A. J. Cruz-jentoft, G. Bahat, J. Bauer, Y. Boirie, O. Bruyère et al., Revised European consensus on definition and diagnosis, vol.48, pp.16-31, 2019.

D. Dardevet, C. Sornet, M. Balage, and J. Grizard, Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age, J. Nutr, vol.130, pp.2630-2635, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02691397

E. Volpi, B. Mittendorfer, B. B. Rasmussen, and R. R. Wolfe, The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly, J. Clin. Endocrinol. Metab, vol.85, pp.4481-4490, 2000.

C. Guillet, M. Prod'homme, M. Balage, P. Gachon, C. Giraudet et al., Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans, FASEB J, vol.18, pp.1586-1587, 2004.

C. Guillet, A. Zangarelli, P. Gachon, B. Morio, C. Giraudet et al., Whole body protein breakdown is less inhibited by insulin, but still responsive to amino acid, in nondiabetic elderly subjects, J. Clin. Endocrinol. Metab, vol.89, pp.6017-6024, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02830729

D. Dardevet, D. Rémond, M. A. Peyron, I. Papet, I. Savary-auzeloux et al., Muscle wasting and resistance of muscle anabolism: The "anabolic threshold concept" for adapted nutritional strategies during sarcopenia, Sci. World J, pp.269-531, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02645660

J. Bauer, G. Biolo, T. Cederholm, M. Cesari, A. J. Cruz-jentoft et al., Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group, J. Am. Med. Dir. Assoc, vol.14, pp.542-559, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01056780

D. A. Traylor, S. H. Gorissen, and S. M. Phillips, Perspective: Protein requirements and optimal intakes in aging: Are we ready to recommend more than the recommended daily allowance?, Adv. Nutr, vol.9, pp.171-182, 2018.

S. Walrand and Y. Boirie, Optimizing protein intake in aging, Curr. Opin. Clin. Nutr. Metab. Care, vol.8, pp.89-94, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02675600

S. Van-vliet, N. A. Burd, and L. J. Van-loon, The skeletal muscle anabolic response to plant-versus animal-based protein consumption, J. Nutr, vol.145, 1981.

S. H. Gorissen and O. C. Witard, Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults, Proc. Nutr. Soc, vol.77, pp.20-31, 2018.

I. Berrazaga, V. Micard, M. Gueugneau, and S. Walrand, The Role of the Anabolic Properties of Plant-versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review, Nutrients, vol.11, 1825.
URL : https://hal.archives-ouvertes.fr/hal-02266295

S. M. Artaud-wild, S. L. Connor, G. Sexton, and W. E. Connor, Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox, Circulation, vol.88, pp.2771-2779, 1993.

A. M. Bernstein, Q. Sun, F. B. Hu, M. J. Stampfer, J. E. Manson et al., Major dietary protein sources and risk of coronary heart disease in women, Circulation, vol.122, pp.876-883, 2010.

A. Pan, Q. Sun, A. M. Bernstein, M. B. Schulze, J. E. Manson et al., Red Meat Consumption and Mortality: Results from Two Prospective Cohort Studies, Arch. Intern. Med, vol.172, pp.555-563, 2012.

M. Asif, L. W. Rooney, R. Ali, and M. N. Riaz, Application and opportunities of pulses in food system: A review, Crit. Rev. Food Sci. Nutr, vol.53, pp.1168-1179, 2013.

F. Zhu, B. Du, and B. Xu, Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review, Crit. Rev. Food Sci. Nutr, vol.58, pp.1260-1270, 2018.

J. A. Martínez and J. Larralde, Influence of diets containing different levels of Vicia faba L. as source of protein on body Protein composition and nitrogen balance of growing rats, Ann. Nutr. Metab, vol.28, pp.174-180, 1984.

J. A. Martínez and J. Larralde, Muscle protein turnover in rats fed on diets containing different levels of Vicia faba L. and casein as source of protein, Rev. Esp. Fisiol, vol.40, pp.109-115, 1984.

J. A. Martínez and J. Larralde, Developmental changes on protein turnover in growing rats fed on diets containing field beans (Vicia faba L.) as source of protein, Arch. Latinoam. Nutr, vol.34, pp.466-476, 1984.

