
HAL Id: hal-02915443
https://hal.inrae.fr/hal-02915443v1

Submitted on 14 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Comparing different methods for estimating kinetic
parameters of whey protein heat-induced denaturation

in infant milk formulas
Bruno Leite, Thomas Croguennec, Amira Halabi, Esly Ferreira Da Costa

Junior

To cite this version:
Bruno Leite, Thomas Croguennec, Amira Halabi, Esly Ferreira Da Costa Junior. Comparing different
methods for estimating kinetic parameters of whey protein heat-induced denaturation in infant milk
formulas. Journal of Food Engineering, 2021, 292, pp.110272. �10.1016/j.jfoodeng.2020.110272�. �hal-
02915443�

https://hal.inrae.fr/hal-02915443v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Journal of Food Engineering 292 (2021) 110272

Available online 28 July 2020
0260-8774/© 2020 Elsevier Ltd. All rights reserved.

Comparing different methods for estimating kinetic parameters of whey 
protein heat-induced denaturation in infant milk formulas 

Bruno Leite a, Thomas Croguennec b, Amira Halabi b, Esly Ferreira da Costa Junior a,* 

a Chemical Engineering Department, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil 
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A B S T R A C T   

Modeling the heat-induced denaturation of milk proteins is a relevant issue because of heating processes in the 
manufacturing of several dairy products. In this study, four different parameter estimation methods were 
evaluated to estimate the kinetic parameters of the heat-induced protein denaturation of β-lactoglobulin (β-LG) 
and lactoferrin (LF) in infant milk formulas (IMF). The methods were: a two-step method, nonlinear least-squares 
(NLS), one-step linearized, and weighted least-squares (WLS). The WLS was the best alternative, avoiding biases 
observed when applying other methods besides producing consistently low residuals. Using the second proposed 
weight function, the WLS produced sum of squared errors and mean absolute percentage errors with average 
values of respectively 0.18 and 12.3% versus 0.27 and 13.3% considering all methods. However, the WLS re-
quires good initial guesses for parameters, and previous knowledge of sampling and residuals variance. Those can 
be provided by previously performing the two-step and NLS methods, respectively.   

1. Introduction 

Modeling, predicting, and controlling the extent of whey protein 
denaturation is a critical issue to optimize the quality of the dairy 
products and the performance of the processing unit. Most dairy prod-
ucts are heat processed. Heating takes place immediately after the raw 
milk is delivered to the dairy companies and/or is a step during the 
manufacture of dairy products. Aside improving the microbial safety 
and extending the shelf life of dairy products, heat treatments induce the 
denaturation of the whey proteins that have positive or negative impacts 
on the quality of the final products and impair the performance of the 
processing unit. Heat-induced whey protein denaturation is used to 
improve yoghurt firmness (Sodini et al., 2004). However, in the manu-
facture of high protein yoghurts, the heating of the concentrated milk 
and consequently the extent of whey protein denaturation has to be 
reduced to achieve the optimal texture of the final gels. Otherwise, the 
gel is too strong, too pasty and sticky compared to standard yoghurts 
(Purwanti et al., 2010). Heating cheese milk usually improves cheese 
yield as more denatured whey proteins and more water are retained in 
the curd (Kelly et al., 2008). Whey protein retention in the curd also 
improves the nutrient value and it modifies the functional properties of 
the cheeses (Hinrichs, 2001). However, if the heating and the extent of 

whey protein denaturation is too high, the gel time of rennet-induced 
coagulation is delayed (Vasbinder et al., 2003), and the gel elasticity 
decreases. In the context of infant milk formula, the extent of whey 
proteins denaturation affect the physical stability of the liquid formu-
lation during manufacture (Buggy et al., 2017) and modify the nutri-
tional quality of the proteins (Peram et al., 2013; O’ Loughlin et al., 
2012). Moreover, the denaturation of the whey proteins is mainly 
responsible for the fouling of the dairy equipment’s (Burton, 1968; 
Fickak et al., 2011 Fickak et al., 2011; Truong et al., 2017). 

β-LG is often described as the protein responsible for the above- 
mentioned effects in dairy products. The heat denaturation of β-LG 
proceeds along various stages and it is considered irreversible above 
around 75 ◦C (Wit, 2009; Brodkorb et al., 2016). Lactoferrin (LF) is one 
of the most heat-labile whey proteins with a denaturation temperature 
around 65 ◦C (Brisson et al., 2007) and it exhibits a wide spectrum of 
biological properties (Baker and Baker, 2009; Tomita et al., 2009). Thus, 
this study was focused in the denaturation of β-LG and LF. 

The relationship between protein denaturation, heating time and 
temperature is described by a nonlinear mathematical expression. In 
such case, linear regression techniques must be extended, which in-
troduces considerable complexity (Bates and Watts, 1988). Fogler 
(1999) suggests rearranging non-linear equations to obtain linear 
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relationships between measured variables and perform a linear regres-
sion, then using parameters estimated by the linear regression as initial 
guesses to perform a nonlinear regression. Other possible approaches are 
performing a weighted least-squares regression (Shalizi, 2015; 
DuMouchel and Duncan, 1983) or a general least-squares regression 
(Mardia et al., 1979). 

