S. Abud, P. I. De-souza, G. R. Vianna, E. Leonardecz, C. T. Moreira et al., Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil, Gen Mol Res, vol.6, pp.445-452, 2007.

M. S. Andersson and M. C. De-vicente, Gene flow between crops and their wild relatives, 2010.

F. Angevin, E. K. Klein, C. Choimet, A. Gauffreteau, C. Lavigne et al., Modelling impacts of cropping systems and climate on maize crosspollination in agricultural landscapes: The MAPOD model, Eur J Agron, vol.28, pp.471-484, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01173130

M. Bannert and P. Stamp, Cross-pollination of maize at long distance, Eur J Agron, vol.27, pp.44-51, 2007.

A. J. Bateman, Contamination of seed crops. I. Insect pollination, Journal of Genetics, vol.48, pp.257-275, 1947.

A. J. Bateman, Contamination of seed crops, II. Wind pollination. Heredity, vol.1, pp.235-246, 1947.

Y. Bertheau, Summary of main Co Extra deliverables & results, perspectives, information dissemination & application, Co Extra International Conference, pp.79-95, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02751678

Y. Bertheau, GM and non-GM supply chains coexistence and traceability

A. Bock, K. Lheureux, M. Libeau-dulos, H. Nilsagard, and E. Rodriguez-cerezo, Scenarios for co-existence of genetically modified, conventional and organic crops in European agriculture, p.146, 2002.

M. Bohanec, A. Messéan, F. Angevin, and M. ?nidar?i?, SMAC Advisor: a decisionsupport tool on coexistence of genetically-modified and conventional maize, Third international conference on Coexistence between Genetically Modified and non GM based supply chains, 2007.

Y. Brunet, S. Dupont, S. Delage, D. Garrigou, D. Guyon et al., Long-distance pollen flow in large fragmented landscapes, GM and non-GM supply chains: coexistence and traceability, Y. Bertheau, 2011.

Y. Brunet, S. Dupont, S. Delage, D. Garrigou, D. Guyon et al., Long-distance pollen flow in large fragmented landscapes, GM and non-GM supply chains: coexistence and traceability, Y. Bertheau

P. F. Byrne and S. Fromherz, Can GM and non-GM crops coexist? Setting a precedent in Boulder County, Agriculture & Environment, vol.1, pp.258-261, 2003.

N. Colbach, C. Clermont-dauphin, and J. M. Meynard, GeneSys: a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers -II. Genetic exchanges among volunteer and cropped populations in a small region, Agric Ecosyst Environ, vol.83, pp.255-270, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02669668

F. C. Coléno, Evaluer la relation entre modes de contrôle de gestion inter-firmes et organisation de la chaîne logistique amont dans les stratégies de séparation des filières OGM et non OGM, 2004.

;. Collectif, . Gnis, . Fnams, and . Spfgb, Étude en vue de la multiplication de betteraves OGM résistantes à un herbicide non sélectif, p.53, 2002.

A. J. Conner and P. J. Dale, Reconsideration of pollen dispersal data from field trials of transgenic potatoes, Theor Appl Genet, vol.92, pp.505-508, 1996.

M. Czarnak-k?os and E. Rodriguez-cerezo, Best Practice Documents for coexistence of genetically modified crops with conventional and organic farming. 1. Maize crop production, EUR 24509 EN In JRC scientific and technical reports European Coexistence Bureau EcoB, p.72, 2010.

E. C. Da-silva and G. M. Maciel, Soybean gene flow in the south region of Minas Gerais State, Brazil. Biosci J, vol.26, pp.544-549, 2010.

H. Darmency, E. K. Klein, T. G. De-garanbe, P. H. Gouyon, M. Richard-molard et al., Pollen dispersal in sugar beet production fields, Theor Appl Genet, vol.118, pp.1083-1092, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02656799

M. Demont, W. Daems, K. Dillen, E. Mathijs, C. Sausse et al., Regulating coexistence in Europe: Beware of the domino-effect, Ecol Econ, vol.64, pp.683-689, 2008.

. Ec, Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC, Official Journal of the European Communities, vol.106, pp.1-36, 2001.

, EC. Official Journal of the European Union, vol.18, pp.24-28, 2001.

. Ec, Commission recommendation of 4 October 2004 on technical guidance for sampling and detection of genetically modified organisms and material produced from genetically modified organisms as or in products in the context of Regulation (EC) N° 1830, Official Journal of the European Union L, vol.348, pp.18-26, 2003.

. Ec, A decade of EU-funded GMO research, EUR 24473 EN, p.268, 2001.

. Ec, on guidelines for the development of national co-existence measures to avoid the unintended presence of GMOs in conventional and organic crops, Official Journal of the European Union, vol.01, pp.1-5, 0200.

. Eec, Council Directive 66/402/EEC of 14 June 1966 on the marketing of cereal seed, Official Journal, vol.125, pp.2309-2319, 1966.

. Engl, Definition of minimum performance requirements for analytical methods of GMO testing (European Network of GMO Laboratories, Community Reference Laboratory GM Food and Feed), p.8, 2008.

