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Abstract

Because most natural phenomena exhibit dependence at multiple scales like lo-
cations of earthquakes or forest fire occurrences, spatio-temporal single-scale
point process models are unrealistic in many applications. This motivates us to
construct generalizations of classical Gibbs models. In this paper, we extend the
Geyer saturation point process model to the spatio-temporal multi-scale frame-
work. The simulation process is carried out through a birth-death Metropolis-
Hastings algorithm. In a simulation study, we compare two common methods
for statistical inference in Gibbs models: the pseudo-likelihood and logistic like-
lihood approaches that we tailor to this model. Finally, we illustrate this new
model on forest fire occurrences modelling in Southern France.

Keywords: Spatio-temporal Gibbs point processes, Hybridization,
Pseudo-likelihood, Logistic likelihood, Forest fires.
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1. Introduction

Nowadays point process models are widely used to highlight trends and in-
teractions in the spatial or spatio-temporal distribution of events. Most of them

are single-structure in the sense that they exhibit either spatial randomness (e.g.
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modelled by the Poisson process [33, 34]) or clustering (mostly modelled by Cox
processes [16], in particular log-Gaussian Cox processes [41, 14, 12, 20], Poisson
Cluster processes [44, 13, 21] and Shot-Noise Cox processes [11, 42, 40]) or inhibi-
tion (modelled by Strauss processes [60, 17], Matérn hard core processes [39, 24]
and determinantal point processes [38, 35]). However, lot of phenomena present
interactions at different scales what motivate statisticians to develop new mod-
els, mainly spatial models in ecology [36, 64, 49], epidemiology [30] or seismol-
ogy [58, 59], but very few spatio-temporal models in environment [23] or epi-
demiology [29] as lately reviewed in [51]. Multi-scale models are mostly based on
Gibbs models (see [19] for a recent review on Gibbs models) as they offer a large
class of models which allow any of the above mentioned interaction structure.
Multi-structure models can then be obtained by hybridization [7].

Gibbs point processes are studied by their probability density, defined with
respect to the unit rate Poisson point process. Well-known inhibitive Gibbs
models include the hardcore model (events are forbidden to come too close
together) and the Strauss model [60] (pairs of close events are not impossible but
are unlikely to occur). Generalizing the Strauss process, the Geyer saturation
process [26] intends to model both inhibition and clustering. It is able to take
into account the clustering nature of a pattern due to interactions between
points in absence of covariate information [1].

[7] defined a new class of multi-scale Gibbs point processes, so-called hybrid
models. The hybridization technique consists in defining the density function
of a multi-scale point process model as the product of several densities of Gibbs
point processes, f; for [ = 1,...,m, so that f = cf; X --- X f;, where ¢ is
a normalization constant. The choice of the normalization constant allows to
well define a probability density in the case where the product of densities is
integrable. In particular, [7] introduced the spatial multi-scale Geyer saturation
point process that has then been applied in epidemiology [30] and in seismol-
ogy [58, 59]. [29] extended the hybridization approach to the spatio-temporal
framework and introduced the spatio-temporal multi-scale area-interaction pro-

cess. New hybrid Gibbs models can also be defined from the hardcore process
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[17] and the Strauss process [28] introduced in the spatio-temporal framework,
but much more hybrid Gibbs models remain to be developed to better describe
spatio-temporal complex phenomena in practice.

Forest fire occurrences present multi-scale structures which are related to
spatial or spatio-temporal inhomogeneities of environmental and climate covari-
ates as well as influence of past events. Their complex interaction structure
has been modelled by a spatio-temporal log-Gaussian Cox process in [47] and
with an inhibitive effect as covariate in [23]. Gibbs point process models have
also been considered in the spatial context for modelling wildfires like the area-
interaction point process [32, 53, 62, 2, 65] or the Geyer point process [63].
In this paper, we aim to extend the spatial Geyer saturation point process to
the spatio-temporal framework replacing the Euclidean balls by spatio-temporal
cylindrical neighbourhoods [28]. We also introduce its multi-scale version by ex-
tending the hybridization approach [7] to space and time. We then model forest
fire occurrences using our spatio-temporal multi-scale Geyer saturation point
process. Our data, available from the Prométhée database!, concern forest fire
occurrences in the Bouches-du-Rhéne department (South of France) between
2001 and 2015.

The spatio-temporal multi-scale Geyer saturation point process model is
introduced in Section 2. In Section 3, we extend the pseudo-likelihood and
logistic likelihood approaches for statistical inference of Gibbs models to the
spatio-temporal framework. Then in Section 4 we implement the model simula-
tion using a birth-death Metropolis-Hastings algorithm and present a simulation
study to compare the performance of the two estimation methods. Finally, in

Section 5, we apply our model to forest fire occurrences in Southern France.

Thttps://wuw.promethee.com/en
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2. Spatio-temporal Geyer saturation point process

A spatio-temporal point process can be viewed as a random locally finite
subset of a Borel set W = S x T C R? x R. We consider a complete, separable
metric space (W, d(-,-)) where d((u,v), (u/,v")) := max{||u — /||, |v — v'|} for
(u,v), (u',v") € W. For N the state space of points configurations of W, x € N
denotes a point pattern, i.e. x = {(&1,t1), ..., (&n,tn)} where (&, ¢;) describes
the location and time, respectively, associated with the i** event.