In some situations, there is no generic formula of one parameter 
estimation method that overcomes all others. Kohberger (1980) has 
examined three different methods for evaluating kinetic parameter 
estimation of an enzymatic reaction described by the Michaelis-Menten 
equation: a direct linear plot, nonlinear least-squares and weighted least 
squares. His conclusions reinforce the importance of previous knowl-
edge of the error structure to perform precise estimations, and that the 
direct linear plot cannot be used as a substitute for the least-squares 
method when precision is required. 

Loveday (2016) has compared estimation of kinetic parameters of 
β-lactoglobulin (β-LG) denaturation performed in one-step method 
(estimating the energy of activation, kinetic constant and reaction order 
simultaneously) to estimation performed in two-step method (esti-
mating kinetic constant for different temperatures in the first step, then 
estimating the activation energy by the Arrhenius equation). One 
important issue when estimating kinetic parameters of protein 
heat-denaturation, is that the kinetic rate constant kn is dependent on the 
temperature. Thus, to be estimate kn the heating temperature must be 
stationary. Loveday (2016) points the uncertainty as to when stationary 
temperature is reached, because it takes a finite time that is often un-
known, and some protein denaturation may occur during temperature 
equilibration. Although the system quickly reaches stationary temper-
ature, the progress of protein denaturation while temperature increases 
can’t be ignored, so Van Loey et al. (2002) suggest that to heat a sample 
then stop heating as soon as stationary temperature is reached and use 
this time as the time course ‘zero point’ whose concentration of native 
proteins is designated C0. Another approach is to apply mathematical 
methods, to convert experimental heating times, in the equivalent 
heating times that, at the stationary temperature T of each series, would 
lead to the same denaturation level (Halabi et al., 2020a). When per-
forming estimations redefining the “zero point”, as suggested by Van 
Loey et al. (2002), there was no evidence of significant difference in the 
results. Considering the rapid heating-up time of the protein solutions, 
some authors consider all experimental points in the fit of the kinetic 
parameters (Kehoe et al., 2007; Croguennec et al., 2004). 

The objective of the current study was to evaluate performance of 
different parameter estimation methods in estimating kinetic parame-
ters of the heat-induced denaturation of individual whey proteins (β-LG 
and LF) in different infant milk formula. The methods under study were 
a two-step method, nonlinear least-squares (NLS), one-step linearized, 
and weighted least-squares (WLS). In case of the latter, applying two 
different weight functions. 

2. Materials and methods 

2.1. Preparation of the IMFs 

Three different IMFs were used in this study. The IMFs were 
formulated in agreement with the European regulation (EU, 2016/127) 
for the bovine-milk-based IMFs regarding the contents of protein (1.3% 
w/w), lactose (5.7% w/w) and the principal minerals (Calcium: 42, 
sodium: 22 potassium: 62, iron: 0.42, chloride: 68, inorganic phosphate: 
21 mg/100g of IMF). Skimmed milk (SMP), whey protein isolate (WPI, 
Prolacta®95, Lactalis Ingredients, Bourgbarré, France), LF (Prodiet 
Lactoferrin®, Ingredia Dairy Experts, Arras, France) and α-lactalbumin 
(α-LA, Agropur Inc, Appleton, USA) powders, lactose powder (Armor 
Proteines, Saint-Brice-en-Coglès, France) and Na3C6H5O7⋅2H2O (Carlo 
Erba Reagents, Val-de-Reuil, France), Na3PO4⋅12H2O (Merck, Darm-
stadt, Germany), KCl (Panreac, Barcelona, Spain), CaCl2⋅2H2O (AnalaR, 
Leuven, Belgium) and FeSO4⋅7H2O (Sigma-Aldrich, St-Louis, USA) salts 

were used for IMF formulation. Lactose was first dissolved in Milli-Q 
water and then protein powders were added. After protein dispersion, 
the solutions were supplemented by minerals, and stirred during 10 min 
at room temperature. The IMFs were adjusted at pH 6.8 with 1 M KOH 
and stored overnight at 4 ◦C to ensure the complete rehydration and 
powder equilibration. The only difference between the IMFs is that 
standard IMF contained β-LG (0.51 ± 0.01%) and no added LF. LF1 and 
LF2 are IMFs that contained the same amount of added LF (0.16 ±
0.01%) but different amount of β-LG (0.33 ± 0.01% and 0.06%, 
respectively). α-LA powder was used to vary β-LG content in LF1 and 
LF2. 

2.2. Thermal treatment and denaturation kinetics 

The IMFs (800 μL) in glass capillary tubes (8 mm inner diameter and 
40 mm length, Waters, USA), were heated in a thermally controlled 
water bath (Fisherbrand™ Isotemp™ water bath, Thermo Fisher Sci-
entific, Newington, USA) set at different temperatures ranging from 
67.3 ◦C to 79.6 ◦C by intervals of about 2.5 ◦C. Model IMFs were not 
heated above 80 ◦C because the mechanism of β-LG denaturation change 
leading to a change of b- β-LG activation energy (Hillier et al., 1979; 
Petit et al., 2011). For each temperature, the heating ramp (i.e. the time 
to reach the target temperature) was controlled with a YC-747UD Data 
Logger Thermometer inserted in a reference tube. The heating ramp was 
converted into a heating time at target temperature (Halabi et al., 
2020a). At various time intervals, tubes were removed and instanta-
neously chilled on ice bath to stop whey protein denaturation/ag-
gregation reactions. The unheated IMFs were used as reference. Three 
independent experiments were performed for the heat treatment at 75 
◦C, considering the standard deviation equivalents at all heating tem-
peratures investigated. 

