar formalism, has been successfully used in several works, such as Montemurro et al. (2016[START_REF] Montemurro | A two-level procedure for the global optimization of the damping behavior of composite laminated plates with elastomer patches[END_REF]; Catapano and Montemurro (2014b,a); [START_REF] Montemurro | A general multi-scale two-level optimisation strategy for designing composite stiffened panels[END_REF], and extended to Variable Angle Tow (VAT) composites [START_REF] Montemurro | A general b-spline surfaces theoretical framework for optimisation of variable angle-tow laminates[END_REF], 2016[START_REF] Vannucci | Anisotropic Elasticity[END_REF]. Furthermore, recently, an experimental validation of the effectiveness of the MS2LOS has been presented in Montemurro et al. (2019).

Due to the discrete variables involved in the definition of a composite laminate (e.g. the number of plies, the orientation angle of each lamina, etc.), the common choice is to use genetic algorithms (GAs) or other metaheuristics to perform the solution search during the optimisation. Nevertheless, an optimisation based on a GA is not suitable for design problems with a large number of variables. Albeit a deterministic approach is more suited, the price to pay is to transform discrete variables into continuous ones (to be rounded at the end of the procedure) and to accept local optimal solution instead of global ones. Problems with large number of variables are typical of Topology Optimisation (TO), see for instance the works by [START_REF] Taylor | Topology Optimization[END_REF]; [START_REF] Costa | A 2d topology optimisation algorithm in NURBS framework with geometric constraints[END_REF]Costa et al. ( , 2019a,b),b). The common approach is to use deterministic algorithms together with the analytic expressions of gradients of objective function and constraints, in order to reduce the computational cost. Of course, a similar approach can be used for the multi-scale design of composite structures, by paying a particular attention on the strong non-convexity of the resulting optimisation problem. In the last 30 years, some efforts have been done to employ deterministic optimisation methods for the multi-scale design of composites by considering different physical responses, like compliance, buckling, strength, etc. The first attempts dealing with the integration of a requirement on the first buckling factor of the structure can be found in the works by [START_REF] Rodrigues | Necessary conditions for optimal design of structures with a nonsmooth eigenvalue based criterion[END_REF] and by [START_REF] Neves | Generalized topology design of structures with a buckling load criterion[END_REF], where authors use the adjoint method to derive, with a variational approach, the analytic expression of the buckling factor gradient. [START_REF] Setoodeh | Design of variable-stiffness composite panels for maximum buckling load[END_REF] introduced the decomposition of the geometric stiffness matrix of a single element as a linear combination of in-plane forces per unit length and some matrices depending only on the geometry of the element. However, they do not provide the expressions of these matrices, and they do not consider the contributions due to transverse shear stresses. In the article of [START_REF] Ijsselmuiden | Multi-step blended stacking sequence design of panel assemblies with buckling constraints[END_REF], authors deal with blending and buckling in a gradient-based optimisation framework. However, buckling is formulated via an empirical (approximated) formula. The same authors, in [START_REF] Ijsselmuiden | Optimization of variable-stiffness panels for maximum buckling load using lamination parameters[END_REF], use the approach of [START_REF] Setoodeh | Design of variable-stiffness composite panels for maximum buckling load[END_REF] for VAT buckling load maximisation. Interesting is the work of [START_REF] Bian | Large-scale buckling-constrained topology optimization based on assemblyfree finite element analysis[END_REF], who propose an assembly-free method for TO. In [START_REF] Thomsen | Buckling strength topology optimization of 2d periodic materials based on linearized bifurcation analysis[END_REF], authors derive the buckling gradient for TO problems in the framework of the Solid Isotropic Material Penalisation (SIMP) approach. [START_REF] Ferrari | Revisiting topology optimization with buckling constraints[END_REF] revisit the buckling constraint for TO and study the influence of common practices, such as inconsistent gradients, obtained by neglecting some terms as done in the works by [START_REF] Ye | Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function[END_REF]; [START_REF] Munk | A simple alternative formulation for structural optimisation with dynamic and buckling objectives[END_REF]. Finally, [START_REF] Townsend | A level set topology optimization method for the buckling of shell structures[END_REF] propose a level-set topology optimisation for buckling of shell-like structures. Surprisingly, in the aforementioned works, authors do not to include out-of-plane shear stresses contribution in the assembly of the geometric stiffness matrix.

A second major issue in composite laminates design, which is still an open problem, is the so-called blending requirement, initially introduced in [START_REF] Kristinsdottir | Optimal design of large composite panels with varying loads[END_REF]. The blending requirement consists of ensuring the continuity of ply orientations between adjacent panels having a different number of layers. In the framework of the polar method and the First-order Shear Deformation Theory (FSDT) of laminates, the recent work by [START_REF] Panettieri | Blending constraints for composite laminates in polar parameters space[END_REF] proposes a general approach consisting in a set of four inequalities on the laminate PPs, to be imposed in the first-level of the MS2LOS, in order to ensure the recovery of blended stacking sequences in the second-level problem. For an exhaustive literature survey on blending, the reader is addressed to [START_REF] Panettieri | Blending constraints for composite laminates in polar parameters space[END_REF].

A further issue in the design of composite structures is related to the mathematical model, adopted at each pertinent scale, to assess the physical responses involved in the design problem. In order to reduce the computational cost of the whole optimisation process, in all the studies mentioned beforehand, analytical (approximate) models are used for the assessment of the response of the structure. Accordingly, the main limitations of these approaches are the lack of accuracy and the limited applicability of such methods that rely on simplifying hypotheses, especially in terms of applied boundary conditions (BCs), which are non-representative of real operative conditions. To go beyond these limitations, some authors proposed the use of enhanced semi-analytical formulations to assess local structural responses. For example in [START_REF] Bisagni | A fast procedure for the design of composite stiffened panels[END_REF], the authors proposed an analytical formulation, based on the Rayleigh-Ritz method, able to better describe the interaction between the skin and the stringers due to buckling, but still neglecting the frames compliance and considering the structure infinitely periodic. In other works, like [START_REF] Irisarri | Computational strategy for multiobjective optimization of composite stiffened panels[END_REF][START_REF] Vankan | Efficient optimisation of large aircraft fuselage structures[END_REF], surrogate models built from results of FE analyses are employed, but the problem of the representativeness of the BCs still persist and the phenomenon of mode switching can lead to a further inaccuracy in the evaluation of the buckling response. Therefore, the use of a proper finite element (FE) modelling strategy, for both global and local scales phenomena assessment, should be used in these situations. However, as pointed out by [START_REF] Venkataraman | Structural optimization complexity: what has moore's law done for us?[END_REF], its integration in a multi-scale optimisation strategy could be difficult when complex structures characterised by many design variables are considered.

To overcome the aforementioned issues, a dedicated global-local (GL) FE modelling approach, initially presented in [START_REF] Izzi | A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures[END_REF] for optimisation of composite structures based on GAs, is here improved for deterministic algorithms and integrated in the MS2LOS of composite structures. The resulting methodology is referred as GL-MS2LOS. GL modelling strategies are quite commonly used in the structural analysis of the aeronautical structures [START_REF] Izzi | A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures[END_REF][START_REF] Ciampa | Global local structural optimization of transportation aircraft wings[END_REF][START_REF] Liu | Global/local optimization of aircraft wing using parallel processing[END_REF]. However, GL modelling strategies are rarely coupled to deterministic optimisation methods due to the following issues:

1. the high computational costs; 2. the lack of pertinent criteria to identify the zones of interest (ZOIs) within the global FE model (GFEM);

3. the lack of suitable modelling strategies to automatically build the local FE models (LFEMs) by extracting pertinent information from the GFEM and by taking into account for variable (possibly discontinuous) geometry and mesh;

4. the lack of a proper mathematical formulation to derive the gradient of the physical responses resulting from LFEMs with respect to the design variables describing the model at each pertinent scale (and the related coupling effect between GFEM and LFEMs responses and their derivatives).

In this scenario, the major contribution of this work is twofold. On the one hand, a closed-form derivation of a large variety of constraints (and their gradients with respect to the design variables), including feasibility, strength, stiffness, blending and buckling factor in the framework of the FSDT is presented, and their expression is derived in the PPs space. On the other hand, a proper GL modelling strategy, based on the sub-modelling technique by [START_REF] Sun | A global-local finite element method suitable for parallel computations[END_REF]; [START_REF] Mao | A refined global-local finite element analysis method[END_REF]; [START_REF] Whitcomb | Iterative global/local finite element analysis[END_REF], has been embedded in the optimisation work-flow and considered in the derivation of such constraints, in particular for the analytic expression of the buckling factor (by taking into account for the coupling effects between LFEM and GFEM).

