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Because most natural phenomena exhibit dependence at multiple scales like locations of earthquakes or forest fire occurrences, spatio-temporal single-scale point process models are unrealistic in many applications. This motivates us to construct generalizations of classical Gibbs models. In this paper, we extend the Geyer saturation point process model to the spatio-temporal multi-scale framework. The simulation process is carried out through a birth-death Metropolis-Hastings algorithm. In a simulation study, we compare two common methods for statistical inference in Gibbs models: the pseudo-likelihood and logistic likelihood approaches that we tailor to this model. Finally, we illustrate this new model on forest fire occurrences modelling in Southern France.

Introduction

Nowadays point process models are widely used to highlight trends and interactions in the spatial or spatio-temporal distribution of events. Most of them are single-structure in the sense that they exhibit either spatial randomness (e.g. modelled by the Poisson process [START_REF] Kingman | Poisson Processes[END_REF][START_REF] Kingman | Poisson processes revisited[END_REF]) or clustering (mostly modelled by Cox processes [START_REF] Cox | The statistical analysis of dependencies in point processes[END_REF], in particular log-Gaussian Cox processes [START_REF] Møller | Log Gaussian Cox processes[END_REF][START_REF] Brix | Space-time multitype log Gaussian Cox processes with a view to modelling weed data[END_REF][START_REF] Brix | Spatiotemporal prediction for log-Gaussian Cox processes[END_REF][START_REF] Diggle | Spatial and spatio-temporal log-Gaussian Cox processes: extending the geostatistical paradigm[END_REF], Poisson Cluster processes [START_REF] Neyman | Statistical approach to problems of cosmology[END_REF][START_REF] Brix | Simulation of cluster point processes without edge effects[END_REF][START_REF] Gabriel | Estimating second-order characteristics of inhomogeneous spatio-temporal point processes[END_REF] and Shot-Noise Cox processes [START_REF] Brix | Spatio-temporal modeling of weeds and shot-noise G Cox processes[END_REF][START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF][START_REF] Møller | Structured spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires[END_REF]) or inhibition (modelled by Strauss processes [START_REF] Strauss | A model for clustering[END_REF][START_REF] Cronie | A J-function for inhomogeneous spatiotemporal point processes[END_REF], Matérn hard core processes [START_REF] Matérn | Spatial Variation[END_REF][START_REF] Gabriel | stpp: a R package for plotting, simulating and analyzing spatio-temporal point patterns[END_REF] and determinantal point processes [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF][START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]). However, lot of phenomena present interactions at different scales what motivate statisticians to develop new models, mainly spatial models in ecology [START_REF] Levin | The problem of pattern and scale in ecology: The Robert H. Macarthur award lecture[END_REF][START_REF] Wiegand | Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering[END_REF][START_REF] Picard | The multi-scale marked area-interaction point process: a model for the spatial pattern of trees[END_REF], epidemiology [START_REF] Iftimi | Measuring spatial inhomogeneity at different spatial scales using hybrids of Gibbs point process models[END_REF] or seismology [START_REF] Siino | Spatial pattern analysis using hybrid models: an application to the Hellenic seismicity[END_REF][START_REF] Siino | Multiscale processes to describe the eastern sicily seismic sequences[END_REF], but very few spatio-temporal models in environment [START_REF] Gabriel | Detecting and modeling multiscale space-time structures: the case of wildfire occurrences[END_REF] or epidemiology [START_REF] Iftimi | A multi-scale areainteraction model for spatio-temporal point patterns[END_REF] as lately reviewed in [START_REF] Raeisi | On spatial and spatio-temporal multi-structure point process models[END_REF]. Multi-scale models are mostly based on Gibbs models (see [START_REF] Dereudre | Introduction to the theory of Gibbs point processes[END_REF] for a recent review on Gibbs models) as they offer a large class of models which allow any of the above mentioned interaction structure.

Multi-structure models can then be obtained by hybridization [START_REF] Baddeley | Hybrids of Gibbs point process models and their implementation[END_REF].

Gibbs point processes are studied by their probability density, defined with respect to the unit rate Poisson point process. Well-known inhibitive Gibbs models include the hardcore model (events are forbidden to come too close together) and the Strauss model [START_REF] Strauss | A model for clustering[END_REF] (pairs of close events are not impossible but are unlikely to occur). Generalizing the Strauss process, the Geyer saturation process [START_REF] Geyer | Likelihood inference for spatial point processes[END_REF] intends to model both inhibition and clustering. It is able to take into account the clustering nature of a pattern due to interactions between points in absence of covariate information [START_REF] Anwar | Spatial pattern development of selective logging over several years[END_REF]. [START_REF] Baddeley | Hybrids of Gibbs point process models and their implementation[END_REF] defined a new class of multi-scale Gibbs point processes, so-called hybrid models. The hybridization technique consists in defining the density function of a multi-scale point process model as the product of several densities of Gibbs point processes, f l for l = 1, . . . , m, so that f = cf 1 × • • • × f m where c is a normalization constant. The choice of the normalization constant allows to well define a probability density in the case where the product of densities is integrable. In particular, [START_REF] Baddeley | Hybrids of Gibbs point process models and their implementation[END_REF] introduced the spatial multi-scale Geyer saturation point process that has then been applied in epidemiology [START_REF] Iftimi | Measuring spatial inhomogeneity at different spatial scales using hybrids of Gibbs point process models[END_REF] and in seismology [START_REF] Siino | Spatial pattern analysis using hybrid models: an application to the Hellenic seismicity[END_REF][START_REF] Siino | Multiscale processes to describe the eastern sicily seismic sequences[END_REF]. [START_REF] Iftimi | A multi-scale areainteraction model for spatio-temporal point patterns[END_REF] extended the hybridization approach to the spatio-temporal framework and introduced the spatio-temporal multi-scale area-interaction process. New hybrid Gibbs models can also be defined from the hardcore process [START_REF] Cronie | A J-function for inhomogeneous spatiotemporal point processes[END_REF] and the Strauss process [START_REF] Gonzalez | Spatiotemporal point process statistics: A review[END_REF] introduced in the spatio-temporal framework, but much more hybrid Gibbs models remain to be developed to better describe spatio-temporal complex phenomena in practice.