J. A. Martínez, M. Goena, S. Santidrián, and J. Larralde, Response of muscle, liver and whole-body protein turnover to two different sources of protein in growing rats, Ann. Nutr. Metab, vol.31, pp.146-153, 1987.

J. Martinez, R. Marcos, M. Macarulla, and J. Larralde, Growth, hormonal status and protein-turnover in rats fed on a diet containing peas (Pisum-sativum L.) as the source of protein, Plant. Foods Hum. Nutr, vol.47, pp.211-220, 1995.

T. Pirman, J. M. Stekar, E. Combe, and A. Ore?nik, Nutritional value of beans and lentils in rats, vol.43, pp.133-143, 2001.

T. Pirman, E. Combe, M. C. Ribeyre, J. Prugnaud, J. Stekar et al., Differential effects of cooked beans and cooked lentils on protein metabolism in intestine and muscle in growing rats, Ann. Nutr. Metab, vol.50, pp.197-205, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02666526

R. Alonso, G. Grant, G. Frühbeck, and F. Marzo, Muscle and liver protein metabolism in rats fed raw or heat-treated pea seeds, J. Nutr. Biochem, vol.13, pp.611-618, 2002.

E. Combe, T. Pirman, J. Stekar, M. Houlier, and P. P. Mirand, Differential effect of lentil feeding on proteosynthesis rates in the large intestine, liver and muscle of rats, J. Nutr. Biochem, vol.15, pp.12-17, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02669720

N. E. Deutz, M. J. Bruins, and P. B. Soeters, Infusion of soy and casein protein meals affects interorgan amino acid metabolism and urea kinetics differently in pigs, J. Nutr, vol.128, pp.2435-2445, 1998.

C. Bos, C. C. Metges, C. Gaudichon, K. J. Petzke, M. E. Pueyo et al., Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans, J. Nutr, vol.133, pp.1308-1315, 2003.

Y. C. Luiking, N. E. Deutz, M. Jäkel, and P. B. Soeters, Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans, J. Nutr, vol.135, pp.1080-1087, 2005.

J. W. Hartman, J. E. Tang, S. B. Wilkinson, M. A. Tarnopolsky, R. L. Lawrence et al., Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters, Am. J. Clin. Nutr, vol.86, pp.373-381, 2007.

S. B. Wilkinson, M. A. Tarnopolsky, M. J. Macdonald, J. R. Macdonald, D. Armstrong et al., Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage, Am. J. Clin. Nutr, vol.85, pp.1031-1040, 2007.

J. E. Tang, D. R. Moore, G. W. Kujbida, M. A. Tarnopolsky, and S. M. Phillips, Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men, J. Appl. Physiol, vol.107, pp.987-992, 2009.

L. E. Norton, G. J. Wilson, D. K. Layman, C. J. Moulton, and P. J. Garlick, Leucine content of dietary proteins is a determinant of postprandial skeletal muscle protein synthesis in adult rats, Nutr. Metab, vol.9, p.67, 2012.

A. Kanda, K. Nakayama, C. Sanbongi, M. Nagata, S. Ikegami et al., Effects of whey, caseinate, or milk protein ingestion on muscle protein synthesis after exercise, Nutrients, vol.8, p.339, 2016.

B. Wróblewska, J. Ju?kiewicz, B. Kroplewski, A. Jurgo?ski, E. Wasilewska et al., The effects of whey and soy proteins on growth performance, gastrointestinal digestion, and selected physiological responses in rats, Food Funct, vol.9, pp.1500-1509, 2018.

I. Berrazaga, J. L. Mession, K. Laleg, J. Salles, C. Guillet et al., Formulation, process conditions, and biological evaluation of dairy mixed gels containing fava bean and milk proteins: Effect on protein retention in growing young rats, J. Dairy Sci, vol.102, pp.1066-1082, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02382900

Y. Yang, T. A. Churchward-venne, N. A. Burd, L. Breen, M. A. Tarnopolsky et al., Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men, Nutr. Metab, vol.9, 2012.

S. H. Gorissen, A. M. Horstman, R. Franssen, J. J. Crombag, H. Langer et al., Ingestion of wheat protein increases in vivo muscle protein synthesis rates in healthy older men in a randomized trial, J. Nutr, vol.146, pp.1651-1659, 2016.