The cylindrical neighbourhood C%(u, v) centred at (u,v) € S x T is defined
as

Clu,v) ={(a,b) € S X T : |lu —al|[< 7, v —b[< g}, (1)

where r, ¢ > 0 are spatial and temporal radii, ||-|| denotes the Euclidean distance
in R? and |-| denotes the usual distance in R. Note that CZ(u,v) is a cylinder
with centre (u,v), radius r, and height 2¢ that represents a natural neighbour-
hood for extending spatial Gibbs models to the spatio-temporal context [28].
The Papangelou conditional intensity [48] of a spatio-temporal point process
on W with density f is defined by
FfxU(u,v
A o)) = ), )
with a/0 := 0 for a > 0 and (u,v) € W ([17]). Hence, we have A((u,v)|x) =
W if (u,v) ¢ x and A((u,v)|x) = % if (u,v) € x.
[28] introduced a spatio-temporal Strauss process with conditional intensity
for (u,v) ¢ x
M(u, v)[xx) = Ay PO (), (3)

where 7(C¥(u, v); X) = 3¢ ex HI[u—&l[< 7, [v—t|< g} is the number of points
of x lying in C%(u,v).

The density function of Strauss model is not integrable for v > 1, it thus
does not define a valid probability density and the Strauss process can not be
intended for clustering structures. To avoid this issue, [26] consider an upper
bound (saturation parameter) for the number of neighboring points that interact

and define the (spatial) Geyer saturation point process.
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Definition 1. We define the spatio-temporal Geyer saturation point process as

the point process with density

f(x)=c H )\(f’t)ymin{syn(cf(ﬁﬁt);X)}, (4)
(&t)ex

with respect to a unit rate Poisson process on W, where ¢ > 0 is a normaliz-
ing constant, A is a non-negative, measurable and bounded function, v > 0 is
the interaction parameter, s is the saturation parameter, and n(C4(¢,t);x) =
2 (uwyex\ (e 1(llu = €[S 7, Jv — t[< ¢) is the number of points of x lying in
C(&,t) and different from (&, ).

The function A\ describes some spatio-temporal trend in point pattern that
can be estimated using covariates. The scalars 7, r,q and s are the parameters
of the model. The saturation parameter s is an upper bound of the number of
points in the cylinder C?. By using hybridization approach [7, 29], we define a

multi-scale version of (4).
Definition 2. We define the spatio-temporal multi-scale Geyer saturation point
process as the point process with density

I{I]in{S_;’ ,n(Cg; (&)%)}

f)=c I M&o Tl : (5)

(&,t)ex j=1
with respect to a unit rate Poisson process on W, where v; >0, j = 1,...,m,
are the interaction parameters, and r; < -+ < rp,, @1 < --- < ¢, are spatial

and temporal interaction ranges.

For any j € {1,...,m}, the interaction parameters 0 < «; < 1 reflect inhi-
bition, while v; > 1 reflect clustering between points at some spatio-temporal
scales. When s; = 0 or 7; = 1 for all j € {1,...,m}, the density (5) cor-
responds to the density of an inhomogeneous Poisson process. Equation (5)
indicates that the structure of the process changes with the spatial and tem-
poral distances rj,q;. Covariates can be added to the model by assuming

that the spatio-temporal trend X is function of a covariate vector Z(¢,t), i.e.

A1) = W(Z(,1)).
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Lemma 1. The spatio-temporal multi-scale Geyer point process is a Markov
point process in the sense of Ripley-Kelly [52] and its density (5) is measurable
and integrable for all v;, j = 1,...,m with m € N.

Proof. A Geyer model is hereditary, locally and Ruelle stable and hence inte-
grable [26]. [7] showed these properties for hybrids. As in [29], we can show
that the spatio-temporal Geyer saturation point process (4) is a Markov point
process in Ripley-Kelly’s sense at interaction range 2max{r,q} and that the
spatio-temporal multi-scale Geyer saturation process (5) is also a Markov point
process in Ripley-Kelly sense at interaction range maxi<j<m{2max{r;,¢;}} =

2max{rm, gm + ([7]). O

For any (u,v) € W, the Papangelou conditional intensity function of the
spatio-temporal multi-scale Geyer saturation process is

min{s; ,n(C,?]’.. (u,v);x%)}

75

A(u, v)|x) = A(u, v)
j=1
< 1 %r.nin{s]-,n(cﬁjf(s,t>>;xu<u,v))}—min{Sj,n<03§(at);x\(u,v))},

(&:t)€x\(u,v)
(6)
The Markovian property (Lemma 1) ensures that this conditional intensity only
depends on (u,v) and its neighbors in x. Hence, we can design simulation

algorithms for generating realizations of the model, see Section 4.

3. Inference

Geyer saturation point process model (4) involves two types of parameters:
regular parameters and irregular parameters. A parameter is called reqular if
the log likelihood is a linear function of that parameter, irreqular otherwise.
Regular parameters like trend A and interaction v can be estimated using the
pseudo-likelihood method [5] or the logistic likelihood method [3] rather than
the maximum likelihood method [45]. Indeed, they are based on the conditional
intensity which is tractable for most Gibbs models and is free from the normal-

ization constant ¢ (whose estimation is computationally very expensive, even
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for a small number of regular parameters). Here we tailor these two methods
to estimate regular parameters of our spatio-temporal model and we compare
their performance in the next section.

Irregular parameters, like saturation threshold s and distances r and ¢, are
difficult to estimate using the maximum likelihood method because the like-
lihood function is not differentiable with respect to them. These parameters
can be estimated using the profile pseudo-likelihood approach [5] or predeter-
mined by the user using some summary statistics, like the pair correlation and
the auto-correlation functions [29], in order to determine the interaction ranges.
[6] presented the methods that are used for irregular parameter estimation in
the spatial framework.