Forest fire occurrences present multi-scale structures which are related to spatial or spatio-temporal inhomogeneities of environmental and climate covariates as well as influence of past events. Their complex interaction structure has been modelled by a spatio-temporal log-Gaussian Cox process in [START_REF] Opitz | Point-process based Bayesian modeling of space-time structures of forest fire occurrences in Mediterranean France[END_REF] and with an inhibitive effect as covariate in [START_REF] Gabriel | Detecting and modeling multiscale space-time structures: the case of wildfire occurrences[END_REF]. Gibbs point process models have also been considered in the spatial context for modelling wildfires like the areainteraction point process [START_REF] Juan | Pinpointing spatio-temporal interactions in wildfire patterns[END_REF][START_REF] Serra | Spatial pattern modelling of wildfires in Catalonia, Spain 2004-2008[END_REF][START_REF] Trilles | Integration of environmental models in spatial data infrastructures: a use case in wildfire risk prediction[END_REF][START_REF] Arago | Spatial point process modeling applied to the assessment of risk factors associated with forest wildfires incidence in Castellon, Spain[END_REF][START_REF] Woo | Forest fire risk assessment using point process modelling of fire occurrence and Monte Carlo fire simulation[END_REF] or the Geyer point process [START_REF] Turner | Point patterns of forest fire locations[END_REF].

In this paper, we aim to extend the spatial Geyer saturation point process to the spatio-temporal framework replacing the Euclidean balls by spatio-temporal cylindrical neighbourhoods [START_REF] Gonzalez | Spatiotemporal point process statistics: A review[END_REF]. We also introduce its multi-scale version by extending the hybridization approach [START_REF] Baddeley | Hybrids of Gibbs point process models and their implementation[END_REF] to space and time. We then model forest fire occurrences using our spatio-temporal multi-scale Geyer saturation point process. Our data, available from the Prométhée database1 , concern forest fire occurrences in the Bouches-du-Rhône department (South of France) between 2001 and 2015.

The spatio-temporal multi-scale Geyer saturation point process model is introduced in Section 2. In Section 3, we extend the pseudo-likelihood and logistic likelihood approaches for statistical inference of Gibbs models to the spatio-temporal framework. Then in Section 4 we implement the model simulation using a birth-death Metropolis-Hastings algorithm and present a simulation study to compare the performance of the two estimation methods. Finally, in Section 5, we apply our model to forest fire occurrences in Southern France.

Spatio-temporal Geyer saturation point process

A spatio-temporal point process can be viewed as a random locally finite subset of a Borel set W = S × T ⊂ R 2 × R. We consider a complete, separable

metric space (W, d(•, •)) where d((u, v), (u , v )) := max{||u -u ||, |v -v |} for (u, v), (u , v ) ∈ W .
For N the state space of points configurations of W , x ∈ N denotes a point pattern, i.e. x = {(ξ 1 , t 1 ), ..., (ξ n , t n )} where (ξ i , t i ) describes the location and time, respectively, associated with the i th event.

The cylindrical neighbourhood C q r (u, v) centred at (u, v) ∈ S × T is defined as

C q r (u, v) = {(a, b) ∈ S × T : ||u -a||≤ r, |v -b|≤ q}, (1) 
where r, q > 0 are spatial and temporal radii, ||•|| denotes the Euclidean distance in R 2 and |•| denotes the usual distance in R. Note that C q r (u, v) is a cylinder with centre (u, v), radius r, and height 2q that represents a natural neighbourhood for extending spatial Gibbs models to the spatio-temporal context [START_REF] Gonzalez | Spatiotemporal point process statistics: A review[END_REF].

The Papangelou conditional intensity [START_REF] Papangelou | The conditional intensity of general point processes and an application to line processes[END_REF] of a spatio-temporal point process on W with density f is defined by

λ((u, v)|x) = f (x (u, v)) f (x\(u, v)) , (2) 
with a/0 := 0 for a ≥ 0 and (u, v) ∈ W ( [START_REF] Cronie | A J-function for inhomogeneous spatiotemporal point processes[END_REF]). Hence, we have λ

((u, v)|x) = f (x (u,v)) f (x) if (u, v) / ∈ x and λ((u, v)|x) = f (x) f (x\(u,v)) if (u, v) ∈ x. [28] introduced a spatio-temporal Strauss process with conditional intensity for (u, v) / ∈ x λ((u, v)|x) = λγ ñ(C q r (u,v);x) , (3) 
where ñ(C q r (u, v); x) = (ξ,t)∈x 1{||u-ξ||≤ r, |v-t|≤ q} is the number of points of x lying in C q r (u, v).

The density function of Strauss model is not integrable for γ > 1, it thus does not define a valid probability density and the Strauss process can not be intended for clustering structures. To avoid this issue, [START_REF] Geyer | Likelihood inference for spatial point processes[END_REF] consider an upper bound (saturation parameter) for the number of neighboring points that interact and define the (spatial) Geyer saturation point process.

Definition 1. We define the spatio-temporal Geyer saturation point process as the point process with density

f (x) = c (ξ,t)∈x λ(ξ, t)γ min{s,n(C q r (ξ,t);x)} , (4) 
with respect to a unit rate Poisson process on W , where c > 0 is a normalizing constant, λ is a non-negative, measurable and bounded function, γ > 0 is the interaction parameter, s is the saturation parameter, and n(C q r (ξ, t); x) = (u,v)∈x\(ξ,t) 1(||u -ξ||≤ r, |v -t|≤ q) is the number of points of x lying in C q r (ξ, t) and different from (ξ, t).

The function λ describes some spatio-temporal trend in point pattern that can be estimated using covariates. The scalars γ, r, q and s are the parameters of the model. The saturation parameter s is an upper bound of the number of points in the cylinder C q r . By using hybridization approach [START_REF] Baddeley | Hybrids of Gibbs point process models and their implementation[END_REF][START_REF] Iftimi | A multi-scale areainteraction model for spatio-temporal point patterns[END_REF], we define a multi-scale version of (4). Definition 2. We define the spatio-temporal multi-scale Geyer saturation point process as the point process with density

f (x) = c (ξ,t)∈x λ(ξ, t) m j=1 γ min{sj ,n(C q j r j (ξ,t);x)} j , (5) 
with respect to a unit rate Poisson process on W , where γ j > 0, j = 1, . . . , m, are the interaction parameters, and

r 1 < • • • < r m , q 1 < • • • < q m are spatial
and temporal interaction ranges.

For any j ∈ {1, ..., m}, the interaction parameters 0 < γ j < 1 reflect inhibition, while γ j > 1 reflect clustering between points at some spatio-temporal scales. When s j = 0 or γ j = 1 for all j ∈ {1, ..., m}, the density (5) corresponds to the density of an inhomogeneous Poisson process. Equation [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns (with discussion)[END_REF] indicates that the structure of the process changes with the spatial and temporal distances r j , q j . Covariates can be added to the model by assuming that the spatio-temporal trend λ is function of a covariate vector Z(ξ, t), i.e.

λ(ξ, t) = Ψ(Z(ξ, t)).

