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Abstract

Because most natural phenomena exhibit dependence at multiple scales like lo-

cations of earthquakes or forest fire occurrences, spatio-temporal single-scale

point process models are unrealistic in many applications. This motivates us to

construct generalizations of classical Gibbs models. In this paper, we extend the

Geyer saturation point process model to the spatio-temporal multi-scale frame-

work. The simulation process is carried out through a birth-death Metropolis-

Hastings algorithm. In a simulation study, we compare two common methods

for statistical inference in Gibbs models: the pseudo-likelihood and logistic like-

lihood approaches that we tailor to this model. Finally, we illustrate this new

model on forest fire occurrences modelling in Southern France.

Keywords: Spatio-temporal Gibbs point processes, Hybridization,

Pseudo-likelihood, Logistic likelihood, Forest fires.

2010 MSC: 60G55, 62M30, 60D05, 62P12

1. Introduction

Nowadays point process models are widely used to highlight trends and in-

teractions in the spatial or spatio-temporal distribution of events. Most of them

are single-structure in the sense that they exhibit either spatial randomness (e.g.
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modelled by the Poisson process [33, 34]) or clustering (mostly modelled by Cox5

processes [16], in particular log-Gaussian Cox processes [41, 14, 12, 20], Poisson

Cluster processes [44, 13, 21] and Shot-Noise Cox processes [11, 42, 40]) or inhibi-

tion (modelled by Strauss processes [60, 17], Matérn hard core processes [39, 24]

and determinantal point processes [38, 35]). However, lot of phenomena present

interactions at different scales what motivate statisticians to develop new mod-10

els, mainly spatial models in ecology [36, 64, 49], epidemiology [30] or seismol-

ogy [58, 59], but very few spatio-temporal models in environment [23] or epi-

demiology [29] as lately reviewed in [51]. Multi-scale models are mostly based on

Gibbs models (see [19] for a recent review on Gibbs models) as they offer a large

class of models which allow any of the above mentioned interaction structure.15

Multi-structure models can then be obtained by hybridization [7].

Gibbs point processes are studied by their probability density, defined with

respect to the unit rate Poisson point process. Well-known inhibitive Gibbs

models include the hardcore model (events are forbidden to come too close

together) and the Strauss model [60] (pairs of close events are not impossible but20

are unlikely to occur). Generalizing the Strauss process, the Geyer saturation

process [26] intends to model both inhibition and clustering. It is able to take

into account the clustering nature of a pattern due to interactions between

points in absence of covariate information [1].

[7] defined a new class of multi-scale Gibbs point processes, so-called hybrid25

models. The hybridization technique consists in defining the density function

of a multi-scale point process model as the product of several densities of Gibbs

point processes, fl for l = 1, . . . ,m, so that f = cf1 × · · · × fm where c is

a normalization constant. The choice of the normalization constant allows to

well define a probability density in the case where the product of densities is30

integrable. In particular, [7] introduced the spatial multi-scale Geyer saturation

point process that has then been applied in epidemiology [30] and in seismol-

ogy [58, 59]. [29] extended the hybridization approach to the spatio-temporal

framework and introduced the spatio-temporal multi-scale area-interaction pro-

cess. New hybrid Gibbs models can also be defined from the hardcore process35
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[17] and the Strauss process [28] introduced in the spatio-temporal framework,

but much more hybrid Gibbs models remain to be developed to better describe

spatio-temporal complex phenomena in practice.

Forest fire occurrences present multi-scale structures which are related to

spatial or spatio-temporal inhomogeneities of environmental and climate covari-40

ates as well as influence of past events. Their complex interaction structure

has been modelled by a spatio-temporal log-Gaussian Cox process in [47] and

with an inhibitive effect as covariate in [23]. Gibbs point process models have

also been considered in the spatial context for modelling wildfires like the area-

interaction point process [32, 53, 62, 2, 65] or the Geyer point process [63].45

In this paper, we aim to extend the spatial Geyer saturation point process to

the spatio-temporal framework replacing the Euclidean balls by spatio-temporal

cylindrical neighbourhoods [28]. We also introduce its multi-scale version by ex-

tending the hybridization approach [7] to space and time. We then model forest

fire occurrences using our spatio-temporal multi-scale Geyer saturation point50

process. Our data, available from the Prométhée database1, concern forest fire

occurrences in the Bouches-du-Rhône department (South of France) between

2001 and 2015.

The spatio-temporal multi-scale Geyer saturation point process model is

introduced in Section 2. In Section 3, we extend the pseudo-likelihood and55

logistic likelihood approaches for statistical inference of Gibbs models to the

spatio-temporal framework. Then in Section 4 we implement the model simula-

tion using a birth-death Metropolis-Hastings algorithm and present a simulation

study to compare the performance of the two estimation methods. Finally, in

Section 5, we apply our model to forest fire occurrences in Southern France.60

1https://www.promethee.com/en
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2. Spatio-temporal Geyer saturation point process

A spatio-temporal point process can be viewed as a random locally finite

subset of a Borel set W = S × T ⊂ R2 ×R. We consider a complete, separable

metric space (W,d(·, ·)) where d((u, v), (u′, v′)) := max{||u − u′||, |v − v′|} for

(u, v), (u′, v′) ∈W . For N the state space of points configurations of W , x ∈ N65

denotes a point pattern, i.e. x = {(ξ1, t1), ..., (ξn, tn)} where (ξi, ti) describes

the location and time, respectively, associated with the ith event.

The cylindrical neighbourhood Cqr (u, v) centred at (u, v) ∈ S × T is defined

as

Cqr (u, v) = {(a, b) ∈ S × T : ||u− a||≤ r, |v − b|≤ q}, (1)

where r, q > 0 are spatial and temporal radii, ||·|| denotes the Euclidean distance

in R2 and |·| denotes the usual distance in R. Note that Cqr (u, v) is a cylinder

with centre (u, v), radius r, and height 2q that represents a natural neighbour-70

hood for extending spatial Gibbs models to the spatio-temporal context [28].