In this paper, we combine the advantages of the two previous methodologies.
By computing some statistics summarizing the range of interactions in space and
time, we consider a set of feasible irregular parameter values and we choose the
combination of them providing the best Akaike’s Information Criterion (AIC)

for the fitted model.

3.1. Pseudo-likelihood approach

Let 0 be the vector of regular parameters that we aim to estimate. [10]
defined the pseudo-likelihood for spatial point processes in order to avoid com-
putational problems with point process likelihoods. One can easily extend it for

a spatio-temporal point process with conditional intensity Ag((u,v)|x) over W

as follows
PL(x;0) = exp (—/ / )\g((u7v)|x)dvdu> H Ao ((€,1)[x). (7)
sJr
(&t)ex
The pseudo score is defined by
0
U(x;0) = 20 log PL(x;0), (8)

that is an unbiased estimating function. The maximum pseudo-likelihood nor-

mal equations are then given by

0
20 log PL(x;0) =0, 9)
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where
log PL(x;0) Z log Ao ((&,t)|x) — //)\9 u, v)|x)dvdu, (10)
(&:t)ex

and Mg (-|x) is defined by (6) for hybrid Geyer model (5).
For sake of clarity, we now assume that 8 = [log~i,...,log7,]" the log-
arithm of interaction parameters in model (5). To estimate 6, we use the

pseudo-likelihood approach. Equation (6) can be rewritten as Ag((u,v)|x) =
A(u, v) [T52, exp(0;5;((u, v),x)) where
Sj((u, v),x) = min{s;, n(Cl (v, v);x)}
Y minfsn(CEE XU} gy

(&,t)ex\(u,v)
- min{sj7 n(Cg]J (& 1); x\(u, U))}]v

is a sufficient statistics. Then, for S((u,v),x) = [S1((u,v),X), ..., Sm((u,v),x)] "

log Ao ((u,v)|x) = log A(u,v) + 8" S((u,v),x) (12)

is a linear model in @ with offset log A(u,v). Thus, equation (9) gives us the

pseudo-likelihood equations

Z [log A(&, 1) +Z€S (&,1),x // U, v Hees(("”)x)dvdu

(&,t)ex
(13)
For each parameter 6;,i = 1,...,m, the equations (13) can be rewritten
Z Si((&,1), // u, v)S;((u, v) 1_[@‘9 S ((w:0):%) oy g, (14)
(&t)ex

The major difficulty is to estimate the integrals on the right hand side of equa-
tions (14). The pseudo-likelihood cannot be computed exactly but must be
approximated numerically.

For a point process model, the approximation of likelihood is converted into

a regression model. In the following, we refer to generalized log-linear Poisson
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regression approach as approximation of integrals in (14). In the next subsec-
tion, we also investigate an alternative, the logistic regression.

[9] developed a numerical quadrature method to approximate maximum like-
lihood estimation for an inhomogeneous Poisson point process. Berman-Turner
method has then been extended to Gibbs point processes by [5], approximating
the integral in (10) by a Riemann sum

n—+p

//)\g u, v)|x)dvdu =~ Zwk)\g (ks tr)|x), (15)

where (&, %) are points in {(&1,¢1), -, (€n,tn), (Ent1stnt1)s - (Entps tntp)} €

W consisting of the n events of x and p dummy points, and wy are quadrature
weights such that S 777wy, = £(S x T') where £ is Lebesgue measure. This yields

an approximation for the log pseudo-likelihood of the form

n+p
log PL(x;0) ~ > logXe((&,1)[x) = Y wire((&,tx)|x).  (16)
(&t)ex k=1

Note that if the set of points {(&x,tx),k = 1,...,n + p} includes all the points
of x = {(&1,%1), -y (§nstn)}, we can rewrite (16) as

n—+p
log PL(x;0) ~ > wy (yx 1og Ao (e, tr) %) — Ao (€ tr)[x)) , (17)
k=1
where
1/wy, if (&, tr) € x is an event,
Yk = (18)
0, if (&, tx) ¢ x is a dummy point.

The right hand side of (17), for fixed x, is formally equivalent to the log-
likelihood of independent Poisson variables Yy, ~ Poisson(Ag((&,tx)|x)) taken
with weights wy. Therefore, by using the glm function in R ([50]), we can perform
the maximum likelihood-based parameter estimation of this Poisson generalized
linear model and obtain the maximum value for (17).

Note that in hybrid Geyer model (5), we consider A(§,t) = Ag(§,t) = Bu(§, 1)
where (€, t) is known or estimated beforehand and J is a parameter to estimate.

In summary, the method is as follows.
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Algorithm 1

e Generate a set of p uniform dummy points in W and merge them with all
the data points in x to construct the set of quadrature points (&, tx) € W
withk=1,...,n+p.

e Compute the quadrature weights wy and the indicators y;, defined in (18),
e Compute the sufficient statistics S((&,tx),x) at each quadrature point,

e Fit alog-linear Poisson regression with explanatory variables S((&, tx), X),
and offset log A(&, tr) on the responses y; with weights wy to obtain es-

timates 6 for the S-vector and intercept éo,

e Return the maximum pseudo-likelihood-based parameter estimates 7; =

exp(éj) for j=1,...,mand 8 = exp(éo).

We define the quadrature scheme by defining a spatio-temporal partition of W
into cubes C}, of equal volumes v and by using the counting weights proposed
in [5]. We then assign to each dummy or data point (&, tx) a weight wg = v/ny,
where ny, is the number of dummy and data points that lie in the same cube
as (&g, tx). The number of dummy points should be sufficient for an accurate
estimate of the pseudo-likelihood. We follow [5] and start with p ~ 4n(x). Then,
we increase it until >, wy, = ¢(W), what can lead to high computational costs.