2.3. Determination of the contents of β-LG and LF 

Native whey proteins were separated from the caseins and dena-
tured/aggregated whey proteins, which precipitate after IMF pH 
adjustment at 4.6, by centrifugation at 14,000g for 20 min at 25 ◦C 
(Eppendorf Microcentrifuge MicroStar 17R, VWR, Leuven, Belgium). 
The supernatants of the IMFs were recovered for native β-LG and native 
LF separation by reverse phase-HPLC (Dionex UltiMate 3000 HPLC 
System, Thermo Fisher, Dreieich, Germany) using a PLRP-S 300 Å, 8 μm, 
150 × 3 mm column (Agilent Technologies, UK). Protein were eluted 
from the column at a flow rate of 0.2 mL/min using a gradient of 
acetonitrile obtained by mixing the mobile phase A (0.106% (v/v) of 
trifluoroacetic acid in Milli-Q water) and the mobile phase B (0.1% (v/v) 
of trifluoroacetic acid in acetonitrile). Native whey proteins in unheated 
(C0) and heated samples (Ct) were quantified using a calibration curve 
established by direct injection of β-LG and LF standards. 

2.4. Kinetics of denaturation 

The kinetics of milk protein denaturation is usually described by 
equation (1), which integrated for n ∕= 1 and rearranged results in 
equation (2). (Oldfield et al., 1998; Croguennec et al., 2014; Halabi 
et al., 2020a). 

−
dC
dt

= kn⋅Cn
t (1)  

Ct

C0
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (n − 1)⋅kn⋅C(n− 1)
0 ⋅t(1− n)

√

(2) 

In which Ct is the native protein concentration in time t, C0 is the 
native protein concentration before heating, kn is the reaction rate 
constant at a defined temperature Tn, and n is the reaction order ac-
cording to the protein concentration. Units might be arbitrary, but, in 
the current study, concentration is given in (g.L− 1), time in min, kn in 
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(g(1− n).L(n− 1).min− 1), n is dimensionless. 
The correlation between the reaction rate constant kn and given 

temperature T is given by the Arrhenius relationship given by equation 
(3), as described by Oldfield et al. (1998). 

kn = kn0⋅e− Ea
R ⋅1

T (3) 

In which, Ea corresponds to the activation energy, kn0 to a pre- 
exponential constant, R to the ideal gas constant and T to the temper-
ature. Once again, defining units is arbitrary but in the current study Ea 
is in (J.mol− 1), kn0 is in (g(1− n).L(n− 1).min− 1), R is in (J.mol− 1.K− 1), and 
T is in K. 

Substituting equation (3) in equation (2), results in equation (4) that 
might be rearranged to equation (5) by substituting kn0 by kn1 of an 
arbitrary temperature T1 from equation (3): 

Ct

C0
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (n − 1)⋅kn0⋅e− Ea
R ⋅1

T ⋅C(n− 1)
0 ⋅t(1− n)

√

(4)  

Ct

C0
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (n − 1)⋅kn1⋅e
Ea
R ⋅

(

1
T1
− 1

T

)

⋅C(n− 1)
0 ⋅t

(1− n)

√

(5)  

2.5. Methods for parameter estimation 

2.5.1. Two-step method 
The two-step method consists of the estimation of the kinetic pa-

rameters in two steps: one for estimating kinetic constants for each 
temperature and another for estimating the activation energy and global 
kinetic constant (Dannenberg and Kessler, 1988; Petit et al., 2011; 
Halabi et al., 2020a). 

Sometimes, the reaction order is fixed arbitrary to 1, 1.5 or 2 in 
reference to previous studies (Dannenberg and Kessler, 1988; Galani and 
Owusu Apenten, 1999) to determine the rate constant. In the two-step 
method used in the current study, the reaction order n for the dena-
turation of LF and β-LG at each sample was defined plotting (Ct/C0)(1− n) 

versus time for each temperature and retaining the n value in the range 
1–2 with the best R2. 

Using the mean of retained values of n, it was determined the kinetic 
constant kn for each temperature, by the linear regression slope of (Ct/ 
C0)(1− n) versus time, according to equation (6). 
(

Ct

C0

)(1− n)

= 1+(n − 1) ⋅ kn ⋅ C(n− 1)
0 ⋅t (6) 

In the following step, the activation energy Ea and logarithm of the 
kinetic pre-exponential constant ln(kn0) were determined respectively 
by the slope and intercept of the linear regression for the logarithm of 
the kinetic constant kn (estimated at each temperature) versus the in-
verse of the heating temperature, described by equation (7) 

ln(kn)= ln(kn0) −
Ea
R

⋅
1
Tn

(7) 

It is remarkable that a linearization is performed in both steps of this 
method to correlate to dependent variable to the independent variable. 
Linearization is a technique described by Bates and Watts (1988) that 
allows to find algebraic solutions to estimate parameters of nonlinear 
models. It is particularly useful because, since there is an algebraic so-
lution, the method does not demand an initial guess. However, it has the 
disadvantage of modifying the profile of residuals distribution and so 
might lead to bad estimations. 