The paper is organised as follows: a general overview on the design problem and of the MS2LOS is presented in Section 2. The mathematical framework of the first-level problem formulation is detailed in Section 3. A concise description of the FE models , at both global and local levels, are given in Section 4, while numerical results are shown and commented in Section 5. Finally, Section 6 is dedicated to concluding remarks, whilst Appendices A, B, C and D are dedicated to the mathematical proofs for deriving the expression of the gradient of the considered physical and geometrical responses. In order to prove the effectiveness of the GL-MS2LOS, a numerical benchmark, taken from [START_REF] Panettieri | Blending constraints for composite laminates in polar parameters space[END_REF]; [START_REF] Liu | Bilevel optimization of blended composite wing panels[END_REF][START_REF] Liu | Two-level composite wing structural optimization using response surfaces[END_REF], has been considered. The benchmark consists in a simplified wing-box model, made of composite laminates, subject to bending and twist moment at the tip section, with a clamped root section. The geometry of the structure is presented in Figure 1. The wing-box has length L = 3543 mm, width W = 2240 mm and height H = 381 mm. Loads and BCs are deeply discussed in Section 4. In the model, ribs, spars and stringers are replaced by continuous equally spaced composite plates with a pre-defined stacking sequence: [(±45➦) 11 ] S . The constitutive ply, used for all laminates composing the structure, is made of a carbon-epoxy T300/5208 pre-preg [START_REF] Zhang | Analysis and design of carbon fibre clamping apparatus for replacement of insulator strings in ultra-high voltage transmission line[END_REF][START_REF] Catapano | Stiffness and strength optimisation of the anisotropy distribution for laminated structures[END_REF], whose properties are listed in Table1, in terms of both technical constants and PPs. Optimisation regions are dorsal and ventral skins of the wing-box. Each skin is subdivided into nine regions (or panels), numbered as in Fig. 2, for a total number of panels n pan equal to 18.

Multi-Scale Two-Level Strategy

Generally speaking, the main goal of the MS2LOS is the minimisation of a merit function (in this case, the mass of the simplified wing-box), subject to requirements of different nature, e.g. geometrical, 1. First-level problem. The aim of this phase, which focuses on the laminate macroscopic scale, is the determination of the optimum distribution of the mechanical and geometric design variables, describing the behaviour of each laminate, in order to minimise the considered objective function and to satisfy the set of design requirements (formulated as optimisation constraints). At this level, the generic laminate is modelled as an equivalent homogeneous orthotropic plate, whose anisotropy is described in terms of laminate PPs (see [START_REF] Vannucci | Anisotropic Elasticity[END_REF] for a primer). Thanks to this formulation, at this stage the designer can add further requirements (e.g. manufacturability constraints, strength and damage criteria, etc.) by introducing suitable constraints on the laminate PPs. In this work, only the first-level problem is considered. Further details about the formulation of the second-level problem, and the related numerical strategy, can be found in Montemurro et al. (2019Montemurro et al. ( , 2012a,b),b).

Mathematical Formulation of the First-Level Problem

The aim of the first-level problem is the mass minimisation of the simplified wing-box structure, represented in Fig. 1, subject to the following design requirements: a constraint on the first buckling factor of each dorsal sub-panel, evaluated by means of the GL modelling approach on each LFEM;

Mechanical and Geometric Design Variables

The constitutive law of a multilayer plate, expressed in the global frame of the laminate, reads

r = K lam ε ε ε gen , (1) 
where r and ε ε ε gen are the vectors of the generalised forces per unit length and generalised strains of the laminate middle plane, respectively, whilst K lam ∈ M 8×8 s++ is the stiffness matrix of the laminate (Voigt's notation).

In the framework of the FSDT [START_REF] Reddy | Mechanics of Laminated Composite Plates and Shells: Theory and Analysis[END_REF]), the analytic expressions of these arrays are

r = n m t , K lam =   A B O D O sym H   , ε ε ε gen = ε ε ε 0 χ χ χ 0 γ γ γ 0 . (2) 
In Eq. ( 2), A ∈ M 3×3 s++ is the membrane stiffness matrix, D ∈ M 3×3 s++ is the bending stiffness matrix, H ∈ M 2×2 s++ is the out-of-plane shear stiffness matrix, B ∈ M 3×3 s is the membrane/bending coupling stiffness matrix. Vectors n, m, t are the membrane forces, bending moments and out-of-plane shear forces per unit length, respectively. Vectors ε ε ε 0 , χ χ χ 0 , γ γ γ 0 represent the in-plane strains, curvatures and out-of-plane shear strains of the laminate middle plane, respectively.

It is convenient to introduce the following homogenised tensors:

A * := 1 h A, B * := 2 h 2 B, D * := 12 h 3 D, H * := 1 h H, (3) 
where h is the total thickness of the laminate.

As shown in Montemurro (2015a,b), in the framework of the polar formalism, in the case of fully orthotropic, quasi-homogeneous laminates, the overall number of independent variables does not change if FSDT is considered, instead of the classic laminate theory (CLT). In particular, once the basic ply is chosen, only three independent variables are needed to completely characterise the laminate behaviour, namely

R A * 0K , R A * 1 , Φ A * 1 .
The fourth variable needed to describe the laminate response is the number of plies n ply , which is defined as n ply = h/t ply , where t ply is the thickness of the single ply. For more details on the polar formalism, the reader is addressed to [START_REF] Verchery | Les invariants des tenseurs d'ordre 4 du type de l'élasticité[END_REF]; [START_REF] Vannucci | Anisotropic Elasticity[END_REF][START_REF] Vannucci | Plane anisotropy by the polar method[END_REF]; Montemurro (2015a,b).

For optimisation purposes, it is useful to introduce the dimensionless PPs of A * and the dimensionless number of plies, as follows:

n 0 := n ply n ref , ρ 0K := R A * 0K R 0 , ρ 1 := R A * 1 R 1 , φ 1 := Φ A * 1 π/2 , ( 4 
)
where n ref is the reference value of the number of plies, whilst R 0 and R 1 are the anisotropic moduli of the constitutive lamina; the value of these quantities is reported in Table 1. The expression of the laminate homogenised stiffness matrices of Eq. ( 3) in terms of the laminate dimensionless design variables of Eq. ( 4), together with their gradient, is given in Appendix A.

Hence, for each one of the n pan laminates composing the wing-box, i.e. for each region where (4) assume constant values, four variables are needed. Design variables can be collected in the vector:

ξ T := {n i 0 , ρ i 0K , ρ i 1 , φ i 1 | i = 1, • • • , n pan }. (5) 
The total number of design variables is then equal to n vars := ♯ξ ξ ξ = 4 n pan .

Laminate Feasibility Constraints

In the first level of the MS2L strategy, geometric and feasibility constraints on the PPs must be considered [START_REF] Vannucci | A note on the elastic and geometric bounds for composite laminates[END_REF], in order to ensure that the optimal values of PPs correspond to a feasible stacking sequence (to be determined during the second step of the procedure). Since orthotropy and quasi-homogeneity (i.e. uncoupling with the same group of symmetry in membrane and bending) properties holds, such constraints read [START_REF] Vannucci | A note on the elastic and geometric bounds for composite laminates[END_REF]:

     -1 ≤ ρ 0K ≤ +1, 0 ≤ ρ 1 ≤ 1, 2ρ 2 1 -1 -ρ 0K ≤ 0. ( 6 
)
The first two equations of ( 6) can be considered as bounds for the design variables; therefore, the feasibility constraint is represented only by the third equation of ( 6), which must be evaluated n pan times, i.e. for each panel of the wing-box. However, in order to avoid a large number of constraints (and gradients), which may lead to a over-constrained optimisation problem, one may use suitable aggregation strategies, e.g. by introducing the well-know maximum operator. Inasmuch as max operator is not everywhere differentiable with continuity (C 0 class), a continuous and differentiable approximation (at least of class C 1 ) must be introduced. Let x be a generic vector, whose cardinality is n, and let introduce the following operator, called α-LogSumExp, often used in machine learning and artificial neural networks [START_REF] Haykin | Initial sizing optimisation of anisotropic composite panels with t-shaped stiffeners[END_REF][START_REF] Nielsen | Guaranteed bounds on information-theoretic measures of univariate mixtures using piecewise log-sum-exp inequalities[END_REF][START_REF] Calafiore | Optimization Models[END_REF]:

LSE α (x) := 1 α ln n i=1 e αx i , (7) 
where α is a parameter which can be chosen according to the variance Var(x) and to the values of vector x. The more α >> 1, the better LSE α → max x.

It can be easily shown that the family LSE α approaches the max by excess; in particular, the following estimate holds:

max x ≤ LSE α ≤ max x + 1 α ln(n). (8) 
Equation ( 8) is much more accurate as Var(x) and/or α assume large values. Furthermore, LSE α is a convex and strictly-monotonically-increasing function in its domain [START_REF] Calafiore | Optimization Models[END_REF]. Relation ( 8) is a fundamental inequality, since it ensures that the approximated constraints are conservative. The approximation consists in considering a value of α reasonably large, in order to avoid too sharp approximations and numerical overflows on the one hand, but maintaining the discrete effect of the max operator and to reasonably approximate the maximum value on the other hand.