. Fao and . Dietary, Protein Evaluation in Human Nutrition: Report of an FAO Expert Consultation 2011; FAO Food and Nutrition Paper, 92, 2013.

J. Boye, F. Zare, and A. Pletch, Pulse proteins: Processing, characterization, functional properties and applications in food and feed, Food Res. Int, vol.43, pp.414-431, 2010.

M. Duranti, Grain legume proteins and nutraceutical properties, Fitoterapia, vol.77, pp.67-82, 2006.

C. C. Márquez-mota, C. Rodriguez-gaytan, P. Adjibade, R. Mazroui, A. Gálvez et al., The mTORC1-signaling pathway and hepatic polyribosome profile are enhanced after the recovery of a protein restricted diet by a combination of soy or black bean with corn protein, Nutrients, vol.8, 2016.

A. Torres, J. Frias, M. Granito, and C. Vidal-valverde, Fermented pigeon pea (Cajanus cajan) ingredients in pasta products, J. Agric. Food Chem, vol.54, pp.6685-6691, 2006.

A. Torres, J. Frias, M. Granito, M. Guerra, and C. Vidal-valverde, Chemical, biological and sensory evaluation of pasta products supplemented with ?-galactoside-free lupin flours, J. Sci. Food Agric, vol.87, pp.74-81, 2007.

A. Torres, J. Frias, M. Granito, and C. Vidal-valverde, Germinated Cajanus cajan seeds as ingredients in pasta products: Chemical, biological and sensory evaluation, Food Chem, vol.101, pp.202-211, 2007.

K. Laleg, J. Salles, A. Berry, C. Giraudet, V. Patrac et al., Nutritional evaluation of mixed wheat-faba bean pasta in growing rats: Impact of protein source and drying temperature on protein digestibility and retention, Br. J. Nutr, vol.121, pp.496-507, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01962863

M. A. Giménez, S. R. Drago, M. N. Bassett, M. O. Lobo, and N. C. Sammán, Nutritional improvement of corn pasta-like product with broad bean (Vicia faba) and quinoa (Chenopodium quinoa), Food Chem, vol.199, pp.150-156, 2016.

K. Laleg, D. Cassan, J. Abecassis, and V. Micard, Procédé de Fabrication de Pâte Destinée à L'alimentation Humaine et/ou Animale Comprenant au Moins 35% de Légumineuse. Institut National de la Recherche Agronomique (INRA)-Centre International D'etudes Superieures en Sciences Agronomiques

. France and . Google, , 2016.

N. Babault, G. Deley, P. Le-ruyet, F. Morgan, and F. A. Allaert, Effects of soluble milk protein or casein supplementation on muscle fatigue following resistance training program: A randomized, double-blind, and placebo-controlled study, J. Int. Soc. Sports Nutr, vol.11, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01072473

A. Dumas, . Stickstoffbestimmung-nach, and . Dumas, Die Praxis des Org. Chemikers. (N-Determination According to Dumas), 1962.

J. Proll, K. J. Petzke, I. E. Ezeagu, and C. C. Metges, Low nutritional quality of unconventional tropical crop seeds in rats, J. Nutr, vol.128, 1998.

O. L. Mantha, S. Polakof, J. Huneau, F. Mariotti, N. Poupin et al., Early changes in tissue amino acid metabolism and nutrient routing in rats fed a high-fat diet: Evidence from natural isotope abundances of nitrogen and carbon in tissue proteins, Br. J. Nutr, vol.119, pp.981-991, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01761202

J. Salles, A. Chanet, A. Berry, C. Giraudet, V. Patrac et al., Fast digestive, leucine-rich, soluble milk proteins improve muscle protein anabolism, and mitochondrial function in undernourished old rats, Mol. Nutr. Food Res, p.61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604895

D. R. Moore and P. B. Soeters, The Biological Value of Protein, Nestle Nutr. Inst. Workshop Ser, vol.82, pp.39-51, 2015.

G. Sarwar, R. W. Peace, H. G. Botting, and D. Brulé, Digestibility of protein and amino acids in selected foods as determined by a rat balance method, Plant. Foods Hum. Nutr, vol.39, pp.23-32, 1989.