An alternative way to define the quadrature scheme for Algorithm 1 is based
on Dirichlet tessellation [5] and the weight of each point is equal to the volume
of the corresponding Dirichlet 3D cell. In this paper, we consider cubes because
it is less time consuming and provides similar results (see [46] for quadrature

schemes comparison of 3D Gibbs point processes).

3.2. Logistic likelihood approach

The logistic likelihood method [3] is an alternative for estimating the regu-
lar parameters of Gibbs models that is closely related to the pseudo-likelihood

method. The Berman-Turner approximation often requires a quite large number

10
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of dummy points. Hence, fitting such GLM can be computationally intensive, es-
pecially when dealing with a large dataset. [3] formulated the pseudo-likelihood
estimation equation as a logistic regression using auxiliary dummy point config-
urations and proposed a computational technique for fitting Gibbs point process
models to spatial point patterns. [29] extended the logistic likelihood approach
for spatio-temporal Gibbs point processes and we tailored it to our model.

Let x be a realization of a spatio-temporal point process defined on W
having a density fg with respect to the unit rate Poisson process and with
conditional intensity function Ag(:|x). We consider an independent Poisson
process for dummy points, with intensity function p, and we denote by d a set
of dummy points. We follow [3] (resp. [29]) for choosing p of a homogeneous
(resp. inhomogeneous) Poisson process in simulation study (resp. application).
See [3], for a data-driven determination of p and its effect on efficiency and
practicability of the method.

By defining Y'(¢,t) = Ly exy for (§,t) € x U d, we obtain independent
Bernoulli variables taking one for data points and zero for dummy points. We

have

o eEnREy)
PriY&0 =1 = e nm\e i) &0’ (19)

By considering the log linearity assumption for the conditional intensity

Ao (+|x) in (12), the logit of Pr(Y (£,t) =1) is

o 2EDRED) | MED |

g + 0,5;((&,t),x\(&, 1)), 20
o(E.1) D) g S (€D, X\ 1), (20)
which is a linear model in 8 with offset log 2%3

Since Ao ((€,1)x) = Ao ((&,1)|x\ (&, 1)) for (&,t) € d, the log logistic likelihood

11
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is defined by

Ao (€, D)X\ (&, 1))
[x

g LL(x,d;0) = > Y((6,:0)log 5

(&,t)exud
p(&,t)
LD N U (LI Swirr e wwrary

(&,t)exud

(&, D)[x\(£,1))
<g:exlog ( H[x\(& 1) + p(&: 1)

o P 1)
+(s;edl B2 (6 D1x) + p(E,0)

The maximum of the log-logistic likelihood exists and under regularity condi-
tion [4] is unique. Hence, estimation can be implemented in R by using the glm
function.

As in Algorithm 1, we consider A(&,t) = A\g(§,t) = Bu(§,t) and we estimate

the regular parameters form the following algorithm.

Algorithm 2

e Generate dummy points d from a Poisson process with intensity function
p and merge them with all the data points in x to construct the set of

quadrature points (g, t;) € W,
e Obtain the response variables y; (1 for data points, 0 for dummy points),

e Compute the sufficient statistics S((&x, tx), x\(&k, tr)) at each quadrature

point,

e Fit a logistic regression model with explanatory variables S((g, tx), x\ (&,
tr)), and offset log (u(&k,tx)/p(Ek,ti)) on the responses yi to obtain esti-

mates 6 for the S-vector and intercept éo,

e Return the parameter estimator 4 = exp(é) and 8 = exp(éo) and in the

case where (1(&g, te)/p(E, i) is a constant ¢ we have 3 = ¢! exp(fy).

12
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4. Simulation

The simulation algorithms of Gibbs point process models require only com-
putation of the Papangelou conditional intensity which avoids to consider the
difficult estimation of the unknown normalizing constant in the density func-
tion. Gibbs point process models can be simulated by using Markov chain
Monte Carlo (MCMC) algorithms like the birth-death Metropolis-Hastings algo-
rithm [42] that belongs to the large class of Metropolis-Hastings algorithms [27].
In this section, we first present the birth-death Metropolis-Hastings algorithm
and secondly we investigate the goodness of parameter estimation of the two

approaches introduced before.

4.1. Birth-death Metropolis-Hastings algorithm

For x a spatio-temporal point pattern in W, we can propose either a birth
with probability ¢(x) or a death with probability 1 — ¢(x). For a birth, a new
point (u,v) € W is sampled from a probability density b(x, -) and the new point
configuration xU(u, v) is accepted with probability A(x,xU(u,v)), otherwise the
state remains unchanged. For a death, the point (£,¢) € x chosen to be removed
is selected according to a discrete probability distribution d(x,.) on x, and the
proposal x\ (£, ) is accepted with probability A(x,x\ (£, t)), otherwise the state
remains unchanged. For simplicity, we consider ¢(x) = 1, b(x,-) = 1/{(W) and
d(x,-) = 1/n(x). By setting A(x,xU (u,v)) = min{1,7((u,v);x)}, and A(x,x\
(&,t)) = min{1,1/r((&,t);x\ (£, 1))} where r((u,v);x) = %%21 x A((u, v)|x) is
the Hastings ratio [29], we obtain the following birth-death Metropolis-Hastings

algorithm.

Algorithm 3

For n =0,1,..., given X,, = x (e.g. a Poisson process for n = 0), generate

X’n,-‘,—l .
e Generate two uniform numbers y;, y» in [0, 1],

o Ify; < % then

13
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— A new point (u,v) is uniformly sampled from a probability density
1/6W),

— Compute r((u,v); %) = g M(u, 0)[x), (u,v) ¢ x.

If yo < r((u,v);x) then X,, 11 = xU (u,v) else X411 =x
o If y; > % then

— Uniformly select a point (£, ¢) in x according to a discrete probability
density 1/n(x),

~ Compute r((€, 1):x\(&,6)) = LN D)lx\ (€ D)), (6,6) € x.
If yo < 1/r((&,t);x\(&,t)) then X,, 11 = x\(§,1) else X,,11 = x.

— Note that if x = () then X,,1; = x.

This simulation process is repeated a large number of time in order to ensure
the convergence of the algorithm to the expected distribution. This number of
iterations is unknown a priori and must be determined by the user from prac-
tical knowledge and/or diagnostic tools. We choose 20,000 iteration steps in
simulation study (70,000 iteration steps in the application study). To investi-
gate the convergence of the algorithm, we use a “trace plot” which shows the
evolution of the number of points at each iteration of Algorithm 8. Thus, we
check that the number of points in the simulated point pattern is stabilized (see

[42, 31] for more details).

4.2. Simulation study

We compare the performance of the pseudo-likelihood and logistic likelihood
approaches on the spatio-temporal multi-scale Geyer point process. We gener-
ate 100 simulated realizations in the unit cube from three models. The first one
exhibits strong clustering (Model 1), the second one exhibits small scale inhibi-
tion and large scale clustering (Model 2) and the third one exhibits inhibition
(Model 8). Model parameters are reported in Table 1. We consider a burn-in
period of 20,000 steps in Algorithm 3. Figure 1 shows one realization of each

model.

14



Table 1: Parameters of the three multi-scale Geyer point process models used in simulation

study.
Values of parameter
Regular parameters Irregular parameters
Model A o r q s
Model 1 70 (1.5,1.5) (0.05,0.1) (0.05,0.1) (2,2)
Model 2 100 (0.5,1.5) (0.05,0.1) (0.05,0.1) (1,3)
Model 3 200 (0.8,0.8) (0.05,0.1) (0.05,0.1) (1,1)

Y Y
o o CC;O
O%O%@o 3
o, A

Q

Figure 1: Realizations of Model 1 (left); Model 2 (middle); Model 8 (right).

215 According to [3], we generate a spatio-temporal Poisson process with inten-
sity p = 4n(x) (resp. 4n(x)/¢(W)) as dummy points in Algorithm 1 (resp.
Algorithm 2). For each model, we compute the root mean square error (RMSE)
of each set of estimated parameters (Table 2) and plot the related boxplots (Fig-
ure 2). In Table 2 the lowest RMSE value is in bold and in Figure 2 the true

20 values are represented by horizontal red lines. Both RMSE and boxplots show
that the logistic likelihood approach performs better than the pseudo-likelihood
approach for any model.

Note that in the spatial framework, [3] showed that for large datasets the

Table 2: RMSE of parameter estimates from 100 simulated realizations of the multi-scale

Geyer point process model.
Model 1 Model 2 Model 3
Method A A1 A2 A A1 Y2 A A1 A2
pseudo 62.09 0.59 0.25 103.74 0.09 0.27 22.13 0.45 0.29
logistic 12.07 0.18 0.16 17.30 0.08 0.08 27.48 0.20 0.12

15



P §_y||| |||+o I onsiGol
<&
- _v|| ||+ s e - oOpnasd
T T T T T T
[=] [==] w - (] [=]
A = = = = =
_y ...... .--l_ | onsifol
=
_y||| ||+ I opnasd
T T T T T T T
= W@ L) A ] = =)
L =
os_yu :_ . b onsiBo
<l
N o_y||| ||||+ I opnasd
T
=

I3

T---

L onsiBol

||+ s » - opnasd

1.7

16
g

1.4

N s_y ........... + - onsibol
N _v |||||||||| + I opnasd
T T T T
~ 0w '] -+ o1
= = = = =
_y N L- + L oysifiol
- _y|||| ||||+ I opnasd
T T T T
= = = = =
2 2 2 I 5
o1 3] o — —

- onsibo|

-

I opnasd

e
0.6

I onsibo|

+

|‘_ I opnasd

14 7
12 4
0

._ L onsiBol

— opnasd

260
240
220

200
180
160

140

Figure 2: Boxplots of regular parameters estimated from the pseudo-likelihood and logistic
likelihood approaches for Model 1 (first row), Model 2 (second row) and Model & (third row).

True values are represented by horizontal red lines.
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logistic likelihood method is preferable than the pseudo-likelihood method as it
requires a smaller number of dummy points and performs quickly and efficiently.
[18] and [15] investigated a similar comparison when these methods are regu-
larized (i.e. using an approach with a simultaneous parameter estimation and
variable selection by maximizing a penalized likelihood functions). [29] found
the advantage of the logistic likelihood approach for the spatio-temporal multi-
scale area-interaction point process model. We here confirm this advantage for

the spatio-temporal multi-scale Geyer point process model.

5. Application to forest fire occurrences

Economic and ecological disasters caused by wildfires in the world have led
the scientific community to develop many novel statistical analysis and mod-
elling wildfire occurrences to better understand their behaviors. In this section,
we focus on the modelling of forest fire occurrences in the Bouches-du-Rhone
county (Southern France) between 2001 and 2015.

Several statistical studies have shown the influence of environmental and
meteorological factors on forest fire occurrences. In the French Mediterranean
basin, [47] fit a spatio-temporal log-Gaussian Cox process model for forest fire
occurrences with a log-linear intensity depending on spatio-temporal land use
and weather covariates. [25] investigated the impact of the different covariates
on the number of fires using multivariate analysis and [23] explored the influ-
ence of land cover covariates, temperature and precipitation on the probability
of event occurrence. In addition to the spatio-temporal clustering of events in-
duced by some covariates, [23] detected spatio-temporal interaction structures
at different scales and notably an inhibitive effect that arises locally in time and
space after wildfires as we expect lesser occurrences at these locations during a
vegetation regeneration period.

We propose to fit the spatio-temporal hybrid Geyer point process model (5)
on wildfire occurrences to take into account both the inhomogeneities induced

by covariates and the multi-scale structure of interactions.
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5.1. Data

Our data set is of the form (&;,t;), i = 1,...,434, where (&;,t;) corresponds
to a wildfire with more than 1 hectare of burnt surface spatially indexed by
a DFCI? cell center ¢ in the Lambert 93 projection system and year t; €
{2001, ...,2015}. To avoid duplicated points we uniformly jittered &; in its
DFCI cell. We refer the reader to [23] and [47] for further information on the
data. Whilst forest fires are daily reported, we consider here the yearly scale,
as done in many works (see e.g. [56, 54, 55]), because of the small number
of reports and to optimize computation time in model fitting and validation
steps. Figure 3 plots locations of forest fires (left panel) and yearly number
of occurrences (right panel). It shows some clustering at short and medium
spatial distances. Note that there exist two particular areas without any fire
occurrences as they correspond to a lake (center) and marshlands (South-West).
The number of fires slightly exponentially decreases in time over the 15 years,

mainly due to improvements of fire-fighting resources.
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Figure 3: (Left) Forest fire locations in UTM coordinate system (distance in meters), with
more than 1 hectare of burnt area, recorded during the years 2001 to 2015 in the Bouches-du-
Rhoéne county in France. (Right) Number of recorded forest fires per year.

2district units for fire management strategies, see [47]
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We consider the same framework as in [23] and restrict our attention to the
following covariates: water coverage, elevation, coniferous cover and building
cover as spatial covariates and temperature average, precipitation as spatio-
temporal covariates. Hence, we can consider these covariates as good proxies
of the main environmental, climatic and human factors. Maps of covariates are

shown in Figure 4 in 2001.

10
8 2

3 08 3 800
2 2

S 06 2 00
o 04 o

3 g

g 02 g 200
5 15

- 00 - 0

T T T T T T 1 I
760000 800000 840000 880000 760000 800000 840000 880000

8 06 g

2 05 3 03
K K

- 04 = 02
§ 02 § 01
& 01 o

- 00 - 00

T T T T T T I
760000 800000 840000 880000 760000 800000 840000 880000

| 7 024
o (=)
g 505 3 023
g7 . 590 g 022
T 585 - 021
: g &
8 g
S 3 g | -
g 575 S 013
- 57.0 -

T T T T T T T T T T T T T T
760000 800000 840000  BBO0OO 760000 800000  B40000 880000

Figure 4: Maps of covariates: water coverage (top left), elevation (top right), coniferous cover
(middle left), building cover (middle right), temperature average (botton left) and square root
of precipitation (botton right) in 2001.
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5.2. Model fitting

Here we first estimate the spatio-temporal trend and then fit the multi-scale
spatio-temporal Geyer model to forest fire occurrences. This two-step model
fitting procedure follows our assumption that most forest fire occurrences are
firstly due to environmental and meteorological conditions and secondly due to
unobserved pairwise interactions. This technique will allow to see the benefits
of the multi-scale interaction structure in our hybrid model compared to an

inhoogeneous Poisson model with the same spatio-temporal trend.

5.2.1. Spatio-temporal trend estimation
We express the spatio-temporal trend (5) as A(¢,t) = Su(&,t) where log (€, t)

is assumed to linearly depend on covariates:

4 2
logu(6,t) = Bo+ > _BRZi () + > BT ZT (&) + at (22)
=1

k=1
with Z2(€), k = 1,...,4, the spatial covariates, ZT(¢,t), [ = 1,2, the spatio-
temporal covariates and at a decreasing trend of fire counts over time. Because
the covariates are known at a fixed discretization scale, (€, t) does not vary
for points £ inside the same DFCI unit with a time ¢ corresponding to the
same year. By consequence, we can restrict our attention on DFCI grid cell
centers &;,¢ = 1,...,1320 and years t; = 2001,...,2015 for j = 1,...,15, and
we consider a Poisson response for our model N;j|u(&;,t;) ~ Poisson(u(&i,t;)),
where N;; is the number of forest fires in i DFCI cell at year ¢;. The coefficient
B will be estimated simultaneously with the others regular parameters by the
logistic likelihood approach. Table 3 reports the coefficients g, B,f , BZST and o
estimated as in [23] and [47]. The sign indicates if covariates favour (if positive,
like coniferous, building and temperature) or prevent (if negative, like water,
elevation, precipitation and time) fire occurrences. All covariates are globally
significant and results are consistent with previous works [25, 23, 47| for this
county. Note that p-values have been computed during the trend fitting under a

Poisson model and not for the overall fitting of forest fire occurrences under our
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spatio-temporal hybrid Geyer saturation process. Thus, we might obtained more

significance of the covariates than under our hybrid Geyer saturation model.

Table 3: Estimated coefficients, standard errors and p-values based on two-tailed Student’s

t-tests of significant differences from zero.

Covariates Coefficients Estimates Standard error  p-value
Intercept Bo 262 26 <2 x 10716 *xx
Water BY -1.88 0.29 5.89x 10711 ***
Elevation 85 -0.001 0.0004 0.0008 ***
Coniferous B 0.77 0.36 0.031 *
Building Bs 4 0.89 8.08x 106 ***
Temperature 357 0.37 0.06 1.13x107 10 ***
Precipitation ST -11.3 1.48 1.75 x 1014 ***

Time a -0.14 0.001 < 2% 10716 xxx

5.2.2. Parameters estimation

There is no common method for estimating irregular parameters in spatial
or spatio-temporal Gibbs point process models. Here we considered several
combinations of ad-hoc values within a reasonable range and select the optimal
irregular parameters according to the Akaike’s Information Criterion (AIC) of
the fitted model.

[6] suggest that the spatial interaction radius r of the Geyer saturation point
process should be between 0 and the maximum nearest neighbor distance, about
8000 meters for our dataset. For the temporal radius g, we consider small
values to be in accordance with the natural phenomena of forest fire occurrences.
Finally, for the saturation parameter s, we have n(C%(&;,t;);x) < s for all
(&,t;) € x. Hence, for any pair (r,q), we set s = maxi<;<, n(C(&;,t;); x).

According to the former section, we use the logistic likelihood method and
Algorithm 2 to estimate the regular parameters. We simulate dummy points
from an inhomogeneous Poisson point process with intensity p(¢,t) = Cu(€,t)/v
where C' = 4 by a classical rule of thumb in the logistic likelihood approach and
v = 2000 x 2000 x 1 (area of a DFCI cell multiplied by 1 year).

We fitted the spatio-temporal multi-scale Geyer point process model for a

range of ad-hoc values (r;, ¢;) € [0,8000] % {1,2,3,4,5}, and their corresponding
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Table 4: Parameter estimates for m = 4.

Irregular parameters

r 500 2000 5000 7500
q 1 2 3 4
s 4 7 27 57

Estimated regular parameters and 95% confidence intervals

B =0.66 41 = 2.73 42 = 0.93 43 = 1.07 44 = 0.98
[0.442,0.968]  [1.818,3.405]  [0.820,0.994]  [1.020,1.120]  [0.962,1.011]

values of s;, j = 1,...,m, with varying m in {1,2,3,4,5}. The minimum AIC
is obtained for the combination given in Table 4. Estimated regular parameters
~; associated with their 95% bootstrap confidence intervals show strong clus-
tering at very short distances, weak repulsion (resp. clustering) at small (resp.
medium) scale, and randomness at large scale. Another methodology for testing
the significance of ; parameters from 1 could be to extend the pseudo-likelihood

or composite likelihood ratio test introduced in [8] to the spatio-temporal case.

5.83. Model validation

We validate our fitted model from several Monte Carlo tests using statistics
based on the spatio-temporal inhomogeneous K-function [22]. First, we generate
Nsim = 99 simulations from our fitted hybrid Geyer model (5) by Algorithm
8 with a burn-in period of 70,000 steps, representing realizations from our
null hypothesis. Then, we compute the spatio-temporal inhomogeneous K-
function for the observed and simulated point patterns, denoted respectively
by R’};Zf(hs, ht) and K}”h(hs, ht),i € {1,...,Ngim }, with an estimated separable
intensity function obtained by kernel smoothing. For each value of the spatio-

temporal distance (hs, ht), lower (L) and upper (U) critical envelopes of the

summary statistics are computed locally

L(hs;he) = _min K" (hg,hy), U(hg,hy) = max K™ (hg, hy). (23)

<i<Ngsim 1<i<nsim
In addition to these local envelopes, we compute local and global p-values as

in [61, 57] in order to respectively detect spatio-temporal distances where the
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departure from the null hypothesis is the most significant and the overall ade-
quacy of our model. Let E(hs, ht) and V (hs, h:) denote the mean and variance
of {f({"h(hs,ht), .. Kinh (hs,ht),f(mh(hs,ht)}. We define the local p-value

Nsim obs

for each pair (hg, hy) by

L4+ 30 T, he) > Tops (s o)}

p(hsvht) = Thes +1

; (24)

where T;(hs, hy) (vesp. Tops(hs, ht)) denotes the local statistic T computed from
the i*" simulation (resp. the data) at (hs, hs). The local statistic is defined by

T(hs, ht) = \/(Kinh(h&ht) — E(hs, ht))Q. -

V(hs, ht)

The global test combines the information for all spatial and temporal dis-

tances. We define the test statistic

ht,maz  phs maz
T = / / T(hs, hy)dhgdhy, (26)
0 0

where hg mae and Ry mee are user-specific maximum spatial and temporal dis-
tances which are preferable to choose close to the (expected) range of interaction
of the underlying point process. [31] recommends to compare the results for sev-
eral values of N ey and Ay mez. The p-value of the global test is then given

by R 3
1 + Z?:Mlm ]1{1-‘74 > Tobs}
Nsim + 1 .

Pglobal =

Figure 5.a) shows the spatio-temporal inhomogeneous K function computed on
our dataset (dark grey) and the envelopes obtained from our hybrid Geyer model
(light grey); K (hy, hy) lies inside the envelopes, meaning that the fitted model
seems to describe properly the spatio-temporal structure of the data. This is
confirmed by local p-values at any distances (Figure 5.b). Global p-values are
given in Figure 5.c) for any combination of hs ;e and A mes. Again, it shows
that our fitted model is validated.