Lemma 1. The spatio-temporal multi-scale Geyer point process is a Markov point process in the sense of Ripley-Kelly [START_REF] Ripley | Markov point processes[END_REF] and its density ( 5) is measurable and integrable for all γ j , j = 1, . . . , m with m ∈ N.

Proof. A Geyer model is hereditary, locally and Ruelle stable and hence integrable [START_REF] Geyer | Likelihood inference for spatial point processes[END_REF]. [START_REF] Baddeley | Hybrids of Gibbs point process models and their implementation[END_REF] showed these properties for hybrids. As in [START_REF] Iftimi | A multi-scale areainteraction model for spatio-temporal point patterns[END_REF], we can show that the spatio-temporal Geyer saturation point process ( 4) is a Markov point process in Ripley-Kelly's sense at interaction range 2 max{r, q} and that the spatio-temporal multi-scale Geyer saturation process ( 5) is also a Markov point process in Ripley-Kelly sense at interaction range max 1≤j≤m {2 max{r j , q j }} = 2 max{r m , q m } ( [START_REF] Baddeley | Hybrids of Gibbs point process models and their implementation[END_REF]).

For any (u, v) ∈ W , the Papangelou conditional intensity function of the spatio-temporal multi-scale Geyer saturation process is

λ((u, v)|x) = λ(u, v) m j=1 γ min{sj ,n(C q j r j (u,v);x)} j × (ξ,t)∈x\(u,v) γ min{sj ,n(C q j r j (ξ,t));x∪(u,v))}-min{sj ,n(C q j r j (ξ,t);x\(u,v))} j , (6) 
The Markovian property (Lemma 1) ensures that this conditional intensity only depends on (u, v) and its neighbors in x. Hence, we can design simulation algorithms for generating realizations of the model, see Section 4.

Inference

Geyer saturation point process model (4) involves two types of parameters: regular parameters and irregular parameters. A parameter is called regular if the log likelihood is a linear function of that parameter, irregular otherwise.

Regular parameters like trend λ and interaction γ can be estimated using the pseudo-likelihood method [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns (with discussion)[END_REF] or the logistic likelihood method [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] rather than the maximum likelihood method [START_REF] Ogata | Estimation of interaction potentials of spatial point patterns through the maximum likelihood procedure[END_REF]. Indeed, they are based on the conditional intensity which is tractable for most Gibbs models and is free from the normalization constant c (whose estimation is computationally very expensive, even for a small number of regular parameters). Here we tailor these two methods to estimate regular parameters of our spatio-temporal model and we compare their performance in the next section.

Irregular parameters, like saturation threshold s and distances r and q, are difficult to estimate using the maximum likelihood method because the likelihood function is not differentiable with respect to them. These parameters can be estimated using the profile pseudo-likelihood approach [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns (with discussion)[END_REF] or predetermined by the user using some summary statistics, like the pair correlation and the auto-correlation functions [START_REF] Iftimi | A multi-scale areainteraction model for spatio-temporal point patterns[END_REF], in order to determine the interaction ranges.

[6] presented the methods that are used for irregular parameter estimation in the spatial framework.

In this paper, we combine the advantages of the two previous methodologies.

By computing some statistics summarizing the range of interactions in space and time, we consider a set of feasible irregular parameter values and we choose the combination of them providing the best Akaike's Information Criterion (AIC) for the fitted model.

Pseudo-likelihood approach

Let θ be the vector of regular parameters that we aim to estimate. [START_REF] Besag | Some methods of statistical analysis for spatial data[END_REF] defined the pseudo-likelihood for spatial point processes in order to avoid computational problems with point process likelihoods. One can easily extend it for a spatio-temporal point process with conditional intensity λ θ ((u, v)|x) over W as follows

P L(x; θ) = exp - S T λ θ ((u, v)|x)dvdu (ξ,t)∈x λ θ ((ξ, t)|x). (7) 
The pseudo score is defined by

U (x; θ) = ∂ ∂θ log P L(x; θ), (8) 
that is an unbiased estimating function. The maximum pseudo-likelihood normal equations are then given by

∂ ∂θ log P L(x; θ) = 0, (9) 
where

log P L(x; θ) = (ξ,t)∈x log λ θ ((ξ, t)|x) - S T λ θ ((u, v)|x)dvdu, (10) 
and λ θ (•|x) is defined by ( 6) for hybrid Geyer model [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns (with discussion)[END_REF].

For sake of clarity, we now assume that θ = [log γ 1 , . . . , log γ m ] the logarithm of interaction parameters in model [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns (with discussion)[END_REF]. To estimate θ, we use the pseudo-likelihood approach. Equation ( 6) can be rewritten as

λ θ ((u, v)|x) = λ(u, v) m j=1 exp(θ j S j ((u, v), x))
where

S j ((u, v), x) = min{s j , n(C qj rj (u, v); x)} + (ξ,t)∈x\(u,v) [min{s j , n(C qj rj (ξ, t); x ∪ (u, v))} -min{s j , n(C qj rj (ξ, t); x\(u, v))}], (11) 
is a sufficient statistics. Then, for S((u, v),

x) = [S 1 ((u, v), x), . . . , S m ((u, v), x)] log λ θ ((u, v)|x) = log λ(u, v) + θ S((u, v), x) (12) 
is a linear model in θ with offset log λ(u, v). Thus, equation [START_REF] Berman | Approximating point process likelihoods with GLIM[END_REF] gives us the pseudo-likelihood equations

∂ ∂θ   (ξ,t)∈x [log λ(ξ, t) + m j=1 θ j S j ((ξ, t), x)] - S T λ(u, v) m j=1 e θj Sj ((u,v),x) dvdu   = 0, (13) 
For each parameter θ i , i = 1, . . . , m, the equations ( 13) can be rewritten

(ξ,t)∈x S i ((ξ, t), x) = S T λ(u, v)S i ((u, v), x) m j=1 e θj Sj ((u,v),x) dvdu, (14) 
The major difficulty is to estimate the integrals on the right hand side of equations [START_REF] Brix | Space-time multitype log Gaussian Cox processes with a view to modelling weed data[END_REF]. The pseudo-likelihood cannot be computed exactly but must be approximated numerically.

For a point process model, the approximation of likelihood is converted into 145 a regression model. In the following, we refer to generalized log-linear Poisson regression approach as approximation of integrals in [START_REF] Brix | Space-time multitype log Gaussian Cox processes with a view to modelling weed data[END_REF]. In the next subsection, we also investigate an alternative, the logistic regression.