The Papangelou conditional intensity [48] of a spatio-temporal point process

on W with density f is defined by

λ((u, v)|x) =
f(x

⋃
(u, v))

f(x\(u, v))
, (2)

with a/0 := 0 for a ≥ 0 and (u, v) ∈ W ([17]). Hence, we have λ((u, v)|x) =

f(x
⋃

(u,v))
f(x) if (u, v) /∈ x and λ((u, v)|x) = f(x)

f(x\(u,v)) if (u, v) ∈ x.

[28] introduced a spatio-temporal Strauss process with conditional intensity

for (u, v) /∈ x

λ((u, v)|x) = λγñ(Cq
r (u,v);x), (3)

where ñ(Cqr (u, v); x) =
∑

(ξ,t)∈x 1{||u−ξ||≤ r, |v−t|≤ q} is the number of points

of x lying in Cqr (u, v).75

The density function of Strauss model is not integrable for γ > 1, it thus

does not define a valid probability density and the Strauss process can not be

intended for clustering structures. To avoid this issue, [26] consider an upper

bound (saturation parameter) for the number of neighboring points that interact

and define the (spatial) Geyer saturation point process.80

4



Definition 1. We define the spatio-temporal Geyer saturation point process as

the point process with density

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)γmin{s,n(Cq
r (ξ,t);x)}, (4)

with respect to a unit rate Poisson process on W , where c > 0 is a normaliz-

ing constant, λ is a non-negative, measurable and bounded function, γ > 0 is

the interaction parameter, s is the saturation parameter, and n(Cqr (ξ, t); x) =∑
(u,v)∈x\(ξ,t) 1(||u − ξ||≤ r, |v − t|≤ q) is the number of points of x lying in

Cqr (ξ, t) and different from (ξ, t).85

The function λ describes some spatio-temporal trend in point pattern that

can be estimated using covariates. The scalars γ, r, q and s are the parameters

of the model. The saturation parameter s is an upper bound of the number of

points in the cylinder Cqr . By using hybridization approach [7, 29], we define a

multi-scale version of (4).90

Definition 2. We define the spatio-temporal multi-scale Geyer saturation point

process as the point process with density

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)

m∏
j=1

γ
min{sj ,n(C

qj
rj

(ξ,t);x)}
j , (5)

with respect to a unit rate Poisson process on W , where γj > 0, j = 1, . . . ,m,

are the interaction parameters, and r1 < · · · < rm, q1 < · · · < qm are spatial

and temporal interaction ranges.

For any j ∈ {1, ...,m}, the interaction parameters 0 < γj < 1 reflect inhi-

bition, while γj > 1 reflect clustering between points at some spatio-temporal95

scales. When sj = 0 or γj = 1 for all j ∈ {1, ...,m}, the density (5) cor-

responds to the density of an inhomogeneous Poisson process. Equation (5)

indicates that the structure of the process changes with the spatial and tem-

poral distances rj , qj . Covariates can be added to the model by assuming

that the spatio-temporal trend λ is function of a covariate vector Z(ξ, t), i.e.100

λ(ξ, t) = Ψ(Z(ξ, t)).
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Lemma 1. The spatio-temporal multi-scale Geyer point process is a Markov

point process in the sense of Ripley-Kelly [52] and its density (5) is measurable

and integrable for all γj , j = 1, . . . ,m with m ∈ N.

Proof. A Geyer model is hereditary, locally and Ruelle stable and hence inte-105

grable [26]. [7] showed these properties for hybrids. As in [29], we can show

that the spatio-temporal Geyer saturation point process (4) is a Markov point

process in Ripley-Kelly’s sense at interaction range 2 max{r, q} and that the

spatio-temporal multi-scale Geyer saturation process (5) is also a Markov point

process in Ripley-Kelly sense at interaction range max1≤j≤m{2 max{rj , qj}} =110

2 max{rm, qm} ([7]).

For any (u, v) ∈ W , the Papangelou conditional intensity function of the

spatio-temporal multi-scale Geyer saturation process is

λ((u, v)|x) = λ(u, v)

m∏
j=1

γ
min{sj ,n(C

qj
rj

(u,v);x)}
j

×
∏

(ξ,t)∈x\(u,v)

γ
min{sj ,n(C

qj
rj

(ξ,t));x∪(u,v))}−min{sj ,n(C
qj
rj

(ξ,t);x\(u,v))}
j ,

(6)

The Markovian property (Lemma 1) ensures that this conditional intensity only

depends on (u, v) and its neighbors in x. Hence, we can design simulation

algorithms for generating realizations of the model, see Section 4.

3. Inference115

Geyer saturation point process model (4) involves two types of parameters:

regular parameters and irregular parameters. A parameter is called regular if

the log likelihood is a linear function of that parameter, irregular otherwise.

Regular parameters like trend λ and interaction γ can be estimated using the

pseudo-likelihood method [5] or the logistic likelihood method [3] rather than120

the maximum likelihood method [45]. Indeed, they are based on the conditional

intensity which is tractable for most Gibbs models and is free from the normal-

ization constant c (whose estimation is computationally very expensive, even
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for a small number of regular parameters). Here we tailor these two methods

to estimate regular parameters of our spatio-temporal model and we compare125

their performance in the next section.

Irregular parameters, like saturation threshold s and distances r and q, are

difficult to estimate using the maximum likelihood method because the like-

lihood function is not differentiable with respect to them. These parameters

can be estimated using the profile pseudo-likelihood approach [5] or predeter-130

mined by the user using some summary statistics, like the pair correlation and

the auto-correlation functions [29], in order to determine the interaction ranges.