2.5.2. Nonlinear least-squares 
The nonlinear least-squares (NLS) method was employed to estimate 

in one step the kinetic parameters activation energy Ea, kinetic constant 
kn1 (defined at an arbitrary T1 = 345 K), and reaction order n, for each 
protein in each IMF, fitting experimental data do equation (5). 

Comparing to the two-step method we must highlight some 

differences. The NLS method estimates simultaneously (in a single step) 
the parameters Ea, n and kn1, as performed by Oldfield et al. (1998). 
Moreover, in the NLS method the dependent variable is nonlinearly 
related to the independent variables, while each step in the two-step 
method is based on a linear relationship. 

According to Bates and Watts (1988), a nonlinear regression model 
can be written as by equation (8). 

yi = f (Xi, θ) + z (8) 

In which yi corresponds to the experimental observation of index i, f 
to the expectation function of the model, Xi is a vector associated to the 
independent variables of index i, θ is a vector of parameters, and z 
corresponds to residuals of mean 0 and homogeneous variance σ2. 

The NLS regression was performed in Python 3.7 using the curve_fit 
function with least-squares method from scipy library (Jones et al., 
2001). 

As described by Bates and Watts (1988), Fogler (1999), and by Edgar 
et al. (2001), a nonlinear least-squares regression consists in, starting 
from an initial guess, applying optimization algorithms to estimate pa-
rameters that minimize the sum of squared residuals from a given model, 
represented in equation (9). 

SSe=
∑no

i=1
(yi − ŷi)

2 (9) 

In which, SSe is the sum of squared errors (residuals), i is the index 
for each observation or estimation, no is the number of experimental 
points, yi is the experimental observation of index i, and ŷi is the y value 
calculated by the model for the observation of index i, using estimated 
parameters. 

Another possible approach based on the same assumptions would be 
minimizing the sum of absolute errors (least absolute deviation), but it is 
a method of difficult convergence as described by Li and Arce (2004). 

The parameters errors were calculated according to Bates and Watts 
(1988) from the standard deviation of each parameter, with assumptions 
of linearity of the model in the neighborhood of the optimal solution, 
and residuals of mean 0 and constant variance. The standard deviations 
were obtained as described by Silveira et al. (2017) and by Bates and 
Watts (1988). 

The errors (residuals) variance σ2 was calculated by equation (10): 

σ2 =
SSe

no − p
(10) 

In which, p is the number of estimated parameters and no is the 
number of observation points (experimental points). 

The covariance matrix of the parameters V(θ) (as returned by the 
curve_fit function), can be calculated by equation (11). 

V(θ)= σ2⋅
(
JT ⋅J

)− 1 (11) 

In which, J is a matrix of shape (no, p) with the partial derivatives of 
each ŷ of index i, to each parameter θ of index j, according to equation 
(12). 

Jij =
∂ŷi

∂θj
(12) 

In which, i is in range from 1 to no, and j in range from 1 to p. 
The standard deviation for each parameter s(θj) is given by equation 

(13). 

s
(
θj
)
=

̅̅̅̅̅̅̅̅̅̅̅̅
V(θ)jj

2
√

(13) 

At last, the error associated to each parameter was obtained by the 
product of s(θj) and t-value considering a valid t-distribution. 

For a matter of comparison to the parameters estimated by the two- 
step method, it was calculated the natural logarithm of the pre- 
exponential constant kn0, which was calculated substituting kn by k1 
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and T by T1 at equation (7). 
To calculate errors for ln(kn0), the same methods applied to Ea, kn1, 

and n, were performed. This time, in a model considering Ea, ln(kn0), 
and n, according to equation (14). 

Ct
C0

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (n − 1)⋅eln(kn0)⋅e− Ea
R⋅T ⋅C0

(n− 1)⋅t(1− n)
√

(14) 

As expected, the estimates for Ea and n and their respective confi-
dence intervals remain the same, and the only additional information 
after the new estimation in the covariance matrix V(θ) is the value 
associated to ln(kn0), used to calculate its confidence interval. 

2.5.3. One-step linearized 
To distinguish effects of the data linearization from effects of per-

forming estimation in one or two steps, it was developed a one-step 
method applying nonlinear optimization algorithms to estimate ki-
netic parameters Ea, kn1, and n that would best fit the linearized kinetic 
equation (15), in which the dependent variable is linear in respect to 
time, but not to temperature. In this study this method is referred to as 
“one-step linearized method” or just “linearized method”. 

Both the two-step method and the one-step linearized method 
consider the dependent variable as being linear versus time, while they 
differ in estimating simultaneously the kinetic parameters Ea, kn0, and n 
or estimating in two-steps. Hence, comparing results of the two methods 
it is possible to assess the difference in performing estimations in one or 
two steps. Moreover, comparing the one-step linearized method to the 
NLS method it is possible to assess effects of the linearization with 
respect to time (both estimations being performed in one step). 

(
Ct

C0

)(1− n)

= 1+(n − 1) ⋅ kn1 ⋅ e
Ea
R ⋅

(

1
T1
− 1

T

)

⋅ C(n− 1)
0 ⋅t (15) 

Although being linear according to time, the linearized method 
presented in this study was applied to a dataset considering different 
temperatures, and since the dependent variable has a nonlinear rela-
tionship with temperature, there isn’t algebraic solution and so it isn’t 
possible to apply standard linear regression methods. 