[9] developed a numerical quadrature method to approximate maximum likelihood estimation for an inhomogeneous Poisson point process. Berman-Turner method has then been extended to Gibbs point processes by [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns (with discussion)[END_REF], approximating the integral in ( 10) by a Riemann sum

S T λ θ ((u, v)|x)dvdu ≈ n+p k=1 w k λ θ ((ξ k , t k )|x), (15) 
where (ξ k , t k ) are points in {(ξ 1 , t 1 ), ..., (ξ n , t n ), (ξ n+1 , t n+1 ), ..., (ξ n+p , t n+p )} ∈ W consisting of the n events of x and p dummy points, and w k are quadrature weights such that n+p k=1 w k = (S ×T ) where is Lebesgue measure. This yields an approximation for the log pseudo-likelihood of the form

log P L(x; θ) ≈ (ξ,t)∈x log λ θ ((ξ, t)|x) - n+p k=1 w k λ θ ((ξ k , t k )|x). ( 16 
)
Note that if the set of points {(ξ k , t k ), k = 1, . . . , n + p} includes all the points of x = {(ξ 1 , t 1 ), ..., (ξ n , t n )}, we can rewrite [START_REF] Cox | The statistical analysis of dependencies in point processes[END_REF] as

log P L(x; θ) ≈ n+p k=1 w k (y k log λ θ ((ξ k , t k )|x) -λ θ ((ξ k , t k )|x)) , (17) 
where

y k =      1/w k , if (ξ k , t k ) ∈ x is an event, 0, if (ξ k , t k ) / ∈ x is a dummy point. (18) 
The right hand side of ( 17), for fixed x, is formally equivalent to the log-

likelihood of independent Poisson variables Y k ∼ P oisson(λ θ ((ξ k , t k )|x)) taken
with weights w k . Therefore, by using the glm function in R ( [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]), we can perform the maximum likelihood-based parameter estimation of this Poisson generalized linear model and obtain the maximum value for [START_REF] Cronie | A J-function for inhomogeneous spatiotemporal point processes[END_REF].

Note that in hybrid Geyer model (5), we consider λ(ξ, t) = λ β (ξ, t) = βµ(ξ, t)

where µ(ξ, t) is known or estimated beforehand and β is a parameter to estimate.

Algorithm 1

• Generate a set of p uniform dummy points in W and merge them with all the data points in x to construct the set of quadrature points (ξ k , t k ) ∈ W with k = 1, . . . , n + p.

• Compute the quadrature weights w k and the indicators y k defined in [START_REF] Daniel | Penalized composite likelihoods for inhomogeneous Gibbs point process models[END_REF],

• Compute the sufficient statistics S((ξ k , t k ), x) at each quadrature point,

• Fit a log-linear Poisson regression with explanatory variables S((ξ k , t k ), x), and offset log λ(ξ k , t k ) on the responses y k with weights w k to obtain estimates θ for the S-vector and intercept θ0 ,

• Return the maximum pseudo-likelihood-based parameter estimates γj = exp( θj ) for j = 1, . . . , m and β = exp( θ0 ).

We define the quadrature scheme by defining a spatio-temporal partition of W into cubes C k of equal volumes ν and by using the counting weights proposed in [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns (with discussion)[END_REF]. We then assign to each dummy or data point (ξ k , t k ) a weight w k = ν/n k where n k is the number of dummy and data points that lie in the same cube as (ξ k , t k ). The number of dummy points should be sufficient for an accurate estimate of the pseudo-likelihood. We follow [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns (with discussion)[END_REF] and start with p ≈ 4n(x). Then, we increase it until k w k = (W ), what can lead to high computational costs.

An alternative way to define the quadrature scheme for Algorithm 1 is based on Dirichlet tessellation [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns (with discussion)[END_REF] and the weight of each point is equal to the volume of the corresponding Dirichlet 3D cell. In this paper, we consider cubes because it is less time consuming and provides similar results (see [START_REF] Opitz | Simulating and fitting of Gibbs processes in 3D-models, algorithms and their implementation[END_REF] for quadrature schemes comparison of 3D Gibbs point processes).

Logistic likelihood approach

The logistic likelihood method [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] is an alternative for estimating the regular parameters of Gibbs models that is closely related to the pseudo-likelihood method. The Berman-Turner approximation often requires a quite large number of dummy points. Hence, fitting such GLM can be computationally intensive, especially when dealing with a large dataset. [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] formulated the pseudo-likelihood estimation equation as a logistic regression using auxiliary dummy point configurations and proposed a computational technique for fitting Gibbs point process models to spatial point patterns. [START_REF] Iftimi | A multi-scale areainteraction model for spatio-temporal point patterns[END_REF] extended the logistic likelihood approach for spatio-temporal Gibbs point processes and we tailored it to our model.

Let x be a realization of a spatio-temporal point process defined on W having a density f θ with respect to the unit rate Poisson process and with conditional intensity function λ θ (•|x). We consider an independent Poisson process for dummy points, with intensity function ρ, and we denote by d a set of dummy points. We follow [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] (resp. [START_REF] Iftimi | A multi-scale areainteraction model for spatio-temporal point patterns[END_REF]) for choosing ρ of a homogeneous (resp. inhomogeneous) Poisson process in simulation study (resp. application).

See [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF], for a data-driven determination of ρ and its effect on efficiency and practicability of the method.

By defining Y (ξ, t) = 1 {(ξ,t)∈x} for (ξ, t) ∈ x ∪ d, we obtain independent Bernoulli variables taking one for data points and zero for dummy points. We have

P r(Y (ξ, t) = 1) = λ θ ((ξ, t)|x\(ξ, t)) λ θ ((ξ, t)|x\(ξ, t)) + ρ(ξ, t) , (19) 
By considering the log linearity assumption for the conditional intensity

λ θ (•|x) in (12), the logit of P r(Y (ξ, t) = 1) is log λ θ ((ξ, t)|x\(ξ, t)) ρ(ξ, t) = log λ(ξ, t) ρ(ξ, t) + m j=1 θ j S j ((ξ, t), x\(ξ, t)), (20) 
which is a linear model in θ with offset log λ(ξ,t) ρ(ξ,t) . Since λ θ ((ξ, t)|x) = λ θ ((ξ, t)|x\(ξ, t)) for (ξ, t) ∈ d, the log logistic likelihood is defined by

log LL(x, d; θ) = (ξ,t)∈x∪d Y ((ξ, t)) log λ θ ((ξ, t)|x\(ξ, t)) λ θ ((ξ, t)|x\(ξ, t)) + ρ(ξ, t) + (ξ,t)∈x∪d [1 -Y ((ξ, t))] log ρ(ξ, t) λ θ ((ξ, t)|x) + ρ(ξ, t) = (ξ,t)∈x log λ θ ((ξ, t)|x\(ξ, t)) λ θ ((ξ, t)|x\(ξ, t)) + ρ(ξ, t) + (ξ,t)∈d log ρ(ξ, t) λ θ ((ξ, t)|x) + ρ(ξ, t) . ( 21 
)
The maximum of the log-logistic likelihood exists and under regularity condition [START_REF] Baddeley | Leverage and influence diagnostics for Gibbs spatial point processes[END_REF] is unique. Hence, estimation can be implemented in R by using the glm function.