D. J. Finney, The principles of biological assay, Journal of the Royal Statistical Society, vol.9, pp.46-91, 1947.

M. M. Goodman, Maize: Zea mays L, Evolution of crop plants, N.W. Simmonds, pp.128-136, 1976.

J. Greilhuber, J. Dolezel, M. A. Lysak, and M. D. Bennett, The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents, Ann Bot, vol.95, pp.255-260, 2005.

P. Gy, Sampling for analytical purposes, 1998.

A. Holst-jensen, M. De-loose, and G. Van-den-eede, Coherence between legal requirements and approaches for detection of genetically modified organisms (GMOs) and their derived products, J Agric Food Chem, vol.54, pp.2799-2809, 2006.

A. Holst-jensen, S. B. Ronning, A. Lovseth, and K. G. Berdal, PCR technology for screening and quantification of genetically modified organisms (GMOs), Anal Bioanal Chem, vol.375, pp.985-993, 2003.

J. Ingram, The separation distances required to ensure cross-pollination is below specified limits in non-seed crops of sugar beet, maize and oilseed rape, Plant Var Seeds, vol.13, pp.181-199, 2000.

. Iso, Foodstuffs --Methods of analysis for the detection of genetically modified oganisms and derived products --Quantitative nucleic acid based methods, International Organization for Standardization, vol.21570, 2005.

M. D. Jones and J. S. Brooks, Effectiveness of distance and border rows in preventing outcrossing in corn, Oklahoma Agricultural Experimental Station Technical Bulletin, vol.38, p.18, 1950.

C. Lavigne, E. K. Klein, J. F. Mari, L. Ber, F. Adamczyk et al., How do genetically modified (GM) crops contribute to background levels of GM pollen in an agricultural landscape?, J Appl Ecol, vol.45, pp.1104-1113, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00294151

L. Bail, M. Lecroart, B. Gauffreteau, A. Angevin, F. Messean et al., Effect of the structural variables of landscapes on the risks of spatial dissemination between GM and non-GM maize, Eur J Agron, vol.33, pp.12-23, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00939520

P. J. Lutman, K. Berry, R. W. Payne, E. Simpson, J. B. Sweet et al., Persistence of seeds from crops of conventional and herbicide tolerant oilseed rape (Brassica napus), Proceedings of the Royal Society B-Biological Sciences, vol.272, pp.1909-1915, 2005.

R. Macarthur, M. Feinberg, and Y. Bertheau, Construction of measurement uncertainty profiles for quantitative analysis of genetically modified organisms based on interlaboratory validation data, J AOAC Int, vol.93, pp.1046-1056, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02661532

A. Messéan, F. Angevin, M. Gomez-barbero, K. Menrad, and E. Rodriguez-cerezo, New case studies on the coexistence of GM and non-GM crops in European agriculture, Technical Report Series of the Joint, p.116, 2006.

A. Messéan, G. Squire, J. Perry, F. Angevin, M. Gomez et al., Sustainable introduction of GM crops into european agriculture: a summary report of the FP6 SIGMEA research project, vol.16, pp.37-51, 2009.

J. Messeguer, M. Palaudelmas, G. Penas, J. Serra, J. Salvia et al., Three year study of a real situation on coexistence in maize, Third International Conference on coexistence between Genetically Modified (GM) and non-GM based agricultural supply chains, 2007.

J. Messeguer, G. Penas, J. Ballester, M. Bas, J. Serra et al., Pollen-mediated gene flow in maize in real situations of coexistence, Plant Biotechnol J, vol.4, pp.633-645, 2006.

J. M. Meynard, L. Bail, and M. , Rapport du programme 3: Isolement des collectes et maîtrise des disséminations au champ, Projet Pertinence et faisabilité d'une filière "non OGM" en maïs et soja (INRA-INAPG), p.56, 2001.

C. Njontie, X. Foueillassar, N. K. Christov, and A. Husken, The impact of GM seed admixture on the non-GM harvest product in maize (Zea mays L.), Euphytica, vol.180, pp.163-172, 2011.

. Oecd, Consensus document on the biology of Glycine max (L.) Merr. (soybean), 2000.

E. Mono, Series on Harmonization of Regulatory Oversight in Biotechnology No 15, vol.9, 2000.

. Oecd, Consensus document on the biology of Beta vulgaris L. (sugar beet), 2001.

E. Mono, Series on Harmonization of Regulatory Oversight in Biotechnology, p.11, 2001.

. Oecd, Consensus document on the biology of Zea Mays subsp. mays (maize), 2003.

E. Mono, Series on Harmonisation of Regulatory Oversight in Biotechnology, vol.11, p.27, 2003.

E. Ortiz-perez, H. T. Horner, S. J. Hanlin, and R. G. Palmer, Evaluation of insectmediated seed set among soybean lines segregating for male sterility at the ms6 locus, Field Crops Res, vol.97, pp.353-362, 2006.

L. Paul, F. Angevin, C. Collonnier, and A. Messéan, Impact of gene stacking on gene flow: the case of maize, Transgenic Res, pp.1-14, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000737

C. Petti, C. Meade, M. Downes, and E. Mullins, Facilitating co-existence by tracking gene dispersal in conventional potato systems with microsatellite markers, Environ Biosafety Res, vol.6, pp.223-235, 2007.