I. E. Liener, R. L. Goodale, A. Deshmukh, T. L. Satterberg, G. Ward et al., Effect of a trypsin inhibitor from soybeans (Bowman-Birk) on the secretory activity of the human pancreas, Gastroenterology, vol.94, pp.419-427, 1988.

I. Berrazaga, C. Bourlieu-lacanal, K. Laleg, J. Jardin, V. Briard-bion et al., Effect of protein aggregation in wheat-legume mixed pasta diets on their in vitro digestion kinetics in comparison to "rapid" and "slow" animal proteins, PLoS, vol.2020, 232425.
URL : https://hal.archives-ouvertes.fr/hal-02571795

Y. A. Kim and W. E. Barbeau, Changes in the nutritive value of soy protein concentrate during autoclaving, Plant. Foods Hum. Nutr, vol.41, pp.179-192, 1991.

D. Sun-waterhouse, M. Zhao, and G. Waterhouse, Protein Modification During Ingredient Preparation and Food Processing: Approaches to Improve Food Processability and Nutrition, Food Bioprocess. Technol, vol.7, pp.1853-1893, 2014.

B. Löhrke, E. Saggau, R. Schadereit, M. Beyer, O. Bellmann et al., Activation of skeletal muscle protein breakdown following consumption of soyabean protein in pigs, Br. J. Nutr, vol.85, pp.447-457, 2001.

Y. Boirie, M. Dangin, P. Gachon, M. P. Vasson, J. L. Maubois et al., Slow and fast dietary proteins differently modulate postprandial protein accretion, Proc. Natl. Acad. Sci, vol.94, pp.14930-14935, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02690828

I. Rieu, M. Balage, C. Sornet, E. Debras, S. Ripes et al., Increased availability of leucine with leucine-rich whey proteins improves postprandial muscle protein synthesis in aging rats, Nutrition, vol.23, pp.323-331, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02666502

C. Gryson, S. Walrand, C. Giraudet, P. Rousset, C. Migné et al., Fast proteins" with a unique essential amino acid content as an optimal nutrition in the elderly: Growing evidence, Clin. Nutr, vol.33, pp.642-648, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063637

S. Walrand, C. Gryson, J. Salles, C. Giraudet, C. Migné et al., Fast-digestive protein supplement for ten days overcomes muscle anabolic resistance in healthy elderly men, Clin. Nutr, vol.35, pp.660-668, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01487356

E. Combe, T. Achi, and R. Pion, Compared Metabolic and Digestive Utilizations of Faba Bean, Lentil and Chick Pea, Reprod. Nutr. Dev, vol.31, pp.631-646, 1991.

K. Yao, Y. L. Yin, W. Chu, Z. Liu, D. Deng et al., Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs, J. Nutr, vol.138, pp.867-872, 2008.

W. Jobgen, C. J. Meininger, S. C. Jobgen, P. Li, M. J. Lee et al., Dietary L-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats, J. Nutr, vol.139, pp.230-237, 2009.

K. Sun, Z. Wu, Y. Ji, and G. Wu, Glycine Regulates Protein Turnover by Activating Protein Kinase B/Mammalian Target of Rapamycin and by Inhibiting MuRF1 and Atrogin-1 Gene Expression in C2C12 Myoblasts, J. Nutr, vol.146, pp.2461-2467, 2016.

R. Wang, H. Jiao, J. Zhao, X. Wang, H. Lin et al., Enhances Protein Synthesis by Phosphorylating mTOR (Thr 2446) in a Nitric Oxide-Dependent Manner in C2C12 Cells, Oxid. Med. Cell. Longev, 2018.

M. Prod'homme, I. Rieu, M. Balage, D. Dardevet, and J. Grizard, Insulin and amino acids both strongly participate to the regulation of protein metabolism, Curr. Opin. Clin. Nutr. Metab. Care, vol.7, pp.71-77, 2004.

M. Prod'homme, M. Balage, E. Debras, M. Farges, S. Kimball et al., Differential effects of insulin and dietary amino acids on muscle protein synthesis in adult and old rats, J. Physiol, vol.563, pp.235-248, 2005.

J. Holm, I. Lundquist, I. Björck, A. C. Eliasson, and N. G. Asp, Degree of starch gelatinization, digestion rate of starch in vitro, and metabolic response in rats, Am. J. Clin. Nutr, vol.47, pp.1010-1016, 1988.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI