Y. Matsuoka, Y. Vigouroux, M. M. Goodman, G. J. Sanchez, E. Buckler et al., A single domestication for maize shown by multilocus microsatellite genotyping, Proc Natl Acad Sci, vol.99, pp.6080-6084, 2002.

B. Parent, M. Leclere, S. Lacube, M. A. Semenov, C. Welcker et al., Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time, Proc Natl Acad Sci, vol.115, pp.10642-10647, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02623810

J. Colasanti and M. Muszynski, The Maize Floral Transition. Handbook of Maize: Its Biology, pp.41-55, 2009.

E. S. Buckler, J. B. Holland, P. J. Bradbury, C. B. Acharya, P. J. Brown et al., The genetic architecture of maize flowering time, Science, vol.325, pp.714-718, 2009.

D. Li, X. Wang, X. Zhang, Q. Chen, G. Xu et al., The genetic architecture of leaf number and its genetic relationship to flowering time in maize, New Phytol, vol.210, pp.256-268, 2016.

F. Chardon, B. Virlon, L. Moreau, M. Falque, J. Joets et al., Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome, Genetics, vol.168, pp.2169-2185, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02678548

Y. X. Li, C. Li, P. J. Bradbury, X. Liu, F. Lu et al., Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population, Plant J, vol.86, pp.391-402, 2016.

R. Navarro, J. A. Willcox, M. Burgueño, J. Romay, C. Swarts et al., A study of allelic diversity underlying flowering-time adaptation in maize landraces, Nat Genet, vol.49, pp.476-480, 2017.

L. Guo, X. Wang, M. Zhao, C. Huang, C. Li et al., Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation, Curr Biol, vol.28, pp.3005-3015, 2018.

Y. Kobayashi and D. Weigel, Move on up, it's time for change-mobile signals controlling photoperioddependent flowering, Genes Dev, vol.21, pp.2371-2384, 2007.

C. M. Lazakis, V. Coneva, and J. Colasanti, ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize, J Exp Bot, vol.62, pp.4833-4842, 2011.

O. N. Danilevskaya, X. Meng, Z. Hou, E. Ananiev, and C. R. Simmons, A genomic and expression compendium of the expanded PEBP gene family from maize, Plant Physiol, vol.146, pp.250-264, 2008.

X. Meng, M. G. Muszynski, and O. N. Danilevskaya, The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize, Plant Cell, vol.23, pp.942-960, 2011.

Q. Yang, Z. Li, W. Li, L. Ku, C. Wang et al., CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize, Proc Natl Acad Sci, vol.110, pp.16969-16974, 2013.

H. Hung, L. M. Shannon, F. Tian, P. J. Bradbury, C. Chen et al., ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize, Proc Natl Acad Sci, vol.109, pp.1913-1934, 2012.

E. Stephenson, S. Estrada, X. Meng, J. Ourada, M. G. Muszynski et al., Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize, PLoS One, vol.14, 2019.

P. Alter, S. Bircheneder, L. Zhou, U. Schlüter, M. Gahrtz et al., Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1, Plant Physiol, vol.172, pp.389-404, 2016.

Y. Liang, Q. Liu, X. Wang, C. Huang, G. Xu et al., Zm MADS 69 functions as a flowering activator through the ZmRap2.7-ZCN 8 regulatory module and contributes to maize flowering time adaptation, New Phytol, vol.221, pp.2335-2347, 2019.

S. Salvi, G. Sponza, M. Morgante, D. Tomes, X. Niu et al., Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize, Proc Natl Acad Sci, vol.104, pp.11376-11381, 2007.

S. Castelletti, R. Tuberosa, M. Pindo, and S. Salvi, A MITE Transposon Insertion Is Associated with Differential Methylation at the Maize Flowering Time QTL Vgt1. G3, Genes|Genomes|Genetics, vol.4, pp.805-812, 2014.

C. N. Hirsch, J. M. Foerster, J. M. Johnson, R. S. Sekhon, G. Muttoni et al., Insights into the Maize Pan-Genome and Pan-Transcriptome, Plant Cell, vol.26, pp.121-135, 2014.

S. Ducrocq, D. Madur, J. Veyrieras, L. Camus-kulandaivelu, M. Kloiber-maitz et al., Key Impact of Vgt1 on Flowering Time Adaptation in Maize: Evidence From Association Mapping and Ecogeographical Information, Genetics, vol.178, pp.2433-2437, 2008.

J. Colasanti, Z. Yuan, and V. Sundaresan, The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize, Cell, vol.93, pp.593-603, 1998.

M. Minow, K. Turner, E. Ponzoni, I. Mascheretti, and F. M. Dussault, Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte, J Exp Bot, vol.69, pp.2937-2952, 2018.

M. G. Muszynski, T. Dam, B. Li, D. M. Shirbroun, Z. Hou et al., delayed flowering1 Encodes a Basic Leucine Zipper Protein That Mediates Floral Inductive Signals at the Shoot Apex in Maize, Plant Physiol, vol.142, pp.1523-1536, 2006.

Z. Dong, O. Danilevskaya, T. Abadie, C. Messina, N. Coles et al., A gene regulatory network model for Floral transition of the shoot apex in maize and its dynamic modeling, PLoS One, vol.7, 2012.

S. Bouchet, B. Servin, P. Bertin, D. Madur, V. Combes et al., Adaptation of Maize to Temperate Climates: Mid-Density Genome-Wide Association Genetics and Diversity Patterns Reveal Key Genomic Regions, with a Major Contribution of the Vgt2 (ZCN8) Locus, PLoS One, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652500

M. C. Romay, M. J. Millard, J. C. Glaubitz, J. A. Peiffer, K. L. Swarts et al., Comprehensive genotyping of the USA national maize inbred seed bank, Genome Biol, vol.14, 2013.

E. J. Millet, W. Kruijer, A. Coupel-ledru, A. Prado, S. Cabrera-bosquet et al., Genomic prediction of maize yield across European environmental conditions, Nature Genetics, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02618545

Y. Zhang, D. W. Ngu, D. Carvalho, Z. Liang, Y. Qiu et al., Differentially Regulated Orthologs in Sorghum and the Subgenomes of Maize, Plant Cell, vol.29, pp.1938-1951, 2017.

I. Mascheretti, K. Turner, R. S. Brivio, A. Hand, J. Colasanti et al., Florigen-Encoding Genes of Day-Neutral and Photoperiod-Sensitive Maize Are Regulated by Different Chromatin Modifications at the Floral Transition, Plant Physiol, vol.168, pp.1351-1363, 2015.

T. A. Miller, E. H. Muslin, and J. E. Dorweiler, A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods, Planta, vol.227, p.18301915, 2008.

S. S. Negro, E. J. Millet, D. Madur, C. Bauland, V. Combes et al., Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies, BMC Plant Biol, vol.19, p.31311506, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02627073

S. Unterseer, E. Bauer, G. Haberer, M. Seidel, C. Knaak et al., A powerful tool for genome analysis in maize: Development and evaluation of the high density 600 k SNP genotyping array, BMC Genomics, vol.15, 2014.

K. Kremling, S. Chen, M. Su, N. K. Lepak, M. C. Romay et al., Dysregulation of expression correlates with rare-allele burden and fitness loss in maize, Nature, vol.555, pp.520-523, 2018.

J. C. Glaubitz, T. M. Casstevens, F. Lu, J. Harriman, R. J. Elshire et al., TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline, PLoS One, 2014.

X. Chen, A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development, Science, 2004.

V. Wahl, J. Ponnu, A. Schlereth, S. Arrivault, T. Langenecker et al., Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana, Science, vol.339, pp.704-707, 2013.

H. Lin, . Ying, Q. Liu, X. Li, J. Yang et al., Substantial contribution of genetic variation in the expression of transcription factors to phenotypic variation revealed by eRD-GWAS, Genome Biol, 2017.

R. Swanson-wagner, R. Briskine, R. Schaefer, M. B. Hufford, J. Ross-ibarra et al., Reshaping of the maize transcriptome by domestication, Proc Natl Acad Sci, vol.109, pp.11878-11883, 2012.

E. Rodgers-melnick, D. L. Vera, H. W. Bass, and E. S. Buckler, Open chromatin reveals the functional maize genome, Proc Natl Acad Sci, vol.113, pp.3177-84, 2016.

M. I. Tenaillon and A. Charcosset, A European perspective on maize history, Comptes Rendus-Biologies, pp.221-228, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02647592

K. Swarts, R. M. Gutaker, B. Benz, M. Blake, R. Bukowski et al., Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America, Science, vol.357, pp.512-515, 2017.

S. A. Boden, C. Cavanagh, B. R. Cullis, K. Ramm, J. Greenwood et al., Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat, Nat Plants, vol.1, p.14016, 2015.