[6] presented the methods that are used for irregular parameter estimation in

the spatial framework.

In this paper, we combine the advantages of the two previous methodologies.135

By computing some statistics summarizing the range of interactions in space and

time, we consider a set of feasible irregular parameter values and we choose the

combination of them providing the best Akaike’s Information Criterion (AIC)

for the fitted model.

3.1. Pseudo-likelihood approach140

Let θ be the vector of regular parameters that we aim to estimate. [10]

defined the pseudo-likelihood for spatial point processes in order to avoid com-

putational problems with point process likelihoods. One can easily extend it for

a spatio-temporal point process with conditional intensity λθ((u, v)|x) over W

as follows

PL(x;θ) = exp

(
−
∫
S

∫
T

λθ((u, v)|x)dvdu

) ∏
(ξ,t)∈x

λθ((ξ, t)|x). (7)

The pseudo score is defined by

U(x;θ) =
∂

∂θ
logPL(x;θ), (8)

that is an unbiased estimating function. The maximum pseudo-likelihood nor-

mal equations are then given by

∂

∂θ
logPL(x;θ) = 0, (9)
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where

logPL(x;θ) =
∑

(ξ,t)∈x

log λθ((ξ, t)|x)−
∫
S

∫
T

λθ((u, v)|x)dvdu, (10)

and λθ(·|x) is defined by (6) for hybrid Geyer model (5).

For sake of clarity, we now assume that θ = [log γ1, . . . , log γm]> the log-

arithm of interaction parameters in model (5). To estimate θ, we use the

pseudo-likelihood approach. Equation (6) can be rewritten as λθ((u, v)|x) =

λ(u, v)
∏m
j=1 exp(θjSj((u, v),x)) where

Sj((u, v),x) = min{sj , n(Cqjrj (u, v); x)}

+
∑

(ξ,t)∈x\(u,v)

[min{sj , n(Cqjrj (ξ, t); x ∪ (u, v))}

−min{sj , n(Cqjrj (ξ, t); x\(u, v))}],

(11)

is a sufficient statistics. Then, for S((u, v),x) = [S1((u, v),x), . . . , Sm((u, v),x)]>

log λθ((u, v)|x) = log λ(u, v) + θ>S((u, v),x) (12)

is a linear model in θ with offset log λ(u, v). Thus, equation (9) gives us the

pseudo-likelihood equations

∂

∂θ

 ∑
(ξ,t)∈x

[log λ(ξ, t) +

m∑
j=1

θjSj((ξ, t),x)]−
∫
S

∫
T

λ(u, v)

m∏
j=1

eθjSj((u,v),x)dvdu

 = 0,

(13)

For each parameter θi, i = 1, . . . ,m, the equations (13) can be rewritten

∑
(ξ,t)∈x

Si((ξ, t),x) =

∫
S

∫
T

λ(u, v)Si((u, v),x)

m∏
j=1

eθjSj((u,v),x)dvdu, (14)

The major difficulty is to estimate the integrals on the right hand side of equa-

tions (14). The pseudo-likelihood cannot be computed exactly but must be

approximated numerically.

For a point process model, the approximation of likelihood is converted into145

a regression model. In the following, we refer to generalized log-linear Poisson
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regression approach as approximation of integrals in (14). In the next subsec-

tion, we also investigate an alternative, the logistic regression.

[9] developed a numerical quadrature method to approximate maximum like-

lihood estimation for an inhomogeneous Poisson point process. Berman-Turner

method has then been extended to Gibbs point processes by [5], approximating

the integral in (10) by a Riemann sum∫
S

∫
T

λθ((u, v)|x)dvdu ≈
n+p∑
k=1

wkλθ((ξk, tk)|x), (15)

where (ξk, tk) are points in {(ξ1, t1), ..., (ξn, tn), (ξn+1, tn+1), ..., (ξn+p, tn+p)} ∈

W consisting of the n events of x and p dummy points, and wk are quadrature

weights such that
∑n+p
k=1 wk = `(S×T ) where ` is Lebesgue measure. This yields

an approximation for the log pseudo-likelihood of the form

logPL(x;θ) ≈
∑

(ξ,t)∈x

log λθ((ξ, t)|x)−
n+p∑
k=1

wkλθ((ξk, tk)|x). (16)

Note that if the set of points {(ξk, tk), k = 1, . . . , n + p} includes all the points

of x = {(ξ1, t1), ..., (ξn, tn)}, we can rewrite (16) as

logPL(x;θ) ≈
n+p∑
k=1

wk (yk log λθ((ξk, tk)|x)− λθ((ξk, tk)|x)) , (17)

where

yk =

1/wk, if (ξk, tk) ∈ x is an event,

0, if (ξk, tk) /∈ x is a dummy point.

(18)

The right hand side of (17), for fixed x, is formally equivalent to the log-

likelihood of independent Poisson variables Yk ∼ Poisson(λθ((ξk, tk)|x)) taken150

with weights wk. Therefore, by using the glm function in R ([50]), we can perform

the maximum likelihood-based parameter estimation of this Poisson generalized

linear model and obtain the maximum value for (17).

Note that in hybrid Geyer model (5), we consider λ(ξ, t) = λβ(ξ, t) = βµ(ξ, t)

where µ(ξ, t) is known or estimated beforehand and β is a parameter to estimate.155

In summary, the method is as follows.
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Algorithm 1

• Generate a set of p uniform dummy points in W and merge them with all

the data points in x to construct the set of quadrature points (ξk, tk) ∈W

with k = 1, . . . , n+ p.160

• Compute the quadrature weights wk and the indicators yk defined in (18),

• Compute the sufficient statistics S((ξk, tk),x) at each quadrature point,

• Fit a log-linear Poisson regression with explanatory variables S((ξk, tk),x),

and offset log λ(ξk, tk) on the responses yk with weights wk to obtain es-

timates θ̂ for the S-vector and intercept θ̂0,165

• Return the maximum pseudo-likelihood-based parameter estimates γ̂j =

exp(θ̂j) for j = 1, . . . ,m and β̂ = exp(θ̂0).