J. Ray, T. C. Kilen, C. A. Abel, and R. L. Paris, Soybean natural cross-pollination rates under field conditions, Environ Biosafety Res, vol.2, pp.133-138, 2003.

G. S. Raynor, E. C. Ogden, and J. V. Hayes, Dispersion and deposition of corn pollen from experimental sources, Agron J, vol.64, pp.420-427, 1972.

. Rf, Loi n°72-1140 du 22 décembre 1972 relative à la création de zones protégées pour la production de semences ou plants, Journal officiel de la République française, pp.13350-13351, 1972.

. Rf, Loi n° 2008-595 du 25 juin 2008 relative aux organismes génétiquement modifiés. NOR : DEVX0771876L. Journal officiel de la République française, p.11, 2008.

L. Riesgo, F. J. Areal, O. Sanvido, and E. Rodriguez-cerezo, Distances needed to limit cross-fertilization between GM and conventional maize in Europe, Nat Biotech, vol.28, pp.780-782, 2010.

G. Rühl, B. Hommel, A. Hüsken, K. Mastel, J. Schiemann et al., Coexistence in maize: effect on pollen-mediated gene flow by conventional maize border rows edging genetically modified maize fields, Crop Sci, vol.51, pp.1748-1756, 2011.

O. Sanvido, F. Widmer, M. Winzeler, B. Streit, E. Szerencsits et al., Definition and feasibility of isolation distances for transgenic maize cultivation, Transgenic Res, vol.17, pp.317-335, 2008.

M. Sester, Modélisation de l'effet des systèmes de cultures sur les flux de gènes entre culture transgénique et adventice apparentée. Cas de la betterave sucrière, 2004.

M. Sester, Y. Tricault, H. Darmency, and N. Colbach, GeneSys-Beet: A model of the effects of cropping systems on gene flow between sugar beet and weed beet, Field Crops Res, vol.107, pp.245-256, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00729861

G. Sicard and L. Nardi, Definition of specific rules for GM sugar beet seed growing, Paper presented at: First European Conference on the Coexistence of Genetically Modified Crops with Conventional and Organic Crops GMCC-03, 2003.

M. Thompson, S. L. Ellison, L. Owen, K. Mathieson, J. Powell et al., Scoring in genetically modified organism proficiency tests based on logtransformed results, J AOAC Int, vol.89, pp.232-239, 2006.

J. L. Tynan, M. K. Williams, and A. J. Conner, Low frequency of pollen dispersal from a field trial of transgenic potatoes, Journal of Genetics and Breeding, vol.44, pp.303-306, 1990.

C. C. Van-de-wiel, L. Van-den-brink, C. B. Bus, M. M. Riemens, L. A. Lotz et al., Crop volunteers and climate change: Effects of future climate change on the occurrence of maize, sugar beet and potato volunteers in the Netherlands, p.52, 2011.

Y. Yoshimura, Wind tunnel and field assessment of pollen dispersal in Soybean, 2011.

, J Plant Res, vol.124, pp.109-114

Y. Yoshimura, K. Matsuo, Y. , and K. , Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan, Environ Biosafety Res, vol.5, pp.169-173, 2006.

D. Zhang, A. Corlet, and S. Fouilloux, Impact of genetic structures on haploid genome-based quantification of genetically modified DNA: theoretical considerations, experimental data in MON 810 maize kernels (Zea mays L.) and some practical applications, Transgenic Res, vol.17, pp.393-402, 2008.

, Annexe 2 : Elaboration de l'avis

L. Hcb and C. De,

J. Pagès, J. Président, . Leguay, Y. Vice-président, P. Bertheau et al.,

, Dans le cas de l'exemple développé ci-dessus avec 0,3 % de grains GM dans les semences, respecter le seuil de 0,9 % en grains GM revient à respecter une présence fortuite maximale due à la pollinisation croisée de 0,6 % (en grains). D'après le tableau p. 41, pour une parcelle non OGM d'une surface inférieure à 5 ha, ceci est possible sans décalage de floraison ni mise en place de zone tampon, avec une distance d'isolement de 100 mètres entre les deux parcelles. L'équivalence est donc, Les résultats sont également présentés directement en pourcentage de grains et non plus en ADN transgénique (tableaux en regard)

, Dans le cas de deux parcelles adjacentes, un décalage de floraison de 4 jours (60°jours) peut aussi permettre de respecter ce taux d'impuretés variétales sans distance ni zone tampon

, Ces tables peuvent également être utilisées pour éclairer la prise de décision pour le respect d'un seuil de 0,1 %. Toutefois, il faut souligner les limites du modèle MAPOD pour la prédiction de taux aussi faibles. Par ailleurs, dans ce cas, aucune tolérance n'est possible en pratique pour les autres sources de présence (par exemple, les semences doivent être quasi exemptes d

, Impact du nombre d'inserts transgéniques sur des mesures de coexistence basées sur l'unité HGE