In this case, the n pan inequalities of ( 6), collected in the vector g, can be replaced by the condition

g feas := LSE α (g) , α >> 1. ( 9 
)
The gradient of of Eq. ( 9), with respect to the generic design variable ξ j , reads:

(∇ ξ ξ ξ g feas ) j := ∂g feas ∂ξ j = npan i=1 e αg i ∂g i ∂ξ j npan i=1 e αg i , α >> 1, j = 1, . . . , n vars , (10) 
where

∂g i ∂ξ j =      -1 if ξ j = ρ i 0K , 4ρ i 1 if ξ j = ρ i 1 , 0 otherwise. (11)
Regarding the parameter α, after some empirical tuning, it has been set as follows:

α (Var(g)) =      70 if Var(g) ≤ 0.001, 50 if 0.001 < Var(g) ≤ 0.1, 10 if Var(g) ≥ 0.1. (12)

Displacement Requirement

The displacement requirement is measured on the GFEM and is considered as the vertical displacement (i.e. along the z axis) of node A at the tip of the wing-box, as illustrated in Fig. 4.

Let n DOF denote the number of DOFs of the unconstrained GFEM. Since BCs are applied at n BC DOFs, the constrained GFEM has n IN := n DOFn BC DOFs. Let u be the solution of the problem:

Ku -f = 0, ( 13 
)
where u is the vector of unknowns nodal displacements and rotations, f is the vector of external generalised nodal forces, and

K ∈ M n IN ×n IN s++
is the (constrained) stiffness matrix of the GFEM. Let index k denote the position, in u, of the displacement of node A along the z axis. It is convenient to introduce the vector a, whose its unique non-zero component has unit value in position k, such that

∂u k ∂ξ j = a T ∂u ∂ξ j . ( 14 
)
Under the hypothesis that external generalised nodal forces do not depend on design variables:

∂f ∂ξ j = 0, ∀j = 1, . . . , n vars , (15) 
Eq.( 14) can be augmented with the null quantity obtained by differentiation of Eq.( 13):

∂u k ∂ξ j = a T ∂u ∂ξ j + µ µ µ T ∂K ∂ξ j u + K ∂u ∂ξ j . ( 16 
)
The expression of ∂K/∂ξ j is given in Appendix B.

The adjoint vector µ µ µ is chosen in such a way that the term multiplying ∂u ∂ξ j vanishes from Eq. ( 16).

Finally, if u 0 denotes the maximum allowable displacement, one obtains

g disp := u k u 0 -1 ≤ 0, (17) 
and

   ∇ ξ ξ ξ g disp j := 1 u 0 ∂u k ∂ξ j = µ µ µ T ∂K ∂ξ j u u 0 , ∀j = 1, . . . , n vars , Kµ µ µ = -a.
(18)

Laminate Failure Criterion

The requirement on the laminate strength is based on the results of the works made by [START_REF] Catapano | Invariant formulation of phenomenological failure criteria for orthotropic sheets and optimisation of their strength[END_REF]Catapano et al. ( , 2014)); [START_REF] Catapano | On the correlation between stiffness and strength properties of anisotropic laminates[END_REF]. The authors introduce a laminate failure index, in the framework of the FSDT, averaged on the laminate thickness h, having the form:

F = 1 h (ε ε ε T 0 G A ε ε ε 0 + χ χ χ T 0 G D χ χ χ 0 + 2ε ε ε T 0 G B χ χ χ 0 + γ γ γ T 0 G H γ γ γ 0 + ε ε ε T 0 g A + χ χ χ T 0 g D ) -1 ≤ 0, ( 19 
)
where G A , G B , G D , G H are the laminate membrane, membrane/bending coupling, bending and outof-plane shear strength matrices, respectively, while g A and g D are the membrane and bending strength vectors related to the linear part of the failure criterion. As discussed in [START_REF] Catapano | On the correlation between stiffness and strength properties of anisotropic laminates[END_REF], laminate stiffness and strength matrices are strictly related: all of the aforementioned quantities can be expressed in terms of the PPs of matrix A * ; hence, the number of variables is not increased by the introduction of the laminate strength matrices and vectors (see Appendix C for the related expressions and gradients).

Under the hypothesis of quasi-homogeneity and by considering the Tsai-Hoffman criterion, Eq. ( 19) reduces to

F TH := 1 h ε T gen Gε gen -1 ≤ 0, with G := diag (G A , G D , G H ) . (20) 
Eq. ( 20) is evaluated for all elements of the GFEM belonging to the check zone, where the strain field assumes meaningful values. In this work, the check zone is composed by the elements (whose number is n e ) belonging to the ventral skin on the wing-box of Fig. 1 and2b. To avoid a large number of constraints (and gradients), the aggregation based on the maximum operator is used also in this case:

g TH = max e 1 h e ε ε ε T gen e G e ε ε ε gen e -1 ≤ 0, e = 1, . . . , n e . ( 21 
)
Adopting the approximation of Eq. ( 7), and adding the null quantity of Eq. ( 13), Eq. ( 21) becomes:

g TH = LSE α (δ δ δ) + µ µ µ T (Ku -f) -1 ≤ 0, e = 1, . . . , n e , α >> 1, ( 22 
)
where vector δ δ δ collects the quantity

δ e := 1 h e ε ε ε T gen e G e ε ε ε gen e , e = 1, . . . , n e . (23) 
By deriving Eq. ( 22), remembering assumption (15), one obtains:

∇ ξ ξ ξ g TH j := ∂g TH ∂ξ j = ne e=1 e αδe ∂δe ∂ξ j ne e=1 e αδe + µ µ µ T ∂K ∂ξ j u + K ∂u ∂ξ j , α >> 1, j = 1, . . . , n vars . ( 24 
)
It is convenient to introduce the connectivity matrix of element e (24 are the DOFs of a shell element with four nodes and six DOFs per node) defined as

L e : u → u e , L e u = u e , L e ∈ M 24×n IN , (25) 
and the matrix B e , representing the product of the linear differential operator and the shape function matrices, i.e. 

The expression of ∂G e /∂ξ e , appearing in the above formula, is provided in Appendix C. By injecting Eq. ( 27) into Equation ( 24), one obtains:

∂g TH ∂ξ j = η j + µ T ∂K ∂ξ j u + β T + µ T K ∂u ∂ξ j
, with : In Eq. ( 28), the vector µ µ µ can be chosen in such a way that the term multiplying ∂u ∂ξ j vanishes;

β T :=
accordingly, one finally obtains the following expression:

         ∇ ξ ξ ξ g TH j := η j + µ T ∂K ∂ξ j u, j = 1, . . . , n vars Kµ µ µ = -β, α >> 1. ( 29 
)
After some empirical tuning, the parameter α has been set as follows:

α (Var(δ δ δ)) =            50 if Var(δ δ δ) ≤ 0.001, 30 if 0.001 < Var(δ δ δ) ≤ 0.1, 10 if 0.1 < Var(δ δ δ) ≤ 0.3, 2 if Var(δ δ δ) ≥ 0.3.
(30)

Blending Requirement

The formulation of blending constraints in the PPs space used in this study is taken from [START_REF] Panettieri | Blending constraints for composite laminates in polar parameters space[END_REF]. Blending represents a major issue in composite structures: the continuity of ply orientations between adjacent laminates must be addressed since the first design stages, in order to find optimal solutions which are also realisable. If indices p and q denote a generic couple of adjacent laminates, in the PPs space, blending constraints read:

g pq blend =            |ρ 0Kp c 4p -ρ 0Kq c 4q | -2f pq ≤ 0, |ρ 0Kp s 4p -ρ 0Kq s 4q | -2f pq ≤ 0, |ρ 1p c 2p -ρ 1q c 2q | -2f pq ≤ 0, |ρ 1p s 2p -ρ 1q s 2q | -2f pq ≤ 0, (31) 
where

f pq : = |n p -n q | max(n p , n q ) , c βγ := cos βφ 1γ π 2 , s βγ := sin βφ 1γ π 2 , β = 2, 4, γ = p, q. (32) 
Inequalities ( 31) must be imposed for each couple of adjacent panels. Whatsoever, Eqs. ( 31) are not everywhere differentiable; a differentiable approximation should, hence, be considered. In particular, one may pose [START_REF] Ramirez | x 2 + µ is the most computationally efficient smooth approximation to |x|: A proof[END_REF][START_REF] Rudin | Principles of Mathematical Analysis[END_REF] 

|n p -n q | = lim ǫ→0 + (n p -n q ) 2 + ǫ, max(n p , n q ) = {n p , n q } ∞ := lim m→∞ n m p + n m q 1 m . ( 33 
)
Let g be the vector collecting the four inequalities of Eq. ( 31) for each of the n C couples of adjacent laminates. In place of considering 4 n C constraints, a unique equivalent constraint can be considered:

g B = LSE α (g) ≤ 0, α >> 1 (34)
and

(∇ ξ ξ ξ g blend ) j := ∂g B ∂ξ j = 4n C i=1 e αg i ∂g i ∂ξ j 4n C i=1 e αg i , α >> 1, j = 1, . . . , n vars . ( 35 
)
It is noteworthy that the effect of m can be disregarded when compared to the effect of α in Eq. (35).