We define the quadrature scheme by defining a spatio-temporal partition of W

into cubes Ck of equal volumes ν and by using the counting weights proposed

in [5]. We then assign to each dummy or data point (ξk, tk) a weight wk = ν/nk170

where nk is the number of dummy and data points that lie in the same cube

as (ξk, tk). The number of dummy points should be sufficient for an accurate

estimate of the pseudo-likelihood. We follow [5] and start with p ≈ 4n(x). Then,

we increase it until
∑
k wk = `(W ), what can lead to high computational costs.

An alternative way to define the quadrature scheme for Algorithm 1 is based175

on Dirichlet tessellation [5] and the weight of each point is equal to the volume

of the corresponding Dirichlet 3D cell. In this paper, we consider cubes because

it is less time consuming and provides similar results (see [46] for quadrature

schemes comparison of 3D Gibbs point processes).

3.2. Logistic likelihood approach180

The logistic likelihood method [3] is an alternative for estimating the regu-

lar parameters of Gibbs models that is closely related to the pseudo-likelihood

method. The Berman-Turner approximation often requires a quite large number
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of dummy points. Hence, fitting such GLM can be computationally intensive, es-

pecially when dealing with a large dataset. [3] formulated the pseudo-likelihood185

estimation equation as a logistic regression using auxiliary dummy point config-

urations and proposed a computational technique for fitting Gibbs point process

models to spatial point patterns. [29] extended the logistic likelihood approach

for spatio-temporal Gibbs point processes and we tailored it to our model.

Let x be a realization of a spatio-temporal point process defined on W190

having a density fθ with respect to the unit rate Poisson process and with

conditional intensity function λθ(·|x). We consider an independent Poisson

process for dummy points, with intensity function ρ, and we denote by d a set

of dummy points. We follow [3] (resp. [29]) for choosing ρ of a homogeneous

(resp. inhomogeneous) Poisson process in simulation study (resp. application).195

See [3], for a data-driven determination of ρ and its effect on efficiency and

practicability of the method.

By defining Y (ξ, t) = 1{(ξ,t)∈x} for (ξ, t) ∈ x ∪ d, we obtain independent

Bernoulli variables taking one for data points and zero for dummy points. We

have200

Pr(Y (ξ, t) = 1) =
λθ((ξ, t)|x\(ξ, t))

λθ((ξ, t)|x\(ξ, t)) + ρ(ξ, t)
, (19)

By considering the log linearity assumption for the conditional intensity

λθ(·|x) in (12), the logit of Pr(Y (ξ, t) = 1) is

log
λθ((ξ, t)|x\(ξ, t))

ρ(ξ, t)
= log

λ(ξ, t)

ρ(ξ, t)
+

m∑
j=1

θjSj((ξ, t),x\(ξ, t)), (20)

which is a linear model in θ with offset log λ(ξ,t)
ρ(ξ,t) .

Since λθ((ξ, t)|x) = λθ((ξ, t)|x\(ξ, t)) for (ξ, t) ∈ d, the log logistic likelihood
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is defined by

logLL(x,d;θ) =
∑

(ξ,t)∈x∪d

Y ((ξ, t)) log
λθ((ξ, t)|x\(ξ, t))

λθ((ξ, t)|x\(ξ, t)) + ρ(ξ, t)

+
∑

(ξ,t)∈x∪d

[1− Y ((ξ, t))] log
ρ(ξ, t)

λθ((ξ, t)|x) + ρ(ξ, t)

=
∑

(ξ,t)∈x

log
λθ((ξ, t)|x\(ξ, t))

λθ((ξ, t)|x\(ξ, t)) + ρ(ξ, t)

+
∑

(ξ,t)∈d

log
ρ(ξ, t)

λθ((ξ, t)|x) + ρ(ξ, t)
.

(21)

The maximum of the log-logistic likelihood exists and under regularity condi-

tion [4] is unique. Hence, estimation can be implemented in R by using the glm

function.

As in Algorithm 1, we consider λ(ξ, t) = λβ(ξ, t) = βµ(ξ, t) and we estimate205

the regular parameters form the following algorithm.

Algorithm 2

• Generate dummy points d from a Poisson process with intensity function

ρ and merge them with all the data points in x to construct the set of

quadrature points (ξk, tk) ∈W ,210

• Obtain the response variables yk (1 for data points, 0 for dummy points),

• Compute the sufficient statistics S((ξk, tk),x\(ξk, tk)) at each quadrature

point,

• Fit a logistic regression model with explanatory variables S((ξk, tk),x\(ξk,

tk)), and offset log (µ(ξk, tk)/ρ(ξk, tk)) on the responses yk to obtain esti-215

mates θ̂ for the S-vector and intercept θ̂0,

• Return the parameter estimator γ̂ = exp(θ̂) and β̂ = exp(θ̂0) and in the

case where µ(ξk, tk)/ρ(ξk, tk) is a constant c we have β̂ = c−1 exp(θ̂0).
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4. Simulation

The simulation algorithms of Gibbs point process models require only com-220

putation of the Papangelou conditional intensity which avoids to consider the

difficult estimation of the unknown normalizing constant in the density func-

tion. Gibbs point process models can be simulated by using Markov chain

Monte Carlo (MCMC) algorithms like the birth-death Metropolis-Hastings algo-

rithm [42] that belongs to the large class of Metropolis-Hastings algorithms [27].225

In this section, we first present the birth-death Metropolis-Hastings algorithm

and secondly we investigate the goodness of parameter estimation of the two

approaches introduced before.

4.1. Birth-death Metropolis-Hastings algorithm

For x a spatio-temporal point pattern in W , we can propose either a birth230

with probability q(x) or a death with probability 1 − q(x). For a birth, a new

point (u, v) ∈W is sampled from a probability density b(x, ·) and the new point

configuration x∪(u, v) is accepted with probability A(x,x∪(u, v)), otherwise the

state remains unchanged. For a death, the point (ξ, t) ∈ x chosen to be removed

is selected according to a discrete probability distribution d(x, .) on x, and the235

proposal x\(ξ, t) is accepted with probability A(x,x\(ξ, t)), otherwise the state

remains unchanged. For simplicity, we consider q(x) = 1
2 , b(x, ·) = 1/`(W ) and

d(x, ·) = 1/n(x). By setting A(x,x∪ (u, v)) = min{1, r((u, v); x)}, and A(x,x \

(ξ, t)) = min{1, 1/r((ξ, t); x \ (ξ, t))} where r((u, v); x) = `(W )
n(x)+1 × λ((u, v)|x) is

the Hastings ratio [29], we obtain the following birth-death Metropolis-Hastings240

algorithm.

Algorithm 3

For n = 0, 1, ..., given Xn = x (e.g. a Poisson process for n = 0), generate

Xn+1:

• Generate two uniform numbers y1, y2 in [0, 1],245

• If y1 ≤ 1
2 then
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– A new point (u, v) is uniformly sampled from a probability density

1/`(W ),

– Compute r((u, v); x) = `(W )
n(x)+1λ((u, v)|x), (u, v) /∈ x.

If y2 < r((u, v); x) then Xn+1 = x ∪ (u, v) else Xn+1 = x250

• If y1 >
1
2 then

– Uniformly select a point (ξ, t) in x according to a discrete probability

density 1/n(x),

– Compute r((ξ, t); x\(ξ, t)) = `(W )
n(x)λ((ξ, t)|x \ (ξ, t))), (ξ, t) ∈ x.

If y2 < 1/r((ξ, t); x\(ξ, t)) then Xn+1 = x\(ξ, t) else Xn+1 = x.255

– Note that if x = ∅ then Xn+1 = x.

This simulation process is repeated a large number of time in order to ensure

the convergence of the algorithm to the expected distribution. This number of

iterations is unknown a priori and must be determined by the user from prac-

tical knowledge and/or diagnostic tools. We choose 20, 000 iteration steps in260

simulation study (70,000 iteration steps in the application study). To investi-

gate the convergence of the algorithm, we use a “trace plot” which shows the

evolution of the number of points at each iteration of Algorithm 3. Thus, we

check that the number of points in the simulated point pattern is stabilized (see

[42, 31] for more details).265

4.2. Simulation study

We compare the performance of the pseudo-likelihood and logistic likelihood

approaches on the spatio-temporal multi-scale Geyer point process. We gener-

ate 100 simulated realizations in the unit cube from three models. The first one

exhibits strong clustering (Model 1 ), the second one exhibits small scale inhibi-270

tion and large scale clustering (Model 2 ) and the third one exhibits inhibition

(Model 3 ). Model parameters are reported in Table 1. We consider a burn-in

period of 20,000 steps in Algorithm 3. Figure 1 shows one realization of each

model.
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Table 1: Parameters of the three multi-scale Geyer point process models used in simulation

study.

Values of parameter

Regular parameters Irregular parameters

Model λ γ r q s

Model 1 70 (1.5,1.5) (0.05,0.1) (0.05,0.1) (2,2)

Model 2 100 (0.5,1.5) (0.05,0.1) (0.05,0.1) (1,3)

Model 3 200 (0.8,0.8) (0.05,0.1) (0.05,0.1) (1,1)

Figure 1: Realizations of Model 1 (left); Model 2 (middle); Model 3 (right).

According to [3], we generate a spatio-temporal Poisson process with inten-275

sity ρ = 4n(x) (resp. 4n(x)/`(W )) as dummy points in Algorithm 1 (resp.

Algorithm 2 ). For each model, we compute the root mean square error (RMSE)

of each set of estimated parameters (Table 2) and plot the related boxplots (Fig-

ure 2). In Table 2 the lowest RMSE value is in bold and in Figure 2 the true

values are represented by horizontal red lines. Both RMSE and boxplots show280

that the logistic likelihood approach performs better than the pseudo-likelihood

approach for any model.

Note that in the spatial framework, [3] showed that for large datasets the

Table 2: RMSE of parameter estimates from 100 simulated realizations of the multi-scale

Geyer point process model.

Model 1 Model 2 Model 3

Method λ̂ γ̂1 γ̂2 λ̂ γ̂1 γ̂2 λ̂ γ̂1 γ̂2

pseudo 62.09 0.59 0.25 103.74 0.09 0.27 22.13 0.45 0.29

logistic 12.07 0.18 0.16 17.30 0.08 0.08 27.48 0.20 0.12
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Figure 2: Boxplots of regular parameters estimated from the pseudo-likelihood and logistic

likelihood approaches for Model 1 (first row), Model 2 (second row) and Model 3 (third row).

True values are represented by horizontal red lines.
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logistic likelihood method is preferable than the pseudo-likelihood method as it

requires a smaller number of dummy points and performs quickly and efficiently.285

[18] and [15] investigated a similar comparison when these methods are regu-

larized (i.e. using an approach with a simultaneous parameter estimation and

variable selection by maximizing a penalized likelihood functions). [29] found

the advantage of the logistic likelihood approach for the spatio-temporal multi-

scale area-interaction point process model. We here confirm this advantage for290

the spatio-temporal multi-scale Geyer point process model.

5. Application to forest fire occurrences

Economic and ecological disasters caused by wildfires in the world have led

the scientific community to develop many novel statistical analysis and mod-

elling wildfire occurrences to better understand their behaviors. In this section,295

we focus on the modelling of forest fire occurrences in the Bouches-du-Rhône

county (Southern France) between 2001 and 2015.

Several statistical studies have shown the influence of environmental and

meteorological factors on forest fire occurrences. In the French Mediterranean

basin, [47] fit a spatio-temporal log-Gaussian Cox process model for forest fire300

occurrences with a log-linear intensity depending on spatio-temporal land use

and weather covariates. [25] investigated the impact of the different covariates

on the number of fires using multivariate analysis and [23] explored the influ-

ence of land cover covariates, temperature and precipitation on the probability

of event occurrence. In addition to the spatio-temporal clustering of events in-305

duced by some covariates, [23] detected spatio-temporal interaction structures

at different scales and notably an inhibitive effect that arises locally in time and

space after wildfires as we expect lesser occurrences at these locations during a

vegetation regeneration period.

We propose to fit the spatio-temporal hybrid Geyer point process model (5)310

on wildfire occurrences to take into account both the inhomogeneities induced

by covariates and the multi-scale structure of interactions.
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5.1. Data

Our data set is of the form (ξi, ti), i = 1, . . . , 434, where (ξi, ti) corresponds

to a wildfire with more than 1 hectare of burnt surface spatially indexed by315

a DFCI2 cell center ξi in the Lambert 93 projection system and year ti ∈

{2001, . . . , 2015}. To avoid duplicated points we uniformly jittered ξi in its

DFCI cell. We refer the reader to [23] and [47] for further information on the

data. Whilst forest fires are daily reported, we consider here the yearly scale,

as done in many works (see e.g. [56, 54, 55]), because of the small number320

of reports and to optimize computation time in model fitting and validation

steps. Figure 3 plots locations of forest fires (left panel) and yearly number

of occurrences (right panel). It shows some clustering at short and medium

spatial distances. Note that there exist two particular areas without any fire

occurrences as they correspond to a lake (center) and marshlands (South-West).325

The number of fires slightly exponentially decreases in time over the 15 years,

mainly due to improvements of fire-fighting resources.

Figure 3: (Left) Forest fire locations in UTM coordinate system (distance in meters), with

more than 1 hectare of burnt area, recorded during the years 2001 to 2015 in the Bouches-du-

Rhône county in France. (Right) Number of recorded forest fires per year.

2district units for fire management strategies, see [47]
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We consider the same framework as in [23] and restrict our attention to the

following covariates: water coverage, elevation, coniferous cover and building

cover as spatial covariates and temperature average, precipitation as spatio-330

temporal covariates. Hence, we can consider these covariates as good proxies

of the main environmental, climatic and human factors. Maps of covariates are

shown in Figure 4 in 2001.

Figure 4: Maps of covariates: water coverage (top left), elevation (top right), coniferous cover

(middle left), building cover (middle right), temperature average (botton left) and square root

of precipitation (botton right) in 2001.
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5.2. Model fitting

Here we first estimate the spatio-temporal trend and then fit the multi-scale335

spatio-temporal Geyer model to forest fire occurrences. This two-step model

fitting procedure follows our assumption that most forest fire occurrences are

firstly due to environmental and meteorological conditions and secondly due to

unobserved pairwise interactions. This technique will allow to see the benefits

of the multi-scale interaction structure in our hybrid model compared to an340

inhoogeneous Poisson model with the same spatio-temporal trend.

5.2.1. Spatio-temporal trend estimation

We express the spatio-temporal trend (5) as λ(ξ, t) = βµ(ξ, t) where log µ(ξ, t)

is assumed to linearly depend on covariates:

logµ(ξ, t) = β0 +

4∑
k=1

βSk Z
S
k (ξ) +

2∑
l=1

βSTl ZSTl (ξ, t) + αt (22)

with ZSk (ξ), k = 1, . . . , 4, the spatial covariates, ZSTl (ξ, t), l = 1, 2, the spatio-

temporal covariates and αt a decreasing trend of fire counts over time. Because

the covariates are known at a fixed discretization scale, µ(ξ, t) does not vary345

for points ξ inside the same DFCI unit with a time t corresponding to the

same year. By consequence, we can restrict our attention on DFCI grid cell

centers ξi, i = 1, . . . , 1320 and years tj = 2001, . . . , 2015 for j = 1, . . . , 15, and

we consider a Poisson response for our model Nij |µ(ξi, tj) ∼ Poisson(µ(ξi, tj)),

where Nij is the number of forest fires in ith DFCI cell at year tj . The coefficient350

β will be estimated simultaneously with the others regular parameters by the

logistic likelihood approach. Table 3 reports the coefficients β0, βSk , βSTl and α

estimated as in [23] and [47]. The sign indicates if covariates favour (if positive,

like coniferous, building and temperature) or prevent (if negative, like water,

elevation, precipitation and time) fire occurrences. All covariates are globally355

significant and results are consistent with previous works [25, 23, 47] for this

county. Note that p-values have been computed during the trend fitting under a

Poisson model and not for the overall fitting of forest fire occurrences under our
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spatio-temporal hybrid Geyer saturation process. Thus, we might obtained more

significance of the covariates than under our hybrid Geyer saturation model.360

Table 3: Estimated coefficients, standard errors and p-values based on two-tailed Student’s

t-tests of significant differences from zero.