As in Algorithm 1, we consider λ(ξ, t) = λ β (ξ, t) = βµ(ξ, t) and we estimate the regular parameters form the following algorithm.

Algorithm 2

• Generate dummy points d from a Poisson process with intensity function ρ and merge them with all the data points in x to construct the set of quadrature points (ξ k , t k ) ∈ W ,

• Obtain the response variables y k (1 for data points, 0 for dummy points),

• Compute the sufficient statistics S((ξ k , t k ), x\(ξ k , t k )) at each quadrature point,

• Fit a logistic regression model with explanatory variables S((ξ k , t k ), x\(ξ k , t k )), and offset log (µ(ξ k , t k )/ρ(ξ k , t k )) on the responses y k to obtain estimates θ for the S-vector and intercept θ0 ,

• Return the parameter estimator γ = exp( θ) and β = exp( θ0 ) and in the case where µ(ξ k , t k )/ρ(ξ k , t k ) is a constant c we have β = c -1 exp( θ0 ).

Simulation

The simulation algorithms of Gibbs point process models require only computation of the Papangelou conditional intensity which avoids to consider the difficult estimation of the unknown normalizing constant in the density function. Gibbs point process models can be simulated by using Markov chain Monte Carlo (MCMC) algorithms like the birth-death Metropolis-Hastings algorithm [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF] that belongs to the large class of Metropolis-Hastings algorithms [START_REF] Geyer | Simulation procedures and likelihood inference for spatial point processes[END_REF].

In this section, we first present the birth-death Metropolis-Hastings algorithm and secondly we investigate the goodness of parameter estimation of the two approaches introduced before.

Birth-death Metropolis-Hastings algorithm

For x a spatio-temporal point pattern in W , we can propose either a birth with probability q(x) or a death with probability 1 -q(x). For a birth, a new point (u, v) ∈ W is sampled from a probability density b(x, •) and the new point configuration x∪(u, v) is accepted with probability A(x, x∪(u, v)), otherwise the state remains unchanged. For a death, the point (ξ, t) ∈ x chosen to be removed is selected according to a discrete probability distribution d(x, .) on x, and the proposal x\(ξ, t) is accepted with probability A(x, x\(ξ, t)), otherwise the state remains unchanged. For simplicity, we consider q(x) = 1 2 , b(x, •) = 1/ (W ) and d(x, •) = 1/n(x). By setting A(x, x ∪ (u, v)) = min{1, r((u, v); x)}, and A(x, x \ (ξ, t)) = min{1, 1/r((ξ, t); x \ (ξ, t))} where r((u, v); x) = (W ) n(x)+1 × λ((u, v)|x) is the Hastings ratio [START_REF] Iftimi | A multi-scale areainteraction model for spatio-temporal point patterns[END_REF], we obtain the following birth-death Metropolis-Hastings algorithm.

Algorithm 3

For n = 0, 1, ..., given X n = x (e.g. a Poisson process for n = 0), generate X n+1 :

• Generate two uniform numbers y 1 , y 2 in [0, 1],

• If y 1 ≤ 1 2 then
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-A new point (u, v) is uniformly sampled from a probability density 1/ (W ),

-Compute r((u, v); x) = (W ) n(x)+1 λ((u, v)|x), (u, v) / ∈ x. If y 2 < r((u, v); x) then X n+1 = x ∪ (u, v) else X n+1 = x • If y 1 > 1 2 then
-Uniformly select a point (ξ, t) in x according to a discrete probability density 1/n(x),

-Compute r((ξ, t); x\(ξ, t)) = (W ) n(x) λ((ξ, t)|x \ (ξ, t))), (ξ, t) ∈ x. If y 2 < 1/r((ξ, t); x\(ξ, t)) then X n+1 = x\(ξ, t) else X n+1 = x. -Note that if x = ∅ then X n+1 = x.
This simulation process is repeated a large number of time in order to ensure the convergence of the algorithm to the expected distribution. This number of iterations is unknown a priori and must be determined by the user from practical knowledge and/or diagnostic tools. We choose 20, 000 iteration steps in simulation study (70,000 iteration steps in the application study). To investigate the convergence of the algorithm, we use a "trace plot" which shows the evolution of the number of points at each iteration of Algorithm 3. Thus, we check that the number of points in the simulated point pattern is stabilized (see [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF][START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF] for more details).

Simulation study

We compare the performance of the pseudo-likelihood and logistic likelihood approaches on the spatio-temporal multi-scale Geyer point process. We generate 100 simulated realizations in the unit cube from three models. The first one exhibits strong clustering (Model 1 ), the second one exhibits small scale inhibition and large scale clustering (Model 2 ) and the third one exhibits inhibition (Model 3 ). Model parameters are reported in Table 1. We consider a burn-in period of 20,000 steps in Algorithm 3. Figure 1 shows one realization of each model. According to [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF], we generate a spatio-temporal Poisson process with inten-275 sity ρ = 4n(x) (resp. 4n(x)/ (W )) as dummy points in Algorithm 1 (resp.

Algorithm 2 ). For each model, we compute the root mean square error (RMSE)

of each set of estimated parameters (Table 2) and plot the related boxplots (Fig-

ure 2). In Table 2 the lowest RMSE value is in bold and in Figure 2 the true values are represented by horizontal red lines. Both RMSE and boxplots show 280 that the logistic likelihood approach performs better than the pseudo-likelihood approach for any model.

Note that in the spatial framework, [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] showed that for large datasets the logistic likelihood method is preferable than the pseudo-likelihood method as it requires a smaller number of dummy points and performs quickly and efficiently.

[18] and [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF] investigated a similar comparison when these methods are regularized (i.e. using an approach with a simultaneous parameter estimation and variable selection by maximizing a penalized likelihood functions). [START_REF] Iftimi | A multi-scale areainteraction model for spatio-temporal point patterns[END_REF] found the advantage of the logistic likelihood approach for the spatio-temporal multiscale area-interaction point process model. We here confirm this advantage for the spatio-temporal multi-scale Geyer point process model.

Application to forest fire occurrences

Economic and ecological disasters caused by wildfires in the world have led the scientific community to develop many novel statistical analysis and modelling wildfire occurrences to better understand their behaviors. In this section, we focus on the modelling of forest fire occurrences in the Bouches-du-Rhône county (Southern France) between 2001 and 2015.