Once again, the solution was obtained using Python 3.7, but this time 
applying the minimize function using nonlinear default optimization 
algorithms from scipy.optimize module (Jones et al., 2001). In this 
method, the objective function was maximizing the R2 (minimizing -R2), 
described by equation (16), in which y is described by equation (17). 

R2 = 1 −

∑no
i=1(yi − ŷi)

2

∑no
i=1(yi − yi)

2 (16)  

y=
(

Ct

C0

)(1− n)

(17) 

It is important to remark that since it is a nonlinear problem, R2 can’t 
be interpreted as it is in a multivariable linear regression method, where 
it means variance described by the model over total variance Mont-
gomery and Runger (2003). 

The parameters errors were calculated the same way as using the 
nonlinear least-squares method, and so keeping assumptions of residuals 
with mean = 0 and constant variance σ2. 

2.5.4. Weighted least-squares 
The weighted least-squares (WLS) is an alternative to unweighted 

nonlinear least-squares method for reducing a possible bias caused by 
the sampling scheme (DuMouchel and Duncan, 1983). Shalizi (2015) 
suggests weighting residuals according to the inverse of the local vari-
ance in order to minimize the parameters variance. Besides, by attrib-
uting higher weights for residuals where there is less variance, the model 
is more likely to match observations where there is less noise and so 
where observations are more reliable. 

The WLS method takes as objective function minimizing the 
weighted sum of squared errors, described by equation (18). 

SSew = 
∑no

i=1
wi⋅(yi − ŷi)

2 (18) 

Kohberger (1980) uses the inverse of the predicted values squared as 
weights. Campos et al. (2018) use the inverse of the observation values 
squared as weights. In this study, weights were proposed by equations 
(19) and (20). 

wi =
1

yi⋅ŷi
(19)  

wi =
(ti + 0.25⋅t(T))

s(t(T))
⋅

no
no(T)⋅len(Temps)

(20) 

In which wi is the weight for observation of index i, ti is the time of 
observation of index i, t(T) is the average time of heating at temperature 
T, s(t(T)) is the standard deviation of the times of observations at tem-
perature T, no is the total number of observations, no(T) is the number of 
observations at the given temperature, and len(Temps) is the number of 
unique temperatures evaluated in the experimental dataset. 

The weights of equation (19) were chosen to avoid remarkably high 
relative residuals at low concentrations. The rate of denaturation is 
lower at lower concentrations, because of the first derivative (equation 
(1)). So, it is expected that the concentration is more stable at lower 
values and there’s lower local variance. It is important to remark that the 
WLS regression with this weights function is of easier convergence than 
using the inverse of squared model values, described by Kohberger 
(1980). 

Weights of equation (20) were chosen after analyzing the samples 
distribution to avoid sampling bias of having more observations at initial 
times than at ending times and of having more observations at some 
temperatures. 

To perform the WLS, experimental data was fitted to equation (5), 
applying least_squares function from scipy.optimize module (Jones et al., 
2001), to minimize the output of a weighted squared residuals function 
(equation (18)). 

The parameters variance matrix was calculated by modifying equa-
tion (21) for weighted linear regression (DuMouchel and Duncan, 1983). 

V(βw)=  (Xt⋅W⋅X)
− 1 ⋅

(
Xt ⋅ W2 ⋅ X

)
⋅(Xt⋅W⋅X)

− 1 (21) 

Substituting X by J in analogy to Bates and Watts (1988) to transform 
from linear to nonlinear regression, it results in equation (22). 

V(θw)=  (Jt⋅W⋅J)− 1 ⋅
(
Jt ⋅ W2 ⋅ J

)
⋅(Jt⋅W⋅J)− 1 (22) 

In which, instead of using βw, it was used θw as the vector of the 
estimated parameters. W corresponds to the weight matrix, and J to the 
matrix of partial derivatives of the model to each parameter. 

As to the NLS method, parameters errors were calculated as a 
product of t-value and the standard deviation calculated for each 
parameter from the diagonal of the variance matrix. 

2.6. Methods of evaluation 

2.6.1. Statistical 
The methods for parameter estimation Ea, n and ln(kn0) were eval-

uated for each protein at each sample by the sum of squared errors from 
equation (9), and by adjusted mean absolute percentage errors (MAPE), 
given by equation (23), described by Armstrong (1985). 

MAPE=
1
no

∑no

i=1

2⋅|yi − ŷi|

(yi + ŷi)
(23)  

2.6.2. Graphical 
Each method was evaluated by graph analysis, plotting C/C0 versus 
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time for each heating temperature for each protein at each sample. 
By equation (5), it is possible to infer that the shape of the model 

curves is related to the estimation of n, while the general trend of the 
curve is related to the kinetic constant, and the accuracy of fitting 

different temperatures is related to Ea. Underestimations of n lead to 
model curvatures less accentuated than experimental points while 
overestimations of n lead to model curvatures more accentuated than 
experimental points, perhaps intercepting them. Bad estimations of the 

Table 1 
Kinetic parameters and statistical indicators for estimations performed by different methods.  

Protein IMF Method Ea (x103) n k1 (x102) ln(kn0) SSe (x102) MAPE 

β-LG Std NLS 326±7 1.81±0.06 0.71±0.05 108±5 4 5.5% 
linearized 346±11 1.61±0.1 0.76±0.09 116±7 11 6.1% 
WLS1 339±15 1.67±0.15 0.77±0.11 113±13 5.9 5.1% 
WLS2 331±8 1.73±0.08 0.75±0.07 110±6 4.4 4.9% 
two-step 337 1.6 0.79 112 8.9 5.8% 

LF1 NLS 390±18 2.03±0.14 2.56±0.29 132±12 11.7 14.6% 
linearized 412±28 1.5±0.21 2.63±0.45 140±19 36.4 14.1% 
WLS1 408±57 1.56±0.43 2.82±0.55 138±49 24.6 12.8% 
WLS2 396±24 1.8±0.19 2.82±0.36 134±16 13.5 12.2% 
two-step 416 1.6 2.79 141 22.5 12.9% 

LF LF1 NLS 179±19 2.2±0.17 11.78±0.98 60±13 32.6 27.0% 
linearized 189±25 1.53±0.24 7.29±0.78 63±17 91.7 18.3% 
WLS1 180±99 1.6±0.66 8.76±4.63 60±83 59.5 16.3% 
WLS2 177±23 1.9±0.21 10.99±0.99 59±16 36.4 18.4% 
two-step 195 1.65 8.7 65 57.5 16.8% 

LF2 NLS 220±11 1.6±0.12 6.9±0.38 74±8 17 14.3% 
linearized 197±12 1.6±0.13 7.48±0.46 66±8 20.2 13.6% 
WLS1 200±55 1.48±0.7 6.73±3.88 67±68 19.9 14.9% 
WLS2 215±14 1.57±0.17 6.68±0.47 72±9 17.6 13.8% 
two-step 212 1.77 9.2 71 36 18.2%  

Fig. 1. Experimental points and kinetic model curves for concentration ratio versus time using estimations obtained by different methods for β-LG at the stan-
dard sample. 
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kinetic constant will probably affect the general trend of the curve. At 
last, bad estimations of Ea lead the curve not to fit well all temperatures, 
but also if the Arrhenius equation can’t be extended to some tempera-
ture interval, it is expected to have a bad fit for estimations at temper-
atures beyond the limits. 

According to Bates and Watts (1988), before characterizing the 
precision of estimates using confidence intervals, one must check the 
residuals for signs of model inadequacy. Edgar et al. (2001) suggest 
plotting residuals versus the dependent variable and versus independent 
variables to check detection of outliers, trends in the residuals, abrupt 
shifts, and changes in error variance. According to Montgomery and 
Runger (2003), plotting residuals versus the dependent and independent 
variables is also a way to check the accuracy of the model, verifying if 
modeling assumptions are valid, as mean = 0 and constant variance. 
Shalizi (2015) suggests plotting residuals and squared residuals in order 
to determine an equation to describe weights as the inverse of the local 
variance. 

A graphical analysis was performed in this study by plotting residuals 
multiplied by the square root of the weight function versus time and 
versus C/C0, for each protein at each sample. Multiplying the residuals 
by the square root of the weight function represents how the local re-
siduals impact the objective function of each method, and so to what 
interval each model tends to better adjust. 

3. Results 

Applying the methods described above it was possible to estimate the 
kinetic parameters of the denaturation of β-LG and LF in different IMFs 
(Table 1). The parameters Ea (J.mol− 1), k1 (g(1− n).L(n− 1).min− 1), and n, 
correspond to kinetic parameters from equation (5). The arbitrary 
temperature of k1 was defined as 345K. The parameter kn0 (g(1− n).L(n− 1). 
min− 1), corresponds to the kinetic pre-exponential term from equation 
(4). 

The procedures for parameter estimation were performed in the 
temperature range from 67.3 ◦C to 79.6 ◦C for LF, while for β-LG the data 
obtained at 67.3 ◦C at both samples was not considered by the model 
because of evidence of poor adjustments at this temperature. Poor ad-
justments for β-LG at 67.3 ◦C are consequence of the very slow dena-
turation of the protein and the possible interference of concomitant 
reactions such as protein lactosylation through Maillard reactions that 
prevented the precise quantification of the native protein at longer 
heating times. To distinguish the two different weight functions used in 
the WLS method they are referred as WLS1 and WLS2. 

For all proteins at all samples, the NLS method produced the lowest 
values in terms of SSe, as it would be expected once it is the objective 
function of the method, with mean 0.16. It was followed by the WLS 
method using the second weight function, that resulted SSe with mean 
0.18. This result was significantly better than using the first weight 
function, that produced SSe with mean 0.27. The linearized method 

Fig. 2. Experimental points and kinetic model curves for concentration ratio versus heating time using estimations obtained by different methods for β-LG at 
LF1 sample. 
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performed in one step usually led to the worst estimations in terms of SSe 
with mean 0.40, except for LF at LF2, in which the two-step method 
resulted in higher values. The mean SSe considering all methods was 
0.27. In terms of adjusted MAPE, results obtained by all methods were 
quite similar for each protein at each IMF sample. Exceptions were 
observed for LF at the LF1 sample, in which the NLS method led to 
significantly higher values, and for LF at the LF2 sample, in which the 
two-step method led to significantly higher values. Thus, the mean value 
of adjusted MAPE for the NLS was the highest (15.4%), followed by the 
two-step method (13.4%). The best results in terms of adjusted MAPE 
were obtained by WLS1 and WLS2 with mean values of 12.3% for both. 
The mean adjusted MAPE considering all methods was 13.3%. 