Covariates Coefficients Estimates Standard error p-value

Intercept β0 262 26 < 2× 10−16 ∗∗∗

Water βS
1 -1.88 0.29 5.89×10−11 ∗∗∗

Elevation βS
2 -0.001 0.0004 0.0008 ∗∗∗

Coniferous βS
3 0.77 0.36 0.031 ∗

Building βS
4 4 0.89 8.08×10−6 ∗∗∗

Temperature βST
1 0.37 0.06 1.13×10−10 ∗∗∗

Precipitation βST
2 -11.3 1.48 1.75× 10−14 ∗∗∗

Time α -0.14 0.001 < 2× 10−16 ∗∗∗

5.2.2. Parameters estimation

There is no common method for estimating irregular parameters in spatial

or spatio-temporal Gibbs point process models. Here we considered several

combinations of ad-hoc values within a reasonable range and select the optimal

irregular parameters according to the Akaike’s Information Criterion (AIC) of365

the fitted model.

[6] suggest that the spatial interaction radius r of the Geyer saturation point

process should be between 0 and the maximum nearest neighbor distance, about

8000 meters for our dataset. For the temporal radius q, we consider small

values to be in accordance with the natural phenomena of forest fire occurrences.370

Finally, for the saturation parameter s, we have n(Cqr (ξi, ti); x) ≤ s for all

(ξi, ti) ∈ x. Hence, for any pair (r, q), we set s = max1≤i≤n n(Cqr (ξi, ti); x).

According to the former section, we use the logistic likelihood method and

Algorithm 2 to estimate the regular parameters. We simulate dummy points

from an inhomogeneous Poisson point process with intensity ρ(ξ, t) = Cµ(ξ, t)/ν375

where C = 4 by a classical rule of thumb in the logistic likelihood approach and

ν = 2000× 2000× 1 (area of a DFCI cell multiplied by 1 year).

We fitted the spatio-temporal multi-scale Geyer point process model for a

range of ad-hoc values (rj , qj) ∈ [0, 8000]×{1, 2, 3, 4, 5}, and their corresponding
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Table 4: Parameter estimates for m = 4.

Irregular parameters

r 500 2000 5000 7500

q 1 2 3 4

s 4 7 27 57

Estimated regular parameters and 95% confidence intervals

β̂ = 0.66 γ̂1 = 2.73 γ̂2 = 0.93 γ̂3 = 1.07 γ̂4 = 0.98

[0.442, 0.968] [1.818, 3.405] [0.820, 0.994] [1.020, 1.120] [0.962, 1.011]

values of sj , j = 1, . . . ,m, with varying m in {1, 2, 3, 4, 5}. The minimum AIC380

is obtained for the combination given in Table 4. Estimated regular parameters

γj associated with their 95% bootstrap confidence intervals show strong clus-

tering at very short distances, weak repulsion (resp. clustering) at small (resp.

medium) scale, and randomness at large scale. Another methodology for testing

the significance of γj parameters from 1 could be to extend the pseudo-likelihood385

or composite likelihood ratio test introduced in [8] to the spatio-temporal case.

5.3. Model validation

We validate our fitted model from several Monte Carlo tests using statistics

based on the spatio-temporal inhomogeneousK-function [22]. First, we generate

nsim = 99 simulations from our fitted hybrid Geyer model (5) by Algorithm

3 with a burn-in period of 70, 000 steps, representing realizations from our

null hypothesis. Then, we compute the spatio-temporal inhomogeneous K-

function for the observed and simulated point patterns, denoted respectively

by K̂inh
obs (hs, ht) and K̂inh

i (hs, ht), i ∈ {1, ..., nsim}, with an estimated separable

intensity function obtained by kernel smoothing. For each value of the spatio-

temporal distance (hs, ht), lower (L) and upper (U) critical envelopes of the

summary statistics are computed locally

L(hs, ht) = min
1≤i≤nsim

K̂inh
i (hs, ht), U(hs, ht) = max

1≤i≤nsim

K̂inh
i (hs, ht). (23)

In addition to these local envelopes, we compute local and global p-values as

in [61, 57] in order to respectively detect spatio-temporal distances where the
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departure from the null hypothesis is the most significant and the overall ade-

quacy of our model. Let E(hs, ht) and V (hs, ht) denote the mean and variance

of
{
K̂inh

1 (hs, ht), . . . , K̂
inh
nsim

(hs, ht), K̂
inh
obs (hs, ht)

}
. We define the local p-value

for each pair (hs, ht) by

p(hs, ht) =
1 +

∑nsim

i=1 1{Ti(hs, ht) > Tobs(hs, ht)}
nsim + 1

, (24)

where Ti(hs, ht) (resp. Tobs(hs, ht)) denotes the local statistic T computed from

the ith simulation (resp. the data) at (hs, ht). The local statistic is defined by

T (hs, ht) =

√
(K̂inh(hs, ht)− E(hs, ht))2

V (hs, ht)
. (25)

The global test combines the information for all spatial and temporal dis-

tances. We define the test statistic

T̃ =

∫ ht,max

0

∫ hs,max

0

T (hs, ht)dhsdht, (26)

where hs,max and ht,max are user-specific maximum spatial and temporal dis-

tances which are preferable to choose close to the (expected) range of interaction

of the underlying point process. [31] recommends to compare the results for sev-

eral values of hs,max and ht,max. The p-value of the global test is then given

by

pglobal =
1 +

∑nsim

i=1 1{T̃i > T̃obs}
nsim + 1

.