Several statistical studies have shown the influence of environmental and meteorological factors on forest fire occurrences. In the French Mediterranean basin, [START_REF] Opitz | Point-process based Bayesian modeling of space-time structures of forest fire occurrences in Mediterranean France[END_REF] fit a spatio-temporal log-Gaussian Cox process model for forest fire occurrences with a log-linear intensity depending on spatio-temporal land use and weather covariates. [START_REF] Ganteaume | What causes large fires in Southern France[END_REF] investigated the impact of the different covariates on the number of fires using multivariate analysis and [START_REF] Gabriel | Detecting and modeling multiscale space-time structures: the case of wildfire occurrences[END_REF] explored the influence of land cover covariates, temperature and precipitation on the probability of event occurrence. In addition to the spatio-temporal clustering of events induced by some covariates, [START_REF] Gabriel | Detecting and modeling multiscale space-time structures: the case of wildfire occurrences[END_REF] detected spatio-temporal interaction structures at different scales and notably an inhibitive effect that arises locally in time and space after wildfires as we expect lesser occurrences at these locations during a vegetation regeneration period.

We propose to fit the spatio-temporal hybrid Geyer point process model [START_REF] Baddeley | Practical maximum pseudolikelihood for spatial point patterns (with discussion)[END_REF] on wildfire occurrences to take into account both the inhomogeneities induced by covariates and the multi-scale structure of interactions.

Data

Our data set is of the form (ξ i , t i ), i = 1, . . . , 434, where (ξ i , t i ) corresponds to a wildfire with more than 1 hectare of burnt surface spatially indexed by a DFCI2 cell center ξ i in the Lambert 93 projection system and year t i ∈ {2001, . . . , 2015}. To avoid duplicated points we uniformly jittered ξ i in its DFCI cell. We refer the reader to [START_REF] Gabriel | Detecting and modeling multiscale space-time structures: the case of wildfire occurrences[END_REF] and [START_REF] Opitz | Point-process based Bayesian modeling of space-time structures of forest fire occurrences in Mediterranean France[END_REF] for further information on the data. Whilst forest fires are daily reported, we consider here the yearly scale, as done in many works (see e.g. [START_REF] Serra | Spatio-temporal modelling of wildfires in Catalonia, Spain, 1994-2008, through log Gaussian Cox processes[END_REF][START_REF] Serra | A spatiotemporal Poisson hurdle point process to model forest fires[END_REF][START_REF] Serra | Spatio-temporal log-Gaussian Cox processes for modelling wildfire occurrence: the case of Catalonia, 1994-2008[END_REF]), because of the small number of reports and to optimize computation time in model fitting and validation steps. Figure 3 plots locations of forest fires (left panel) and yearly number of occurrences (right panel). It shows some clustering at short and medium spatial distances. Note that there exist two particular areas without any fire occurrences as they correspond to a lake (center) and marshlands (South-West).

The number of fires slightly exponentially decreases in time over the 15 years, mainly due to improvements of fire-fighting resources. spatio-temporal hybrid Geyer saturation process. Thus, we might obtained more significance of the covariates than under our hybrid Geyer saturation model. 

Parameters estimation

There is no common method for estimating irregular parameters in spatial or spatio-temporal Gibbs point process models. Here we considered several combinations of ad-hoc values within a reasonable range and select the optimal irregular parameters according to the Akaike's Information Criterion (AIC) of the fitted model. [START_REF] Baddeley | Modelling spatial point patterns in R[END_REF] suggest that the spatial interaction radius r of the Geyer saturation point process should be between 0 and the maximum nearest neighbor distance, about 8000 meters for our dataset. For the temporal radius q, we consider small values to be in accordance with the natural phenomena of forest fire occurrences.

Finally, for the saturation parameter s, we have n(C q r (ξ i , t i ); x) ≤ s for all (ξ i , t i ) ∈ x. Hence, for any pair (r, q), we set s = max 1≤i≤n n(C q r (ξ i , t i ); x). According to the former section, we use the logistic likelihood method and Algorithm 2 to estimate the regular parameters. We simulate dummy points from an inhomogeneous Poisson point process with intensity ρ(ξ, t) = Cµ(ξ, t)/ν where C = 4 by a classical rule of thumb in the logistic likelihood approach and ν = 2000 × 2000 × 1 (area of a DFCI cell multiplied by 1 year).

We fitted the spatio-temporal multi-scale Geyer point process model for a range of ad-hoc values (r j , q j ) ∈ [0, 8000]×{1, 2, 3, 4, 5}, and their corresponding or composite likelihood ratio test introduced in [START_REF] Baddeley | Adjusted composite likelihood ratio test for spatial Gibbs point processes[END_REF] to the spatio-temporal case.

Model validation

We validate our fitted model from several Monte Carlo tests using statistics based on the spatio-temporal inhomogeneous K-function [START_REF] Gabriel | Second-order analysis of inhomogeneous spatio-temporal point process data[END_REF]. First, we generate n sim = 99 simulations from our fitted hybrid Geyer model ( 5) by Algorithm 3 with a burn-in period of 70, 000 steps, representing realizations from our null hypothesis. Then, we compute the spatio-temporal inhomogeneous K- 

function
p(h s , h t ) = 1 + nsim i=1 1{T i (h s , h t ) > T obs (h s , h t )} n sim + 1 , (24) 
where T i (h s , h t ) (resp. T obs (h s , h t )) denotes the local statistic T computed from the i th simulation (resp. the data) at (h s , h t ). The local statistic is defined by

T (h s , h t ) = ( Kinh (h s , h t ) -E(h s , h t )) 2 V (h s , h t ) . ( 25 
)
The global test combines the information for all spatial and temporal distances. We define the test statistic

T = ht,max 0 hs,max 0 T (h s , h t )dh s dh t , (26) 
where h s,max and h t,max are user-specific maximum spatial and temporal distances which are preferable to choose close to the (expected) range of interaction of the underlying point process. [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF] recommends to compare the results for several values of h s,max and h t,max . The p-value of the global test is then given by In addition, we also compute global envelopes and p-value of the spatiotemporal Kinh functions based on the Extreme Rank Length (ERL) measure defined in [START_REF] Myllymäki | Global envelope tests for spatial processes[END_REF] and implemented in the R package GET [START_REF] Myllymäki | GET: Global envelopes in R URL[END_REF]. The main advantage is that the resulting p-value will not depend on a priori parameters as in the definition of p global with the h s,max and h t,max values. For each point pattern, we consider the long vector T i , i = 1, . . . , n sim (resp. T obs ) merging the K inh i (•, h t ) (resp. K inh obs (•, h t )) estimates for all considered values h t . The ERL measure of vector T i (resp. T obs ) of length n st is defined as

p global = 1 + nsim i=1 1{ Ti > Tobs } n sim + 1 .
E i = 1 n ns nst j=1 1{R j ≺ R i },
where R i is the vector of pointwise ordered ranks and ≺ is an ordering operator [START_REF] Myllymäki | Global envelope tests for spatial processes[END_REF][START_REF] Myllymäki | GET: Global envelopes in R URL[END_REF]. The final p-value is obtained by

p erl = 1 + nsim i=1 1{E i ≥ E obs } n sim + 1 .
The global p-value p erl is equal to 0.34 consolidating previous results and validating our hybrid Geyer model.

Note that we did the same tests for 99 simulations of an inhomogeneous

Poisson process with intensity µ(ξ, t)/(2000 × 2000 × 1) [START_REF] Gabriel | Second-order analysis of inhomogeneous spatio-temporal point process data[END_REF]. This model has been rejected at the level 5%, with a median global p-value equals to 0.04.

The p erl value is equal to 0.04 under the Poisson assumption rejecting also this baseline model.

Conclusion

Due to the capability of Gibbs point processes to cover prevalent structures (inhibition, randomness and clustering), the hybridization approach allows to introduce new Gibbs models combining several structures at different scales. In this paper, we defined the spatio-temporal multi-scale Geyer saturation point process model and detailed the classical statistical inference methods and MCMC simulation techniques that we have extended to the spatiotemporal framework and implemented in R code3 that will be added to the stpp package [START_REF] Gabriel | stpp: a R package for plotting, simulating and analyzing spatio-temporal point patterns[END_REF]. Our simulation study highlighted a better goodness-of-fit of parameters for the logistic likelihood approach compared to the pseudo-likelihood approach. Finally, we illustrated the interest of using this model on a spatiotemporal dataset of forest fire locations associated with environment covariates.

The model validation shows that our model captures the multi-scale interaction structure inherent to forest fire occurrences.

In this paper, we focused our attention on the definition of a new hybrid Gibbs model, the inference methods and MCMC simulation algorithms that we needed to adapt to the spatio-temporal context. Some of our choices can be discussed and eventually improved in future works, notably in our application to forest fire occurrences which is not presented as an in-depth study but as an illustration of the model fitting on real data.

In our application study, we considered a log-linear form for the trend depending on covariate information. We chose a two-step procedure for estimating, at first, the trend coefficients and then the regular parameters of the interaction function. Our knowledge on forest fire mechanisms guided this choice because the main driver of occurrence locations is the environmental heterogeneity and the secondary one is the interaction phenomena. The trend is estimated at the spatial DFCI scale and at the yearly one, corresponding to our covariate resolution. In that way, we estimated a global trend at a medium scale whereas the interaction parameters are estimated at the point locations and represent a local interaction behavior at a fine scale. This procedure could be improved by incorporating variable selection methods, e.g. via regularization [START_REF] Choiruddin | Convex and non-convex regularization methods for spatial point processes intensity estimation[END_REF][START_REF] Daniel | Penalized composite likelihoods for inhomogeneous Gibbs point process models[END_REF].

Our two-step estimation procedure allows us to provide confidence intervals for both the trend coefficients and the regular parameters. We notice that some parameters γ j are closed to one. Here we consider a bootstrap estimate of the confidence interval for each γ j . We could further test departure from one by extending the adjusted composite likelihood ratio test [START_REF] Baddeley | Adjusted composite likelihood ratio test for spatial Gibbs point processes[END_REF] to the spatio-temporal framework. Indeed, [START_REF] Baddeley | Adjusted composite likelihood ratio test for spatial Gibbs point processes[END_REF] proposed a likelihood ratio test for spatial Gibbs point process models fitted by maximum pseudo-likelihood. They discussed that implementing other composite likelihood as the logistic likelihood would provide a better composite likelihood ratio test. Estimating diagnostics related to the logistic likelihood requires to estimate the variance-covariance matrix of the logistic score and the sensitivity matrix. [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF] provide consistent estimators of these quantities. The extension to the spatio-temporal framework is a full-blown work that also involves efficient implementation.

For the choice of irregular parameters, because the likelihood is not differentiable with respect to them, we used a maximum profile likelihood approach based on the logistic likelihood estimation procedure and AIC values for model selection. Introduced for the pseudo-likelihood estimates in [START_REF] Anwar | Spatial pattern development of selective logging over several years[END_REF] and applied to the logistic likelihood approach by us using the results in [START_REF] Baddeley | Logistic regression for spatial Gibbs point processes[END_REF], this method consists in fixing irregular parameters and maximizing the composite likelihood with respect to the regular ones. This technique is a computationally-intensive method. Thanks to a preliminary spatio-temporal exploratory analysis of the interaction ranges done with the inhomogeneous pair correlation function g, the maximum nearest neighbor distance and the temporal autocorrelation function, we chose few configurations of feasible values for the nuisance parameters m, r j , q j and s j , j = 1 . . . m. Considering more values would be very time-consuming and developing a new estimation method would be a subject in its own right.

During the model validation procedure, we could use the global envelope tests based on the ERL measure to asses the goodness-of-fit of submodels with fewer irregular parameters to be parsimonious.

Our model can be used in many fields, like seismology and epidemiology for example, because several mechanisms exhibit interaction between points at multiple scales in space and time. Relying on this work, we can also develop hybrid models with different density structures. Indeed, although it was not necessarily highlighted here, we know that forest fires with large burnt areas avoid future fire occurrences during a vegetation regeneration period. Such cases of strong inhibition may be modeled by hybrid Gibbs point processes with a hardcore component like the hybrid Geyer hardcore point process. We recently extended our work to this model.

Table 1 :

 1 Parameters of the three multi-scale Geyer point process models used in simulation study.

Figure 1 :

 1 Figure 1: Realizations of Model 1 (left); Model 2 (middle); Model 3 (right).

Figure 2 :

 2 Figure 2: Boxplots of regular parameters estimated from the pseudo-likelihood and logistic likelihood approaches for Model 1 (first row), Model 2 (second row) and Model 3 (third row). True values are represented by horizontal red lines.

Figure 3 :

 3 Figure 3: (Left) Forest fire locations in UTM coordinate system (distance in meters), with more than 1 hectare of burnt area, recorded during the years 2001 to 2015 in the Bouches-du-Rhône county in France. (Right) Number of recorded forest fires per year.

Figure 4 :

 4 Figure 4: Maps of covariates: water coverage (top left), elevation (top right), coniferous cover (middle left), building cover (middle right), temperature average (botton left) and square root of precipitation (botton right) in 2001.

Figure 5 .