In addition, we also compute global envelopes and p-value of the spatio-

temporal K" functions based on the Extreme Rank Length (ERL) measure

defined in [37] and implemented in the R package GET [43]. The main advantage
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Figure 5: Temporal separations h; are in year and spatial distances hs are in kilometer. a) En-
velopes of the spatio-temporal inhomogeneous K-function for the simulated spatio-temporal
multi-scale Geyer point process according to the estimated parameters. b) Image plot of the

local p-value. c¢) Image plot of the global p-value for any pairs of (hs,maz, Rt,mac)-

is that the resulting p-value will not depend on a priori parameters as in the
definition of pgiopar With the hg maz and hy mas values. For each point pattern, we
consider the long vector T, i = 1,...,Ngim (vesp. Tops) merging the K™ (-, hy)
(resp. K?(- h;)) estimates for all considered values h;. The ERL measure of

vector T; (resp. Tops) of length ng; is defined as

1 Nst

Ei: 1 i (K
— > 1{R; < R}

ns jzl

where R; is the vector of pointwise ordered ranks and < is an ordering operator
[37, 43]. The final p-value is obtained by

1 + E?:Sam ]]-{Ei Z Eobs}
Nsim + 1 '

Pert =

The global p-value pe,; is equal to 0.34 consolidating previous results and vali-
dating our hybrid Geyer model.
Note that we did the same tests for 99 simulations of an inhomogeneous

Poisson process with intensity u(£,¢)/(2000 x 2000 x 1) (22). This model has

24



400

405

410

415

420

425

been rejected at the level 5%, with a median global p-value equals to 0.04.
The pe,; value is equal to 0.04 under the Poisson assumption rejecting also this

baseline model.

Conclusion

Due to the capability of Gibbs point processes to cover prevalent struc-
tures (inhibition, randomness and clustering), the hybridization approach al-
lows to introduce new Gibbs models combining several structures at different
scales. In this paper, we defined the spatio-temporal multi-scale Geyer satura-
tion point process model and detailed the classical statistical inference meth-
ods and MCMC simulation techniques that we have extended to the spatio-
temporal framework and implemented in R code® that will be added to the stpp
package [24]. Our simulation study highlighted a better goodness-of-fit of pa-
rameters for the logistic likelihood approach compared to the pseudo-likelihood
approach. Finally, we illustrated the interest of using this model on a spatio-
temporal dataset of forest fire locations associated with environment covariates.
The model validation shows that our model captures the multi-scale interaction
structure inherent to forest fire occurrences.

In this paper, we focused our attention on the definition of a new hybrid
Gibbs model, the inference methods and MCMC simulation algorithms that we
needed to adapt to the spatio-temporal context. Some of our choices can be
discussed and eventually improved in future works, notably in our application
to forest fire occurrences which is not presented as an in-depth study but as an
illustration of the model fitting on real data.

In our application study, we considered a log-linear form for the trend de-
pending on covariate information. We chose a two-step procedure for estimating,
at first, the trend coefficients and then the regular parameters of the interaction

function. Our knowledge on forest fire mechanisms guided this choice because

Shttp://edith.gabriel. pagesperso-orange.fr /software.html
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the main driver of occurrence locations is the environmental heterogeneity and
the secondary one is the interaction phenomena. The trend is estimated at the
spatial DFCI scale and at the yearly one, corresponding to our covariate res-
olution. In that way, we estimated a global trend at a medium scale whereas
the interaction parameters are estimated at the point locations and represent a
local interaction behavior at a fine scale. This procedure could be improved by
incorporating variable selection methods, e.g. via regularization [15, 18].

Our two-step estimation procedure allows us to provide confidence intervals
for both the trend coefficients and the regular parameters. We notice that some
parameters 7; are closed to one. Here we consider a bootstrap estimate of the
confidence interval for each v;. We could further test departure from one by
extending the adjusted composite likelihood ratio test [8] to the spatio-temporal
framework. Indeed, [8] proposed a likelihood ratio test for spatial Gibbs point
process models fitted by maximum pseudo-likelihood. They discussed that im-
plementing other composite likelihood as the logistic likelihood would provide
a better composite likelihood ratio test. Estimating diagnostics related to the
logistic likelihood requires to estimate the variance—covariance matrix of the lo-
gistic score and the sensitivity matrix. [3] provide consistent estimators of these
quantities. The extension to the spatio-temporal framework is a full-blown work
that also involves efficient implementation.

For the choice of irregular parameters, because the likelihood is not differ-
entiable with respect to them, we used a maximum profile likelihood approach
based on the logistic likelihood estimation procedure and AIC values for model
selection. Introduced for the pseudo-likelihood estimates in [1] and applied to
the logistic likelihood approach by us using the results in [3], this method con-
sists in fixing irregular parameters and maximizing the composite likelihood
with respect to the regular ones. This technique is a computationally-intensive
method. Thanks to a preliminary spatio-temporal exploratory analysis of the
interaction ranges done with the inhomogeneous pair correlation function g, the
maximum nearest neighbor distance and the temporal autocorrelation function,

we chose few configurations of feasible values for the nuisance parameters m, r;,
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gj and s;, j = 1...m. Considering more values would be very time-consuming
and developing a new estimation method would be a subject in its own right.
During the model validation procedure, we could use the global envelope tests
based on the ERL measure to asses the goodness-of-fit of submodels with fewer
irregular parameters to be parsimonious.

Our model can be used in many fields, like seismology and epidemiology
for example, because several mechanisms exhibit interaction between points at
multiple scales in space and time. Relying on this work, we can also develop
hybrid models with different density structures. Indeed, although it was not
necessarily highlighted here, we know that forest fires with large burnt areas
avoid future fire occurrences during a vegetation regeneration period. Such
cases of strong inhibition may be modeled by hybrid Gibbs point processes with
a hardcore component like the hybrid Geyer hardcore point process. We recently

extended our work to this model.
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