As an example, only the expression of the gradient for the first expression in Eq. ( 31) is derived. Remembering Eq. ( 33), the first inequality in Eq. ( 31) reads:

g pq B1 := (ρ 0Kp c 4p -ρ 0Kq c 4q ) 2 + ǫ -2 n m p + n m q -1 m (n p -n q ) 2 + ǫ ≤ 0, m >> 1, ǫ << 1. ( 36 
)
After simple algebraic passages, non-zero derivatives are:

∂g pq B1 ∂n p = -2 (n p -n q ) n m p + n m q 1 m (n p -n q ) 2 + ǫ + 2 n m-1 p n m p + n m q 1 m +1 (n p -n q ) 2 + ǫ, ∂g pq B1 ∂n q = +2 (n p -n q ) n m p + n m q 1 m (n p -n q ) 2 + ǫ + 2 n m-1 q n m p + n m q 1 m +1 (n p -n q ) 2 + ǫ, ∂g pq B1 ∂ρ 0Kp = (ρ 0Kp c 4p -ρ 0Kq c 4q ) c 4p (ρ 0Kp c 4p -ρ 0Kq c 4q ) 2 + ǫ , ∂g pq B1 ∂ρ 0Kq = - c 4q c 4p ∂g pq B1 ∂ρ 0Kp , ∂g pq B1 ∂φ 1p = -2π (ρ 0Kp c 4p -ρ 0Kq c 4q ) ρ 0Kp s 4 p (ρ 0Kp c 4p -ρ 0Kq c 4q ) 2 + ǫ , ∂g pq B1 ∂φ 1q = - ρ 0Kq s 4q ρ 0Kp s 4p ∂g pq B1 ∂φ 1p , ǫ << 1, m >> 1. ( 37 
)
Parameter α has been set as follows:

α (Var(g)) =      500 if Var(g) ≤ 0.001, 300 if 0.001 < Var(g) ≤ 0.5, 200 if Var(g) > 0.5. ( 38 
)
High values of α are due to the small variance of vector g. Indeed, for very small values of Var(g), parameter α should take a very large value, which may lead to numerical overflows. In the limit case wherein the design variables are the same between adjacent panels, blending constraints assumes value close to zero (but not exactly zero, because of smoothing approximations). However, since LSE α approximates by excess the maximum, it can result in a violated constraint. To resolve this paradox, a correction is introduced only for very small values of Var(g). Considering Eq. ( 8), after few passages, the following inequality can be obtained:

max g - 1 α ln(n) ≤ LSE α (g) - 1 α ln (n -ln(n)) ≤ max g. (39) 
Therefore, only in the case of very small Var(g), the quantity LSE α (g) -1 α ln (nln(n)) (which is an underestimation) replaces Eq. ( 31). This occurs systematically when α assumes a large value.

Global-Local Modelling Approach and Buckling Strength Requirement

In order to asses correctly local phenomena, such as instabilities, a GL approach has been implemented. Three are the main issues connected with the GL approach:

1. the automatic detection of some zones of interest (ZOIs) which are likely to be critical in terms of buckling strength;

2. the automatic generation of a refined LFEM;

3. the correct transfer of loads from the GFEM into the LFEM as suitable BCs.

When using a deterministic optimisation algorithm, two main challenges arise for the analytic derivation of the buckling eigenvalue sensitivity: (1) the eigenvalue buckling analysis carried out on the LFEM is a pure Dirichlet problem, where only non-trivial BCs in terms of generalised displacements are assigned;

(2) the BCs imposed on the LFEM are strictly related to the displacement field resulting from the GFEM, thus coupling effects between the GFEM and the LFEM must be integrated into the analytical expression of the gradient of the buckling factor resulting from the LFEM.

The buckling constraint can be formulated as:

g buck = 1 -λ ≤ 0, ( 40 
)
where λ is the first buckling factor of the associated eigenvalue problem

K ♭ + λK ♭ σ ψ ψ ψ ♭ = 0, (41) 
where K ♭ is the reduced stiffness matrix of the LFEM, K ♭ σ is the reduced geometric stiffness matrix of the LFEM, ψ ψ ψ is the reduced eigenvector associated to λ. By deriving Eq. ( 40) with respect to the design variables, one obtains:

(∇ ξ ξ ξ g buck ) j := ∂g buck ∂ξ j = - ∂λ ∂ξ j . ( 42 
)
Appendix D is dedicated to the derivation of the analytical form of Eq. ( 42).

The Non-Linear Programming Problem Formulation

The first-level problem aims at determining the optimal distribution of PPs and numbers of plies in the structure, minimising the structure mass by satisfying, simultaneously, the design requirements discussed in the above subsections. The objective function can be formulated as follows:

Φ(ξ ξ ξ) := m 0 + npan i=1 A i n 0 i n ref t ply ρ ply m ref , (43) 
where m 0 is the mass of the part of the structure which remains unchanged during the optimisation, m ref is a reference mass, A i , n 0 i are the area and the dimensionless number of plies of the i-th region, respectively, ρ ply is the density of the single ply. Formally, the optimisation problem can be stated as a constrained non-linear programming problem (CNLPP) as:

min ξ ξ ξ Φ(ξ ξ ξ), subject to Ku -f = 0, K ♭ u ♭ + K ♭ BC Pu = 0, g i (ξ) ≤ 0, i = feas, disp, TH, blend, buck, ξ ξ ξ lb ≤ ξ ξ ξ ≤ ξ ξ ξ ub . (44) 
Table 2 reports lower and upper bounds for the considered design variables. The number of plies, which is a discrete variable, is assumed as a continuous one; at the end of the optimisation, the final value will be rounded. 

0.14 1 ρ j 0K -1 1 ρ j 1 0 1 φ j 1 -1 1 * j = 1, . . . , npan

Numerical Strategy

Problem ( 44) is a non-convex CNLPP in terms of both geometrical and mechanical design variables.

The non-convexity is mainly due to the buckling eigenvalue as well as to strength and blending design requirements.

The solution search is performed via the active-set algorithm of the fmincon family, available in the Optimization Toolbox of MATLAB ➤ (The MathWork Inc., 2011). The parameters tuning the be- haviour of the algorithm have been kept to their default values, as summarised in Table 3. Of course, the strategy architecture is not affected by the particular choice of the deterministic algorithm. Sound alternatives are available in well-established open-source libraries, e.g. the Sequential Least Squares Programming (SLSQP) algorithm available in the Scipy package (Python) or the Interior Point OP-Timizer (IPOPT) available in the PyOpt package (Python). In any case, the parameters governing the behaviour of the algorithm can be left unchanged with respect to the standard default values, as indicated in Table 3 about the fmincon parameters. invokes the APDL script generating the GFEM. Then, a static analysis is performed on the GFEM, and some fundamental information such as connectivity, nodes coordinates, displacement and strain fields, are passed to the GFEM Object (by means of .emat and .full files generated from ANSYS ➤ at the end of the analysis). Subsequently, the GFEM Object evaluates feasibility, blending, maximum displacement and maximum strain constraints, together with their gradients. After this phase, the GFEM Object creates a new Object: the LFEM. The LFEM Object inherits some useful GFEM information (connectivity, etc.) and calls an APDL script generating the LFEM for the most critical ZOI. Once BCs extracted from the GFEM are applied to the LFEM, a static analysis with pre-stress effects is solved on the LFEM. Some information such as pre-stress displacements, connectivity, etc. are passed back to the LFEM Object. Matrix K ♭ σ is assembled by the LFEM Class, according to the expression presented in Appendix D. The LFEM Class also solves the eigenvalue buckling problem on the LFEM via scipy.sparse.linalg.eigsh routine, based on the ARPACK software and the Implicitly Restarted Lanczos Method [START_REF] Lehoucq | ARPACK Users Guide[END_REF]. Finally, the buckling constraint of Eq. ( 42) and its gradient are evaluated (according to the procedure detailed in Appendix D). The objective function and the optimisation constraints, with the related gradients, are then passed to the optimisation algorithm. The loop is repeated until one of the convergence criteria, listed in Table 3, is satisfied.

The choice of assembling the LFEM geometric stiffness matrix in Python environment, instead of just exploiting the .emat file provided by ANSYS ➤ , is due to the fact that ANSYS ➤ software makes use of some correction factors, not provided in the ANSYS ➤ manual Ansys ➤ (2013), which depend on the element geometric and material properties. Moreover, as detailed in Appendix D, in this work, an alternative (general) definition of the element geometric stiffness matrix (different from that used in classic FE codes) has been used in order to derive an efficient closed-form expression of the buckling factor gradient. All these details are of paramount importance for a correct assessment of the buckling factor gradient and represent the reason at the basis of using Python instead of ANSYS ➤

for the resolution of the eigenvalue problem.

The Global/Local Finite Element modelling Approach

As stated above, the FE models integrated in the optimisation process are based on a GL modelling approach, more precisely on the sub-modelling technique, see the works by [START_REF] Sun | A global-local finite element method suitable for parallel computations[END_REF]; [START_REF] Mao | A refined global-local finite element analysis method[END_REF]; [START_REF] Whitcomb | Iterative global/local finite element analysis[END_REF] for more details on this topic. According to the strategy discussed in [START_REF] Izzi | A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures[END_REF], two different FE models are created: the GFEM for the assessment of the global behaviour of the wing-box, and a refined LFEM in order to properly evaluate the local responses (in this case the first buckling factor). The LFEM is created only at the most critical ZOI (from a buckling strength perspective), which is represented by the dorsal panels composing the wing-box, as illustrated in Fig. 5. Therefore, inasmuch as for the simple benchmark considered in this study the most critical ZOI is known a-priori, there is no need to introduce suitable criteria for automatically identifying the most critical ZOIs, as done in [START_REF] Izzi | A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures[END_REF]. Nevertheless, as deeply discussed in Appendix D, the coupling effects between GFEM and LFEM are still important when evaluating the gradient of the buckling factor for optimisation purposes.