 5 Figure 5.a) shows the spatio-temporal inhomogeneous K function computed on our dataset (dark grey) and the envelopes obtained from our hybrid Geyer model (light grey); Kinh obs (h s , h t ) lies inside the envelopes, meaning that the fitted model seems to describe properly the spatio-temporal structure of the data. This is confirmed by local p-values at any distances (Figure 5.b). Global p-values are given in Figure 5.c) for any combination of h s,max and h t,max . Again, it shows that our fitted model is validated.

Figure 5 :

 5 Figure 5: Temporal separations ht are in year and spatial distances hs are in kilometer. a) Envelopes of the spatio-temporal inhomogeneous K-function for the simulated spatio-temporal multi-scale Geyer point process according to the estimated parameters. b) Image plot of the local p-value. c) Image plot of the global p-value for any pairs of (hs,max, ht,max).

Table 2 :

 2 RMSE of parameter estimates from 100 simulated realizations of the multi-scale Geyer point process model.

			Model 1			Model 2			Model 3	
	Method	λ	γ1	γ2	λ	γ1	γ2	λ	γ1	γ2
	pseudo	62.09	0.59	0.25	103.74	0.09	0.27	22.13	0.45	0.29
	logistic	12.07	0.18	0.16	17.30	0.08	0.08	27.48	0.20	0.12

Table 3 :

 3 Estimated coefficients, standard errors and p-values based on two-tailed Student's t-tests of significant differences from zero.

	Covariates	Coefficients	Estimates	Standard error	p-value
	Intercept	β0	262	26	< 2 × 10 -16 * * *
	Water	β S 1	-1.88	0.29	5.89×10 -11 * * *
	Elevation	β S 2	-0.001	0.0004	0.0008 * * *
	Coniferous	β S 3	0.77	0.36	0.031 *
	Building	β S 4	4	0.89	8.08×10 -6 * * *
	Temperature	β ST 1	0.37	0.06	1.13×10 -10 * * *
	Precipitation	β ST 2	-11.3	1.48	1.75 × 10 -14 * * *
	Time	α	-0.14	0.001	< 2 × 10 -16 * * *

Table 4 :

 4 Parameter estimates for m = 4.values of s j , j = 1, . . . , m, with varying m in {1, 2, 3, 4, 5}. The minimum AIC 380 is obtained for the combination given in Table4. Estimated regular parameters γ j associated with their 95% bootstrap confidence intervals show strong clustering at very short distances, weak repulsion (resp. clustering) at small (resp. medium) scale, and randomness at large scale. Another methodology for testing the significance of γ j parameters from 1 could be to extend the pseudo-likelihood

		Irregular parameters	
	r	500	2000	5000	7500
	q	1	2	3	4
	s	4	7	27	57
	Estimated regular parameters and 95% confidence intervals
	β = 0.66	γ1 = 2.73	γ2 = 0.93	γ3 = 1.07	γ4 = 0.98
	[0.442, 0.968]	[1.818, 3.405]	[0.820, 0.994]	[1.020, 1.120]	[0.962, 1.011]
	385				

  for the observed and simulated point patterns, denoted respectively by Kinh obs (h s , h t ) and Kinh i (h s , h t ), i ∈ {1, ..., n sim }, with an estimated separable intensity function obtained by kernel smoothing. For each value of the spatio-In addition to these local envelopes, we compute local and global p-values as in [61, 57] in order to respectively detect spatio-temporal distances where the departure from the null hypothesis is the most significant and the overall adequacy of our model. Let E(h s , h t ) and V (h s , h t ) denote the mean and variance of Kinh 1 (h s , h t ), . . . , Kinh nsim (h s , h t ), Kinh obs (h s , h t ) . We define the local p-value for each pair (h s , h t ) by

	temporal distance (h s , h t ), lower (L) and upper (U ) critical envelopes of the
	summary statistics are computed locally		
	L(h s , h t ) = min 1≤i≤nsim	Kinh i	(h s , h t ), U (h s , h t ) = max 1≤i≤nsim	Kinh i	(h s , h t ). (23)

https://www.promethee.com/en

In summary, the method is as follows.

district units for fire management strategies, see[START_REF] Opitz | Point-process based Bayesian modeling of space-time structures of forest fire occurrences in Mediterranean France[END_REF] 

http://edith.gabriel.pagesperso-orange.fr/software.html

We consider the same framework as in [23] and restrict our attention to the following covariates: water coverage, elevation, coniferous cover and building cover as spatial covariates and temperature average, precipitation as spatio-

Model fitting

Here we first estimate the spatio-temporal trend and then fit the multi-scale spatio-temporal Geyer model to forest fire occurrences. This two-step model fitting procedure follows our assumption that most forest fire occurrences are firstly due to environmental and meteorological conditions and secondly due to unobserved pairwise interactions. This technique will allow to see the benefits of the multi-scale interaction structure in our hybrid model compared to an inhoogeneous Poisson model with the same spatio-temporal trend.

Spatio-temporal trend estimation

We express the spatio-temporal trend (5) as λ(ξ, t) = βµ(ξ, t) where log µ(ξ, t) is assumed to linearly depend on covariates:

with Z S k (ξ), k = 1, . . . , 4, the spatial covariates, Z ST l (ξ, t), l = 1, 2, the spatiotemporal covariates and αt a decreasing trend of fire counts over time. Because the covariates are known at a fixed discretization scale, µ(ξ, t) does not vary for points ξ inside the same DFCI unit with a time t corresponding to the same year. By consequence, we can restrict our attention on DFCI grid cell centers ξ i , i = 1, . . . , 1320 and years t j = 2001, . . . , 2015 for j = 1, . . . , 15, and we consider a Poisson response for our model N ij |µ(ξ i , t j ) ∼ P oisson(µ(ξ i , t j )), where N ij is the number of forest fires in i th DFCI cell at year t j . The coefficient β will be estimated simultaneously with the others regular parameters by the logistic likelihood approach. Table 3 reports the coefficients β 0 , β S k , β ST l and α estimated as in [START_REF] Gabriel | Detecting and modeling multiscale space-time structures: the case of wildfire occurrences[END_REF] and [START_REF] Opitz | Point-process based Bayesian modeling of space-time structures of forest fire occurrences in Mediterranean France[END_REF]. The sign indicates if covariates favour (if positive, like coniferous, building and temperature) or prevent (if negative, like water, elevation, precipitation and time) fire occurrences. All covariates are globally significant and results are consistent with previous works [START_REF] Ganteaume | What causes large fires in Southern France[END_REF][START_REF] Gabriel | Detecting and modeling multiscale space-time structures: the case of wildfire occurrences[END_REF][START_REF] Opitz | Point-process based Bayesian modeling of space-time structures of forest fire occurrences in Mediterranean France[END_REF] for this county. Note that p-values have been computed during the trend fitting under a Poisson model and not for the overall fitting of forest fire occurrences under our