M. W. Ganal, G. Durstewitz, A. Polley, A. Bé-rard, E. S. Buckler et al., A large maize (zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome, PLoS One, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652466

S. R. Browning and B. L. Browning, Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering, Am J Hum Genet, 2007.

P. S. Schnable, D. Ware, R. S. Fulton, J. C. Stein, F. Wei et al., The B73 maize genome: Complexity, diversity, and dynamics, Science, vol.326, pp.1112-1115, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00751527

B. Parent, O. Turc, Y. Gibon, M. Stitt, and F. Tardieu, Modelling temperature-compensated physiological rates, based on the co-ordination of responses to temperature of developmental processes, J Exp Bot, vol.61, pp.2057-2069, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02664371

L. Cabrera-bosquet, C. Fournier, N. Brichet, C. Welcker, B. Suard et al., High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform, New Phytol, vol.212, pp.269-281, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01576907

R. Rincent, D. Laloë, S. Nicolas, T. Altmann, D. Brunel et al., Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: Comparison of methods in two diverse groups of maize inbreds (Zea mays L.), Genetics, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01019845

A. Manoli, A. Sturaro, S. Trevisan, S. Quaggiotti, and A. Nonis, Evaluation of candidate reference genes for qPCR in maize, J Plant Physiol, vol.169, pp.807-815, 2012.

Y. Lin, C. Zhang, H. Lan, S. Gao, H. Liu et al., Validation of potential reference genes for qPCR in maize across abiotic stresses, hormone treatments, and tissue types, PLoS One, vol.9, 2014.

W. E. Winterhalter and K. M. Fedorka, Sex-specific variation in the emphasis, inducibility and timing of the post-mating immune response in Drosophila melanogaster, Proc R Soc B Biol Sci, vol.276, pp.1109-1117, 2009.

K. Steger, J. Wilhelm, L. Konrad, T. Stalf, R. Greb et al., Both protamine-1 to protamine-2 mRNA ratio and Bcl2 mRNA content in testicular spermatids and ejaculated spermatozoa discriminate between fertile and infertile men, Hum Reprod, vol.23, pp.11-16, 2008.

I. P. Laumanns, L. Fink, J. Wilhelm, J. C. Wolff, R. Mitnacht-kraus et al., The noncanonical WNT pathway is operative in idiopathic pulmonary arterial hypertension, Am J Respir Cell Mol Biol, vol.40, pp.683-691, 2009.

. R-core-team, R: A language and environment for statistical computing. R Foundation for Statistical Computing

D. G. Butler, B. R. Cullis, A. R. Gilmour, and B. J. Gogel, ASReml-R reference manual mixed models for S language environments. VSN International Ltd, Hemel Hempstead, HP1 1ES, UK www, 2009.

W. Kruijer, M. P. Boer, M. Malosetti, P. J. Flood, B. Engel et al., Marker-based estimation of heritability in immortal populations, Genetics, vol.199, pp.379-398, 2014.

E. Millet, C. Welcker, W. Kruijer, S. Negro, S. Nicolas et al., Genome-wide analysis of yield in Europe: allelic effects as functions of drought and heat scenarios, Plant Physiol, p.621, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01362496

B. Shipley, Cause and Correlation in Biology. Cause and Correlation in Biology, 2016.

J. Mcardle, H. Pugesek-bruce, A. Tomer, A. Von-eye, N. Cambridge et al., Cambridge University Press. $75.00. xiii + 409 p; ill.; index. ISBN: 0-521-. The Quarterly Review of Biology, Structural Equation Modeling: Applications in Ecological and Evolutionary Biology, pp.330-330, 2004.

E. Lamb, S. Shirtliffe, and W. May, Structural equation modeling in the plant sciences: An example using yield components in oat, Can J Plant Sci, vol.91, pp.603-619, 2011.

Y. Rosseel, lavaan: An R Package for Structural Equation Modeling, J Stat Softw, 2012.

R. Rincent, L. Moreau, H. Monod, E. Kuhn, A. E. Melchinger et al., Recovering power in association mapping panels with variable levels of linkage disequilibrium, Genetics, vol.197, pp.375-387, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02634244

C. Lippert, J. Listgarten, Y. Liu, C. M. Kadie, R. I. Davidson et al., FaST linear mixed models for genome-wide association studies, Nat Methods, vol.8, pp.833-835, 2011.

H. Giraud, C. Lehermeier, E. Bauer, M. Falque, V. Segura et al., Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize, Genetics, vol.198, pp.1717-1734, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637060

D. Clayton, Differences between snpStats and snpMatrix. Differences, 2011.

J. Shin, S. Blay, J. Graham, and B. Mcneney, LDheatmap: An R Function for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms, J Stat Softw, vol.16, 2015.

M. Foll and O. Gaggiotti, A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective, Genetics, vol.180, pp.977-993, 2008.
URL : https://hal.archives-ouvertes.fr/halsde-00377961

J. Macqueen, Some Methods for classification and Analysis of Multivariate Observations, 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967.

K. W. Earley, J. R. Haag, O. Pontes, K. Opper, T. Juehne et al., Gateway-compatible vectors for plant functional genomics and proteomics, Plant Journal, pp.616-629, 2006.