Both GFEM and LFEMs are fully parametric and are built using the commercial FE code ANSYS ➤ . The GFEM is illustrated in Fig. 4. The root section is clamped, whilst external forces

F 1 = 90009.77 N, F 2 = F 3 = 187888.44 N, F 4 = 380176.
16 N are applied at the tip section nodes (from B to E) as illustrated in the same figure. The model is made of SHELL181 elements, which are based on Reissner-Mindlin kinematics [START_REF] Reddy | Mechanics of Laminated Composite Plates and Shells: Theory and Analysis[END_REF] and have four nodes with six DOFs per node. The GFEM is composed of about 560 elements and 3000 DOFs. The mesh size has been chosen after a sensitivity study (not reported here for the sake of brevity) in order to find a compromise between accuracy and computational cost.

The LFEM model is created to evaluate the first buckling load of the dorsal skin of the wing-box, as shown in Fig. 5, and it is generated via a dedicated APDL script. BCs on generalised displacements, extracted from the results of the global analysis and illustrated in Fig. 5, are imposed to all the boundary nodes belonging to the skin of each dorsal panel (representing the connections between ribs, spars and stringers). The LFEM is made of SHELL181 elements, and the mesh is finer than the dorsal skin of the GFEM. Therefore, BCs extracted from the boundary nodes of each panel composing the GFEM are properly interpolated during the transfer from the GFEM to the LFEM (by using the element shape functions). To set a suitable value of the element size of the LFEM, a sensitivity analysis of the first buckling factor to this parameter has been performed also in this case (and it is Figure 4: GFEM and the related BCs not reported here for the sake of brevity). As a result, the LFEM is characterised by approximately 490 elements and 3200 DOFs. With such a mesh, the computational cost is approximately of 30 s for each iteration when four cores of a machine with an Intel Xeon E5-2697v2 processor (2.70-3.50 GHz) are dedicated to the ANSYS solver. 

Numerical Results

Since the objective function of Eq.( 43) is an hyper-plane in the R nvars space, due to its linearity with respect to geometrical variables, it is expected that the optimal solution exists, and that it is located at the boundary of the feasible region. Because of the high complexity of problem ( 44), the choice of a feasible starting guess is of paramount importance. In the following, three test cases are discussed, showing the importance of the buckling constraint and the differences in the optimised solution when neglecting the out-of-plane shear contribution in the expression of K ♭ σ . The reference value of the mass, i.e. m ref = 314.12 kg, is taken from [START_REF] Liu | Bilevel optimization of blended composite wing panels[END_REF]. The best known value for the optimised mass is 276.47 kg, corresponding to a normalised value of 0.88, obtained via a meta-heuristic algorithm in [START_REF] Panettieri | Blending constraints for composite laminates in polar parameters space[END_REF], even though a slightly different formulation of problem (44).

Case 1: Optimisation Without Buckling Strength Requirement

Firstly, problem (44) has been solved without considering the design requirement on the first buckling factor evaluated on the LFEM. The starting point has been set to n j 0 = 0.4, ρ j 0K = ρ j 1 = φ j 1 = 0.0, j = 1, . . . , n pan (see Fig. 2). Such a starting point, in the feasible domain, represents a wing-box structure composed of isotropic laminates because the anisotropic moduli are null. The algorithm converges towards a feasible solution after 400 iterations. The optimal value of the design variables is shown in Fig. 6 (n 0 in blue, ρ 0K in red, ρ 1 in green, φ 1 in black), whilst Table 5 reports the numerical values. Due to the absence of an optimisation constraint on the first buckling load, the resulting structural mass takes low value: the objective function is 0.5603, corresponding to 4. It is noteworthy that the solution is almost symmetric between dorsal and ventral panels. The active constraint is the maximum strain, as reported in Table 4. This confirms the expectations stated at the preamble of this section: the solution lies on the boundary of the feasible domain.

Effect of the Buckling Strength Requirement on the Optimised Solution

Case 2: Only Membrane Contribution in K ♭ σ

The introduction of the design requirement on the first buckling factor introduces a strong non-linear behaviour into the optimisation problem formulation. This non-linear behaviour is due, on the one hand, to the assessment of the buckling factor on a refined LFEM, and, on the other hand, to the definition of the structure geometric stiffness matrix K ♭ σ as a function of the design variables of the problem at hand. In a first time, the effect of only the membrane contribution in the definition of K ♭ σ (i.e. matrices K 1 , K 2 , K 3 in Appendix D) on the optimised solution is considered. In order to help the convergence, the starting point has been set to n j 0 = 0.8, ρ j 0K = ρ j 1 = φ j 1 = 0.0, j = 1, . . . , 9 for dorsal panels and to n j 0 = 0.4, ρ j 0K = ρ j 1 = φ j 1 = 0.0, j = 10, . . . , n pan for the ventral ones (see Fig. 2). This starting point, which lies in the feasible domain, is more likely to be closer to the optimal point. Moreover, also in this case, the starting point is an isotropic solution. The algorithm converges after 500 iterations. Although the starting point is inside the feasible domain, the algorithm experiences many difficulties in find the good path, due to the strong non-linear nature of the problem. The objective function value is 0.8440, corresponding to a mass equal to 265.12 kg. As expected, the mass is slight lower then the value reported in [START_REF] Panettieri | Blending constraints for composite laminates in polar parameters space[END_REF], because of the neglected out-of-plane shear contribution in the expression of the geometric stiffness matrix. As in [START_REF] Panettieri | Blending constraints for composite laminates in polar parameters space[END_REF], the solution lies on the boundary of the buckling constraint. The optimal value of the design variables is illustrated in Fig. 7 (n 0 in blue, ρ 0K in red, ρ 1 in green, φ 1 in black), whilst the numerical values are reported in Table 5. The objective function and the optimisation constraints are listed in Table 4. A quick glance to this result highlights an enhanced exploitation of the anisotropy, especially for dorsal panels (variables 1 up to 36), if compared to the optimal solution of case 1. This case considers both the membrane and the out-of-plane shear contributions in the expression of K ♭ σ (see Appendix D). This formulation is really close to that implemented in ANSYS software.

The starting point has been set to n j 0 = 0.8, ρ j 0K = ρ j 1 = φ j 1 = 0.0, j = 1, . . . , 9 for dorsal panels and to n j 0 = 0.4, ρ j 0K = ρ j 1 = φ j 1 = 0.0, j = 10, . . . , n pan for the ventral ones (see Fig. 2). Also in this case the starting point is an isotropic solution. The algorithm converges after 400 iterations. The objective function value is 0.8461, corresponding to an overall mass of 265.72 kg. The optimal value of the design variables is shown in Fig. 8 and listed in Table 5. The values of the objective function and of the optimisation constraints are reported in Table 4. When compared to the solution of case 2, this configuration is characterised by a more pronounced effect of the anisotropy on the buckling strength (especially in terms of ρ 0K and ρ 1 contributions) and by a different orientation of the main orthotropy axis (related to the value of the polar angle). However, since the problem is strongly non-convex in terms of the buckling factor requirement, both solutions are characterised by similar values of the mass and of the buckling factor constraint. 0.8440 265.12 -0.0897 -3 × 10 -5 -2 × 10 -5 -0.4316 -7 × 10 -5 Case 3 0.8461 265.77 -0.0540 -1 × 10 -5 -6 × 10 -6 -0.4322 -1 × 10 -5 the buckling strength requirement on the optimised value of the laminate PPs: the polar diagram of the laminate stiffness matrices changes considerably for the considered cases. Conversely, the effect of the membrane and shear contributions involved in the definition of the geometric stiffness matrix it is more pronounced only for panels 6 and 7, as it can be inferred from Table 5 and Figs. 10 and 11.

Conclusions

A general theoretical framework for the deterministic optimisation of composite structures has been presented in this work. The proposed approach is based on the polar formalism for the description of the anisotropy and on the FSDT to represent the kinematics of each laminate composing the structure at the macroscopic scale. A general GL modelling approach, based on the sub-modelling technique, is integrated into the MS2LOS of composite structures developed by Montemurro and his co-workers. The resulting methodology, called GL-MS2LOS, aims at proposing a very general formulation of the design problem, without introducing simplifying hypotheses on the laminate stack and by considering, as design variables, the full set of geometric and mechanical parameters defining the behaviour of In this background, a variety of constraints has been integrated in the problem formulation and expressed in the PPs space; moreover, the analytic form of their gradients has been derived. In particular, the GL modelling approach has been integrated in the formulation of the related optimisation problem, in order to assess the physical responses involved at different levels. Of course, the coupling effect between global and local models on the gradient of the physical responses, evaluated on the refined local model, has been taken into account.

The effectiveness of the GL-MS2LOS has been tested on a numerical benchmark, taken from the literature, dealing with the least-weight design of a simplified wing-box structure: the numerical results, in terms of optimised solutions, are very encouraging.