Whatever the method, the residuals were the lowest for β-LG at the 
standard sample, while quite similar for others. It reinforces the reli-
ability of experimental data for β-LG at the standard sample. 

Besides analyzing the residuals numerically, it was performed a 
graphical evaluation. Figs. 1–4 show the results of different methods in 
modeling the denaturation of β-LG at the standard sample, β-LG at the 
LF1 sample, LF at the LF1 sample and LF at the LF2 sample, respectively. 

Fig. 1 reinforces the reliability of results obtained in Table 1, once the 
model curves were precise in fitting experimental points. However, 
linearized, two-step and WLS1 had slightly worse results at 67.3 ◦C, in 
which it is possible to observe a bias of the model curve being above 
experimental points. 

At Figs. 2 and 3, it is possible to notice more significant differences 

between estimation methods, perhaps because of the magnitude of 
experimental errors. Differences in terms of n observed in Table 1 are 
reinforced, as the model curves differ in shape, specially obtained using 
the NLS method, in which there is a remarkable bias of assuming values 
strictly higher than experimental points for longer holding times (or 
lower concentrations). 

When analyzing the shape of the curves using parameters estimated 
by the linearized method from Figs. 2 and 3 it is possible to notice that 
the magnitude of residuals is significantly lower for lower concentra-
tions. This can lead to poor fittings at initial holding times, what was 
specially noticed for lower temperatures. Compared to the two-step 
method, there was no evidence of improvement, despite what is sug-
gested by Loveday (2016). 

At Fig. 4 it is possible to notice a significantly worse performance of 
the two-step method compared to others including the linearized one- 
step method, reinforcing conclusions from analyzing residuals at 
Table 1. However, this was not a behavior observed at other series. 

Comparing the model curves obtained by the two different weight 
functions WLS1 was more effective in describing the denaturation of 
β-LG at the standard (Fig. 1) and LF1 (Fig. 2) samples at higher tem-
peratures while WLS2 was more effective in describing it at lower ones. 
Moreover, the WLS1 was more effective in describing the denaturation 
of LF at the LF1 sample (Fig. 3) while WLS2 was more effective in 
describing of LF at LF2 sample (Fig. 4). 

Weighted residuals for LF at LF1 sample were of significant relevance 

Fig. 3. Experimental points and kinetic model curves for concentration ratio versus heating time using estimations obtained by different methods for LF at 
LF1 sample. 
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to compare methods performances and validate model’s assumptions. 
They can be analyzed by Fig. 5. 

It is evident that the residuals variance is not constant neither in 
respect of time nor concentration for any method. It is a remarkable 
point specially about the NLS method because residuals constant vari-
ance is one of the method assumptions. The assumption of residuals with 
mean 0 also is not valid, once NLS led to residuals not equally distributed 
between positive and negative values, with bias of negative values at low 
concentrations (or long holding times) for the NLS method. This bias is 
reduced by both weight functions, specially the first. 

4. Discussion 

4.1. Methods performances 

By analyzing SSe, adjusted MAPE (Table 1) and by graphical anal-
ysis, it is observed that the two-step method resulted in accurate esti-
mations for kinetic parameters. While other methods need accurate 
initial estimations in order to converge, both steps from the two-step 
method have analytical solution, so it can be a powerful strategy to 
perform initial estimations. 

Estimations using the two-step method were especially accurate for 
LF at LF1 sample, while there was lack of accuracy for LF at LF2 sample, 
as its possible to notice by analyzing Fig. 3 and adjusted MAPE (Table 1), 
For both linearized and two-step methods the most significant 

distancing from experimental points was noticed at lower temperatures, 
especially for LF. 

Compared to the two-step method, there was no evidence of 
consistent improvement performing estimations by the one-step linear-
ized method, despite what is suggested by Loveday (2016). However, 
there was a consistent improvement in terms of residuals when per-
forming the NLS method. This might evidence that the data linearization 
versus time can have a more negative impact on the accuracy of esti-
mations than performing in two steps instead of one. 

Despite the positive effect of minimizing SSe using the NLS method, 
there was evidence of poor estimations in terms of n and of biased re-
siduals distribution proving the assumptions of residuals’ constant 
variance and constant mean = 0 not to be valid. This might be conse-
quence of sampling and/or of variance bias. However, the WLS method 
proved to be a good alternative to improve estimations reducing model 
curves biases observed when using the NLS method. By analyzing re-
siduals (Fig. 5), we can conclude that both weight functions were 
effective in producing more homeostatic weighted residuals compared 
to unweighted, what can be a source of reducing bias in parameter 
estimations. 

Comparing the two weight functions in terms of SSe and adjusted 
MAPE, the second produced more consistent results. Besides, as 
observed in Table 1, the confidence intervals for parameters estimated 
using WLS1 were much broader than when estimated using WLS, what 
evidences that the first weight function is of harder convergence to 

Fig. 4. Experimental points and kinetic model curves for concentration ratio versus heating time using estimations obtained by different methods for LF at 
LF2 sample. 
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optimal solution than the second one. 

4.2. Denaturation of β-LG and LF 

Whatever the method and the proteins under study, the reaction 
order is fractional meaning that the kinetics of denaturation of β-LG and 
LF in infant milk formulae are complex kinetics. Except for LF in LF1 
infant milk formula using NLS method (reaction order of 2.2 ± 0.17), the 
reaction order ranged between 1.5 and 2. The mechanism of denatur-
ation of the whey proteins is described in two steps, an unfolding step 
consisting on protein conformational changes leading to reactive mo-
lecular species and an aggregation step in which the reactive species 
participate to several aggregation reactions (Roefs and de Kruifs, 1994). 
The former reaction is considered of first-order while the latter reactions 
are considered of second-order. Due to the intricacy of these two steps, 
unfolding and aggregation, during whey protein denaturation, the re-
action order is expected to be in the range 1–2 in agreement with re-
ported values. The reaction orders obtained in this study for β-LG 
denaturation are slightly higher than the reaction order determined 
during skimmed milk heating as summarized in Table 1 of the publi-
cation of Loveday (2016). This difference could be explained by the 
higher whey protein/casein ratio in infant milk formulae compared to 
skimmed milk. In the absence of caseins, the reported reaction orders 
were mainly >1.5 (Loveday (2016)). 

Although Liu et al. (2020) assumed reaction order of n = 1 to predict 
the kinetic parameters for the denaturation of lactoferrin in bovine milk. 
The most reliable predictions in this study are close to n = 1.6 for all 
samples. To our knowledge, no other study investigates the reaction 
order of the denaturation of LF in infant formulae. 

For β-LG, it was observed that the highest denaturation rate was at 
the LF1 sample, which might evidence that the presence of LF increases 
the denaturation rate of β-LG. Moreover, in the LF1 sample, the dena-
turation of β-LG was more sensitive to a variation in temperature as 
evidenced by the higher Ea. In the temperature range investigated, Ea of 
β-LG denaturation in skimmed milk is between about 260 and 300 kJ 
mol− 1 (Dannenberg and Kessler, 1988; Anema, 2000). Ea slightly in-
creases when the total solid of skimmed milk was increased (Anema, 
2000). In the standard IMF, the Ea of β-LG denaturation was around 
330–340 kJ mol− 1 whereas the β-LG concentration was in the same 
range in infant milk formula and in skimmed milk. This higher Ea in-
dicates that the denaturation of β-LG is retarded in infant milk formula 
compared to in skimmed milk. This difference could come from different 
whey proteins/casein ratio or the difference in the amounts of lactose 
and minerals between infant milk formulae and skimmed milk. For 
instance, calcium content was shown to increase the Ea of β-LG dena-
turation (Petit et al., 2011). Ea > 300 kJ mol− 1 were determined in some 
studies dealing with the heating of whey protein solutions or pure β-LG 
solutions (Hoffmann et al., 1996; Le bon et al., 1999; Tolkach and 
Kulozik, 2007; Petit et al., 2011). The Ea of β-LG denaturation is even 
higher in the presence of LF (around 400 kJ mol− 1) whereas β-LG 
denaturation rate is faster than in the absence of LF. At first sight, it 
appears contradictory but the presence of LF in infant milk formulae 
could have different impacts on the IMF components. First, it was 
observed that in the presence of LF, the casein micelle partially dis-
integrated (Anema and de Kruifs, 2012; Halabi et al., 2020b) and the 
presence of free αS- and β-caseins is known to interact with partially 
unfolded β-LG on heating (Morgan et al., 2005). Secondly, LF exhibits a 
lower temperature of denaturation than β-LG (Bengoechea et al., 2011; 

Fig. 5. Experimental weighted residuals versus C/C0 and versus time for kinetic model using estimations obtained by NLS (black), WLS1 (magenta), and WLS2 (blue) 
for LF at LF1 sample. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Brodkorb et al., 2016) and a lower Ea than β-LG. Consequently, LF is 
readily unfolded on heating and it exposed many sites for aggregation 
reactions with β-LG. 

For LF, it was observed that the denaturation rate was slightly lower 
in the LF2 sample than in the LF1 sample. However, the difference was 
not as significant as for β-LG and it makes sense if we consider that LF 
denatured earlier than β-LG. 

5. Conclusions 

The assumption of residuals with constant variance in which the 
nonlinear least-squares method is based proved not to be valid to this 
dataset, because the variance of residuals was observed to be constant 
neither versus time nor versus concentration and mean of the residuals 
was biased not equally distributed between positive and negative values. 
The linearized method was less effective than NLS and WLS in making 
good predictions because of uncontrolled distortion of residuals due to 
the linearization, and, although being performed in one step, it did not 
result in more accurate estimations when compared to the two-step 
method. The WLS with the proposed weight functions has been the 
best method for estimating kinetic parameters, avoiding bias observed in 
the NLS estimations. Analyzing SSe and confidence intervals of param-
eters we can infer that the second weight function produced even more 
accurate results than the first. However, defining the weight function 
requires previous knowledge of sampling biases and residuals variance, 
that are particular to each dataset. This can make it harder to implement 
the WLS without previously performing another regression method. 
Moreover, to perform the WLS method (in nonlinear problems) it is 
necessary to provide initial guesses for the parameters, as for any 
nonlinear regression. 

Probably a good approach when performing estimations of kinetic 
parameters in future studies could be to start by the two-step method, 
use obtained estimations as initial guesses in the NLS method, analyze 
residuals distribution, and then define weights and apply WLS. 
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