As far as prospects of this work are concerned, the proposed framework can be extended to more complex structures, such as aeronautical ones, considering different local models and numerous load cases. Furthermore, there is still a lack of an effective strategy for the resolution of the second-level problem of the MS2LOS, in order to recover blended stacking sequences for the whole structure, with minor apriori hypotheses on the nature of the stacks. Research is ongoing in this sense.

Replication of Results

Sufficient details of the implemented approach have been provided in this paper. Authors are confident that the results can be reproduced. Readers interested in the Python or ANSYS APDL scripts are encouraged to contact the corresponding author via email.

A Analytic Expression of Laminate Stiffness Matrices Gradient

Under the hypothesis of orthotropic laminate, the expression of the homogenised membrane stiffness matrix in terms of the dimensionless PPs reads:

A * =   T 0 + 2T 1 -T 0 + 2T 1 0 T 0 + 2T 1 0 sym T 0   A * 0 +R A * 0K   c 4 -c 4 s 4 c 4 -s 4 sym -c 4   A * 1 +R A * 1   4c 2 0 2s 2 -4c 2 2s 2 sym 0   A * 2 := A * 0 + R 0 ρ 0K A * 1 + R 1 ρ 1 A * 2 , (A.1)
with

c 2 = cos πφ 1 , c 4 = cos 2πφ 1 , s 2 = sin πφ 1 , s 4 = sin 2πφ 1 .
Similarly, matrix H * can be decomposed as:

H * = T 0 sym T H * 0 +Rρ 1 c H * 2 s H * 2 sym -c H * 2 H * 1 := H * 0 + Rρ 1 H * 1 , (A.2)
where

c H * 2 = cos 2Φ H * , s H * 2 = sin 2Φ H * , Φ H * = Φ + Φ 1 - π 2 φ 1 .
Since quasi-homogeneity holds, B * = O and D * = A * . Let h = t ply n 0 n ref , with reference to Eq. ( 4). Therefore, the following derivatives read:

∂A ∂n 0 = h n 0 A * , ∂A ∂ρ 0K = hR 0 A * 1 , ∂A ∂ρ 1 = hR 1 A * 2 , ∂A ∂φ 1 = 2πhR 0 ρ 0K   -s 4 +s 4 c 4 -s 4 -c 4 sym +s 4   + πhR 1 ρ 1   -4s 2 0 2c 2 +4s 2 2c 2 sym 0   . (A.3)
Similarly, for matrix D and matrix H:

∂D ∂n 0 = h 2 4 ∂A ∂n 0 , ∂D ∂ρ 0K = h 2 12 ∂A ∂ρ 0K , ∂D ∂ρ 1 = h 2 12 ∂A ∂ρ 1 , ∂D ∂φ 1 = h 2 12 ∂A ∂φ 1 , (A.4) ∂H ∂n 0 = h n 0 H * , ∂H ∂ρ 0K = O, ∂H ∂ρ 1 = hRH * 1 , ∂H ∂φ 1 = -πhRρ 1 -s H * 2 c H * 2 sym +s H * 2 . (A.5)
Finally, for orthotropic quasi-homogeneous laminates, for the generic ξ j :

∂K 

B Analytic Expression of Stiffness Matrix Gradient

The unconstrained equilibrium system of the GFEM is of the form Kû = f, (B.1)

where K ∈ M n DOF ×n DOF s is the unconstrained (singular) stiffness matrix, while n DOF is the number of DOFs of the GFEM before the application of the BCs. where N e is the number of elements of the GFEM, Ω e is the integration domain for the e-th element, B e is the operator defined in Eq. ( 26), K lam e is the element stiffness matrix defined in Eq. ( 2), expressed in the global frame of the GFEM, whilst Le ∈ M 24×n DOF is a linear map Le : û → u e . By deriving Eq. (B.2) with respect to the generic ξ j , one obtains: 

C Analytic Expression of Laminate Strength Matrices Gradient

Matrix G * A can be decomposed as:

G * A =   Γ 0 + 2Γ 1 -Γ 0 + 2Γ 1 0 Γ 0 + 2Γ 1 0 sym Γ 0   G * A0 +Λ G * A 0   c 4 -c 4 s 4 c 4 -s 4 sym -c 4   G * A1 +Λ G * A 1   4c 2 0 2s 2 -4c 2 2s 2 sym 0   G * A2 := G * A0 + ρ 0K Λ 0 G * A1 + Λ 1 ρ 1 G * A2 , (C.1)
with

c 2 = cos 2 π 2 φ 1 + Ω 1 -Φ 1 , c 4 = cos 4 π 2 φ 1 + Ω 0 -Φ 0 , s 2 = sin 2 π 2 φ 1 + Ω 1 -Φ 1 , s 4 = sin 4 π 2 φ 1 + Ω 0 -Φ 0 .
Similarly, matrix G * H can be decomposed as:

G * H = Γ 0 sym Γ G * H0 +Λρ 1 c G * H 2 s G * H 2 sym -c G * H 2 G * H1 := G * H0 + Λρ 1 G * H1 , (C.2) with c G * H 2 = cos 2 Ω - π 2 φ 1 + Φ 1 , s G * H 2 = sin 2 Ω - π 2 φ 1 + Φ 1 .
Since quasi-homogeneity holds, G * B = O and G * D = G * A . Let h = t ply n 0 n ref , with reference to Eq. ( 4). Therefore, the following derivatives read:

∂G A ∂n 0 = h n 0 G * A , ∂G A ∂ρ 0K = hΛ 0 G * A1 , ∂G A ∂ρ 1 = hΛ 1 G * A2 , ∂G A ∂φ 1 = 2πhΛ 0 ρ 0K   -s 4 +s 4 c 4 -s 4 -c 4 sym +s 4   + πhΛ 1 ρ 1   -4s 2 0 2c 2 +4s 2 2c 2 sym 0   . (C.3)
Similarly, for matrix G D and matrix G H :

∂G D ∂n 0 = h 2 4 ∂G A ∂n 0 , ∂G D ∂ρ 0K = h 2 12 ∂G A ∂ρ 0K , ∂G D ∂ρ 1 = h 2 12 A ∂ρ 1 , ∂G D ∂φ 1 = h 2 12 ∂G A ∂φ 1 , (C.4) ∂G H ∂n 0 = h n 0 G * H , ∂G H ∂ρ 0K = O, ∂G H ∂ρ 1 = hΛG * H1 , ∂H ∂φ 1 = -πhΛρ 1 -s G * H 2 c G * H 2 sym s G * H 2 . (C.5)
Finally, for the generic variable ξ j , for an orthotropic quasi-homogeneous laminate,

∂G ∂ξ j = diag ∂G A ∂ξ j , ∂G D ∂ξ j , ∂G H ∂ξ j . (C.6)

D Analytic Expression of Geometric Stiffness Matrix Gradient and Buckling Factor Gradient

The generalised eigenvalue problem for the LFEM can be stated as follows:

K ♭ + λK ♭ σ ψ ψ ψ ♭ = 0, (D.1)
or, passing to work,

ψ ψ ψ T ♭ K ♭ + λK ♭ σ ψ ψ ψ ♭ = 0, (D.2) where K ♭ ∈ M n ♭ IN ×n ♭ IN s++ is the (reduced) stiffness matrix of the LFEM, K ♭ σ ∈ M n ♭ IN ×n ♭ IN s+
is the geometric stiffness matrix of the LFEM, λ and ψ ψ ψ ♭ are the eigenvalue and eigenvector, respectively, non-trivial solution of problem (D.1). Note that K ♭ σ is not, in general, positive-definite. As usually done in classical buckling eigenvalue analyses, K ♭ σ is calculated from the stress field solution of the (static) equilibrium boundary problem of the LFEM subject to the same BCs of the original eigenvalue buckling problem. However, in the framework of the considered GL modelling approach, the equilibrium boundary problem of the LFEM is of the Dirichlet's type: non-zero displacements are imposed at some DOFs, which can be collected in the set I ♭ BC whose cardinality is n ♭ BC . On the other hand, the unknown DOFs are collected in the set I ♭ IN whose cardinality is n ♭ IN . Moreover, BCs depend on the displacement field solution of the GFEM equilibrium problem (13). Therefore, the key-point is to express properly the equilibrium displacement boundary problem (and the related derivatives) for the LFEM. is the (singular) stiffness matrix of the LFEM, û♭ 0 ∈ M n ♭ DOF ×1 is the vector collecting the set of DOFs of the LFEM static analysis (both imposed displacements and unknown ones) and f♭ 0 ∈ M n ♭ DOF ×1 is the vector of the unknown nodal forces (occurring at nodes where BCs on generalized displacements are applied). In the above expressions n [START_REF] Wu | A note on imposing displacement boundary conditions in finite element analysis[END_REF]; [START_REF] Reddy | An Introduction to the Finite Element Method[END_REF], problem (D.3) can be solved after a proper rearranging. In particular, if ûs (for some s) is assigned, one must set Kss = 1, Kis = Ksi = 0 for i = s and subtract to the right-hand side the s-th column of the (unmodified) stiffness matrix, multiplied by ûs . After this operation, the new system can be reduced, as usually, and the unknown nodal displacements can be determined.

♭ DOF = n ♭ BC + n ♭ IN . As discussed in
Remark D.1 Let A ⊂ {i | i = 1, . . . , n} and B ⊂ {i | i = 1, . . . , n} be two sets such that A ∩ B = ∅ and ♯(A + B) = n. Therefore u = Z(u, A) ⊕ Z(u, B), ∀u ∈ M n×1 .
applying Remark D.1 to û♭ 0 and f♭ 0 one obtains: To solve for the unknown part of û♭ 0 , the operator R definition B.1 must be applied to Eq. (D.5): the resulting reduced system reads

û♭ 0 = Z(û ♭ 0 , I ♭ BC ) ⊕ Z(û ♭ 0 , I ♭ IN ) := û♭ + û♭ BC , f♭ 0 = Z( f♭ 0 , I ♭ BC ) ⊕ Z( f♭ 0 , I ♭ IN ) := 0 + f♭ BC , ( 
K ♭ u ♭ + K ♭ BC u ♭ BC = 0, (D.6)
where

K := R( K♭ , I ♭ BC , I ♭ BC ), u ♭ := R(û ♭ 0 , I ♭ BC ), K ♭ BC := R( K, I ♭ BC , I ♭ IN ), u ♭ BC := R(û ♭ 0 , I ♭ IN ) and R( f♭ BC , I ♭ BC ) = 0.
Inasmuch as u ♭ BC depends on the GFEM solution, it is convenient to introduce the linear map

P : u → u ♭ BC , Pu = u ♭ BC , P ∈ M n ♭ BC ×(n DOF -n BC ) , (D.7)
whose aim is to determine the BCs to be imposed to the LFEM (in terms of nodal displacements), starting from the solution of the static analysis carried out on the GFEM. In particular, the number of nodes belonging to the boundary of the LFEM, where BCs are applied, is different (usually larger) than the number of nodes located on the same boundary where the known displacement field is extracted from the GFEM results. Furthermore, meshes may be completely dissimilar, as shown in Fig. 12 (boundary of LFEM in red, GFEM mesh in black). The construction of P can be done according to the steps listed in Algorithm 1, whose structure refers to the notation provided in Fig. 12. 1: Select a node (whose ID is n in Fig. 12) located at the boundary of the LFEM where BCs are applied. 2: Get the node coordinates (x n1 , x n2 ) in the global frame. 3: Select the element of the GFEM containing the projection of node n (green-shadowed in Fig. 12). 4: Evaluate the mapped coordinates r and s of node n with respect to the principal frame of the element, placed at its centroid (frame {G, r, s} in Fig. 12). The mapped coordinates are the results of the following problem:

J(r, s) r s = x n1 -x G1 x n2 -n G2 , (D.8)
where J ∈ M 2×2 s++ is the Jacobian matrix of the element, which depends on the unknowns r and s. J maps the transformation of the square element into the (possibly) distorted element of the actual GFEM mesh. 5: Evaluate the matrix which maps the element nodal displacements (displacements of nodes 1, 2, 3 and 4) into the displacements at the point of coordinates (r, s) (i.e., u ♭ BC (r, s)). If N e ∈ M 6×24 is the matrix of the shape functions of the element [START_REF] Barbero | Finite Element Analysis of Composite Materials Using ANSYS ➤[END_REF]; [START_REF] Reddy | Mechanics of Laminated Composite Plates and Shells: Theory and Analysis[END_REF]), the relation can be expressed as u ♭ BC (r, s) = N e (r, s)u e , (D.9)

where u e is the vector of DOFs of the element e belonging to the GFEM. 6: Properly assemble N e (r, s) inside P. 7: Repeat steps 1-6 for the remaining nodes belonging to the boundary of the LFEM where BCs on nodal displacements are applied.

Taking into account for the above aspects, Eq. (D.6) reads:

K ♭ u ♭ + K ♭ BC Pu = 0. (D.10)
Consider, now, the augmented version of Eq. (D.2): (D.11) where µ µ µ = 0 and w = 0 are the arbitrarily-defined adjoint vectors. By deriving Eq. (D.11) with respect to the generic design variable ξ j , one obtains:

ψ ψ ψ T ♭ K ♭ + λK ♭ σ ψ ψ ψ ♭ + µ µ µ T K ♭ u ♭ + K ♭ BC Pu + w T (Ku -f) = 0,
∂λ ∂ξ j = λ ψ ψ ψ T ♭ K ♭ ψ ψ ψ ♭ ψ ψ ψ T ♭ ∂K ♭ ∂ξ j + λ ∂K ♭ σ ∂ξ j ψ ψ ψ ♭ + µ µ µ T ∂K ♭ ∂ξ j u ♭ + K ♭ ∂u ♭ ∂ξ j + • • • • • • + ∂K ♭ BC ∂ξ j Pu + K ♭ BC P ∂u ∂ξ j + w T ∂K ∂ξ j u + K ∂u ∂ξ j .
(D.12)

As discussed in [START_REF] Setoodeh | Design of variable-stiffness composite panels for maximum buckling load[END_REF], the geometric stiffness matrix of the generic shell element can be expressed as: (D.13) where r ♭ 0ei are the components of vector r of Eq. ( 2), resulting from the static analysis of Eq. (D.10) carried out on the LFEM, while K i ∈ M 24×24 s are matrices depending only on the geometry of the element. The algorithm for retrieving the expression of each matrix K i for a shell element with four nodes and six DOFs per node (like the SHELL181 ANSYS ➤ shell element), whose kinematics is described in the framework of the FSDT, is presented. Of course, this algorithm must be executed off-line, i.e. before the optimisation process, once the element type has been selected.

K ♭ σe = 8 i=1 r ♭ 0ei K i ,
Algorithm 2 Derivation of matrices K i .

1: Build a FE model made of a single element. 2: Set arbitrary material properties for the element. The material properties should be conveniently set in order to obtain a diagonal laminate stiffness matrix K lam , in order to avoid coupling effects. 3: Impose an elementary strain field (ε 0ei = 0, ε 0ej = 0, j = 1, • • • , 8 and j = i) by using suitable BCs at the four nodes. 4: Run a static analysis and activate the pre-stress option (in this way the commercial FE code builds K σe according to the usual definition, as in Ansys ➤ (2013)).

5: Get r 0ei and K σe from the FE software.

6: Calculate K i = K σe r 0ei (since no coupling effects are present).

7: If i < 8 set i = i + 1 and go to step 3, otherwise stop.

The expressions of K i for a square SHELL181 element of side L are provided here below. Each matrix K i is a symmetric and sparse partitioned matrix, composed of symmetric blocks. Only non-null terms are provided in the following: The expressions of matrices K i reported above are supposed independent from the aspect ratio of the element. Of course, this assumption is justified if and only if the mesh of the FE model is structured and regular as much as possible (i.e. composed by pseudo-square elements). Accordingly, the singular form of the geometric stiffness matrix reads: 

Notation:

  Upper-case bold letters are used to indicate tensors (matrices), while lower-case bold letters indicate vectors, which are to be intended as column ones. The writing diag(a, b, c) (possibly diag(A, B, C)) denotes the diagonal matrix with elements a, b, c (possibly matrices A, B, C) on the principal diagonal (possibly principal diagonal blocks). R + := {x | x ∈ R, x > 0} denotes the set of all strictly positive real numbers. M m×n denotes the set of all realvalued m×n matrices, M n×n + := {M | M ∈ M n×n , det M > 0}, M n×n s := {M | M ∈ M n×n , M = M T }, M n×n s+ := M n×n + ∩ M n×n s and M n×n s++ := {M | M ∈ M n×n s+ , with M positive -definite}. Finally, ♯v denotes the cardinality of the generic vector v, superscript • denotes the non-reduced •, and label ♭ denotes quantities evaluated in the LFEM. 2 Multi-Scale Optimisation of Composite Laminates 2.1 Problem Description: Simplified Wing-Box Structure

Figure 1 :

 1 Figure 1: Model geometry

  Figure 2: Optimisation regions

  feasibility constraints on the laminate PPs, presented in Vannucci (2012); blending constraints among each pair of adjacent panels, expressed as equivalent constraints on the laminate PPs and thickness, as discussed in Panettieri et al. (2019); a constraint on the maximum displacement measured on the GFEM; a constraint on the laminate maximum failure index evaluated on the check zone in the GFEM;

  B e : u e → ε ε ε gen e , B e u e = ε ε ε gen e , B e ∈ M 8×24 .(26)By injecting Eqs. (25) and (26) in Eq. (23) and by deriving, one obtains: ∂δ e ∂ξ j := β e ∂u ∂ξ j + η ej , with :β e := 2 h e εT gen e G e B e L e , η ej :j ε gen eδ e ∂h e ∂ξ j .

  ne e=1 e αδe β T e ne e=1 e αδe , η j := ne e=1 e αδe η ej ne e=1 e αδe .(28) 

Figure 3 :

 3 Figure 3: Workflow of the numerical strategy

Figure 5 :

 5 Figure 5: LFEM and the related BCs

Figure 6 :

 6 Figure 6: Optimal design variables values for Case 1

Figure 7 :

 7 Figure 7: Optimal design variables values for Case 2

  5.2.2 Case 3: Membrane and Out-of-Plane Shear Contributions in K ♭ σ

Figure 8 :

 8 Figure 8: Optimal design variables values for Case 3

  Figure 9: Polar diagram of the first component of matrices A and H for panel n o 1

Figure 11 :

 11 Figure 11: Polar diagram of the first component of matrices A and H for panel n o 7

Definition B. 1

 1 Given a matrix M ∈ M m×n and the two sets of positive natural numbers R ⊂ {i | 1 ≤ i ≤ m} and C ⊂ {j | 1 ≤ j ≤ n}, the operator R (M, R, C) returns the matrix obtained by suppressing the i-th row and the j-th column of M, ∀i ∈ R and ∀j ∈ C. Similarly, R (v, R) denotes the vector obtained by suppressing the i-th row of v, ∀i ∈ R.If BCs are of the type u j = 0 for j ∈ I BC ⊂ {i | i = 1, . . . , n DOF }, ♯I BC = n BC , Eq. (B.1) can be transformed in a reduced problem of the form and size considered in Eq. (13) by posingK := R K, I BC , I BC , u := R (û, I BC ) and f := R f, I BC .The analytical form of ∂K/∂ξ j can be easily determined. In fact, the expression of K is:

Definition D. 1

 1 Given a matrix M ∈ M m×n and the two sets of positive natural numbers R ⊂ {i | 1 ≤ i ≤ m} and C ⊂ {j | 1 ≤ j ≤ n}, the operator Z(M, R, C) returns a matrix obtained by annihilating the i-th row and the j-th column of M, ∀i ∈ R and ∀j ∈ C. Similarly, Z (v, R) denotes the vector obtained by annihilating the i-th component of vector v ∈ M n×1 , ∀i ∈ R. Operator Z(•) preserves the dimensions of its argument.Since no external nodal forces are applied, the equilibrium equation of the LFEM reads

  D.4) where only vector û♭ BC is known. Therefore, problem (D.3

Figure 12 :

 12 Figure 12: Differences between GFEM and LFEM meshes

  s e♭ := {ψ ψ ψ T e♭ K i ψ ψ ψ e♭ | i = 1, . . . , 8}. Remark D.2 Consider the scalar product v T u of two vectors u, v ∈ M n×1 . If u, A and B satisfies conditions of Remark D.1, then: v T u = v T Z(u, A)⊕v T Z(u, B) = R(v, A) T R(u, A)⊕R(v, B) T R(u, B).

Table 1 :

 1 Material properties of the T300/5208 pre-preg

	Technical constants	Polars parameters of Q a Polars parameters of Q b
	E 1 [GPa]	181	T 0 [MPa]	26898.9668	T [MPa]	5398.3802
	E 2 [GPa]	10.3	T 1 [MPa]	24710.2593	R [MPa]	1771.6197
	G 12 [GPa]	7.17	R 0 [MPa]	19728.9668	Φ [deg]	90
	G 23 [GPa]	3.78	R 1 [MPa]	21426.3863		
	G 13 [GPa]	7.17	Φ 0 [deg]	0		
	ν 12	0.27	Φ 1 [deg]	0		
	ν 23	0.42				
	ν 13	0.27				
	Density and thickness	Polars parameters of G c Polars parameters of Ĝ d
	ρ ply [kg mm -3 ]	1.76 × 10 -6	Γ 0	7531.0292	Γ	10633.5320
	t ply [mm]	0.125	Γ 1	2113.8030	Λ	484.3096
	n ref	150	Λ 0	3586.8124	Ω [deg]	90
			Λ 1	1603.3669		
			Ω 0 [deg]	45		
			Ω 1 [deg]	0		
	Limit stresses (for Tsai-Hill criterion)				
	X [MPa]	1500				
	Y [MPa]	246				
	S 12 [MPa]	68				
	S 23 [MPa]	36				
	S 13 [MPa]	68				
	a In-plane ply stiffness matrix				
	b Out-of-plane ply shear stiffness matrix				
	c In-plane ply strength matrix				
	d Out-of-plane ply shear strength matrix				
	technological and physical responses. The global optimisation problem can be split into two distinct
	(but related) optimisation problems.				

Table 2 :

 2 Design space for problem(44) 

	Variable* lower bound upper bound
	n j 0

Table 3 :

 3 fmincon parameters

	Parameter		Value
	Solver		active-set
	Maximum number of objective function evaluations	100 × n vars
	Maximum number of iterations		1000
	Tolerance on objective function		1 × 10 -6
	Tolerance on constraints		1 × 10 -6
	Tolerance on input variables change	10 -6
	Tolerance on gradient norm of the Lagrange's function	10 -6
	objective function, constraints, gradients	Active-set Algorithm Design	buckling constraint and gradient
		variables	
	GFEM Python		LFEM Python
	Class	GFEM	Class
		infos	
	APDL GFEM		APDL LFEM
	script		script
	(static analysis)	BCs	(static analysis)
	mass, connectivity, mesh, displacements, strains, .emat file, .full file		pre-stress field displacements, connectivity, mesh, .emat file, .full file

Table 4 :

 4 Objective function for the optimised solution

	Case	Objective function Mass [kg]	g f eas	g blend	gT H	g disp	g buck
	Panettieri et al. (2019)	0.88	276.47	-	-	-	-	-
	Case 1	0.5603	176	-0.9215	-0.0125	-6 × 10 -7 -0.3202	-
	Case 2							

Table 5 :

 5 Optimal value of design variables

	Panel		Case 1					Case 2				Case 3	
	ID	n0	ρ0K	ρ1	φ1	n0	ρ0K	ρ1	φ1	n0	ρ0K	ρ1	φ1
	1	0.2147 0.4171 0.0788 0.0757 0.7001 0.9423 0.5172	0.0144	0.6972 0.9999 0.4980	0.0020
	2	0.2237 0.4491 0.0943 0.0532 0.7208 0.9655 0.4782	0.0241	0.7159 0.9855 0.4846	0.0111
	3	0.2404 0.5361 0.1281 0.0142 0.7700 0.8791 0.5016	0.0498	0.7655 1.0000 0.5247	0.0316
	4	0.1941 0.2394 0.0833 0.0805 0.6065 0.6783 0.3666 -0.0086 0.6120 0.7837 0.4157	0.0239
	5	0.1893 0.2349 0.0583 0.0958 0.6287 0.7077 0.4110 -0.0075 0.6240 0.7463 0.4112	0.0291
	6	0.1782 0.3547 0.0714 0.1039 0.6760 0.6056 0.3973	0.0266	0.6729 0.8434 0.4293	0.0531
	7	0.1758 0.0543 0.2202 0.0182 0.4164 1.0000 0.4044	0.0001	0.4493 1.0000 0.5426 -0.0104
	8	0.1712 0.0366 0.2109 0.0197 0.4300 1.0000 0.4490	0.0099	0.4293 1.0000 0.4601	0.0032
	9	0.1924 0.1921 0.1661 0.0860 0.4742 1.0000 0.4789	0.0393	0.4828 1.0000 0.5285	0.0379
	10	0.2136 0.4243 0.0817 0.0750 0.1400 0.5765 0.7271	0.0518	0.1400 0.6775 0.8847	0.0460
	11	0.2224 0.4540 0.0962 0.0537 0.1569 0.6728 0.8896	0.0540	0.1400 0.6751 0.8941	0.0463
	12	0.2388 0.5391 0.1400 0.0146 0.1882 0.7071 0.7977	0.0565	0.1988 0.6505 0.7723	0.0459
	13	0.1919 0.2456 0.0626 0.0937 0.1444 0.4969 0.7190	0.0394	0.1399 0.6668 0.8815	0.0447
	14	0.1892 0.2457 0.0620 0.0936 0.1400 0.4570 0.6813	0.0637	0.1400 0.6645 0.8843	0.0467
	15	0.1787 0.3562 0.0651 0.1018 0.1548 0.5285 0.7068	0.1063	0.1553 0.5504 0.7293	0.0986
	16	0.1736 0.0463 0.2156 0.0202 0.1400 0.4527 0.6744	0.0631	0.1400 0.6582 0.8853	0.0434
	17	0.1703 0.0399 0.2211 0.0199 0.1400 0.4447 0.6748	0.0641	0.1548 0.4525 0.6936	0.0248
	18	0.1925 0.2011 0.1667 0.0839 0.1468 0.3883 0.6004	0.1000	0.1400 0.3575 0.5462	0.1215
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By applying Remarks D.1 and D.2 to both ψ ψ ψ ♭ and û♭ 0 of Eq. (D.22), considering that R( ψ ψ ψ ♭ , I ♭ IN ) = 0, one obtains:

By injecting Eq. (D.23) into Eq. (D.11), and by choosing µ µ µ and w such that the terms multiplying ∂u ♭ /∂ξ j and ∂u/∂ξ j vanish, one finally obtains:

Eq. (D.24) represents the gradient of the buckling factor of the LFEM subject to non-null imposed BCs, which are related to the displacement field solution of static analysis performed on the GFEM. The last term of the first formula in Eq. (D.24) is the coupling effect between GFEM and LFEM and is non-zero = 1, • • • , n vars . Conversely, the other terms are non-zero if and only if the design variable ξ j is defined in the LFEM domain.