Figure 5.a) shows the spatio-temporal inhomogeneous K function computed on

our dataset (dark grey) and the envelopes obtained from our hybrid Geyer model390

(light grey); K̂inh
obs (hs, ht) lies inside the envelopes, meaning that the fitted model

seems to describe properly the spatio-temporal structure of the data. This is

confirmed by local p-values at any distances (Figure 5.b). Global p-values are

given in Figure 5.c) for any combination of hs,max and ht,max. Again, it shows

that our fitted model is validated.395

In addition, we also compute global envelopes and p-value of the spatio-

temporal K̂inh functions based on the Extreme Rank Length (ERL) measure

defined in [37] and implemented in the R package GET [43]. The main advantage
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Figure 5: Temporal separations ht are in year and spatial distances hs are in kilometer. a) En-

velopes of the spatio-temporal inhomogeneous K-function for the simulated spatio-temporal

multi-scale Geyer point process according to the estimated parameters. b) Image plot of the

local p-value. c) Image plot of the global p-value for any pairs of (hs,max, ht,max).

is that the resulting p-value will not depend on a priori parameters as in the

definition of pglobal with the hs,max and ht,max values. For each point pattern, we

consider the long vector Ti, i = 1, . . . , nsim (resp. Tobs) merging the Kinh
i (·, ht)

(resp. Kinh
obs (·, ht)) estimates for all considered values ht. The ERL measure of

vector Ti (resp. Tobs) of length nst is defined as

Ei =
1

nns

nst∑
j=1

1{Rj ≺ Ri},

where Ri is the vector of pointwise ordered ranks and ≺ is an ordering operator

[37, 43]. The final p-value is obtained by

perl =
1 +

∑nsim

i=1 1{Ei ≥ Eobs}
nsim + 1

.

The global p-value perl is equal to 0.34 consolidating previous results and vali-

dating our hybrid Geyer model.

Note that we did the same tests for 99 simulations of an inhomogeneous

Poisson process with intensity µ(ξ, t)/(2000 × 2000 × 1) (22). This model has
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been rejected at the level 5%, with a median global p-value equals to 0.04.400

The perl value is equal to 0.04 under the Poisson assumption rejecting also this

baseline model.

Conclusion

Due to the capability of Gibbs point processes to cover prevalent struc-

tures (inhibition, randomness and clustering), the hybridization approach al-405

lows to introduce new Gibbs models combining several structures at different

scales. In this paper, we defined the spatio-temporal multi-scale Geyer satura-

tion point process model and detailed the classical statistical inference meth-

ods and MCMC simulation techniques that we have extended to the spatio-

temporal framework and implemented in R code3 that will be added to the stpp410

package [24]. Our simulation study highlighted a better goodness-of-fit of pa-

rameters for the logistic likelihood approach compared to the pseudo-likelihood

approach. Finally, we illustrated the interest of using this model on a spatio-

temporal dataset of forest fire locations associated with environment covariates.

The model validation shows that our model captures the multi-scale interaction415

structure inherent to forest fire occurrences.

In this paper, we focused our attention on the definition of a new hybrid

Gibbs model, the inference methods and MCMC simulation algorithms that we

needed to adapt to the spatio-temporal context. Some of our choices can be

discussed and eventually improved in future works, notably in our application420

to forest fire occurrences which is not presented as an in-depth study but as an

illustration of the model fitting on real data.

In our application study, we considered a log-linear form for the trend de-

pending on covariate information. We chose a two-step procedure for estimating,

at first, the trend coefficients and then the regular parameters of the interaction425

function. Our knowledge on forest fire mechanisms guided this choice because

3http://edith.gabriel.pagesperso-orange.fr/software.html
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the main driver of occurrence locations is the environmental heterogeneity and

the secondary one is the interaction phenomena. The trend is estimated at the

spatial DFCI scale and at the yearly one, corresponding to our covariate res-

olution. In that way, we estimated a global trend at a medium scale whereas430

the interaction parameters are estimated at the point locations and represent a

local interaction behavior at a fine scale. This procedure could be improved by

incorporating variable selection methods, e.g. via regularization [15, 18].

Our two-step estimation procedure allows us to provide confidence intervals

for both the trend coefficients and the regular parameters. We notice that some435

parameters γj are closed to one. Here we consider a bootstrap estimate of the

confidence interval for each γj . We could further test departure from one by

extending the adjusted composite likelihood ratio test [8] to the spatio-temporal

framework. Indeed, [8] proposed a likelihood ratio test for spatial Gibbs point

process models fitted by maximum pseudo-likelihood. They discussed that im-440

plementing other composite likelihood as the logistic likelihood would provide

a better composite likelihood ratio test. Estimating diagnostics related to the

logistic likelihood requires to estimate the variance–covariance matrix of the lo-

gistic score and the sensitivity matrix. [3] provide consistent estimators of these

quantities. The extension to the spatio-temporal framework is a full-blown work445

that also involves efficient implementation.

For the choice of irregular parameters, because the likelihood is not differ-

entiable with respect to them, we used a maximum profile likelihood approach

based on the logistic likelihood estimation procedure and AIC values for model

selection. Introduced for the pseudo-likelihood estimates in [1] and applied to450

the logistic likelihood approach by us using the results in [3], this method con-

sists in fixing irregular parameters and maximizing the composite likelihood

with respect to the regular ones. This technique is a computationally-intensive

method. Thanks to a preliminary spatio-temporal exploratory analysis of the

interaction ranges done with the inhomogeneous pair correlation function g, the455

maximum nearest neighbor distance and the temporal autocorrelation function,

we chose few configurations of feasible values for the nuisance parameters m, rj ,
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qj and sj , j = 1 . . .m. Considering more values would be very time-consuming

and developing a new estimation method would be a subject in its own right.

During the model validation procedure, we could use the global envelope tests460

based on the ERL measure to asses the goodness-of-fit of submodels with fewer

irregular parameters to be parsimonious.

Our model can be used in many fields, like seismology and epidemiology

for example, because several mechanisms exhibit interaction between points at

multiple scales in space and time. Relying on this work, we can also develop465

hybrid models with different density structures. Indeed, although it was not

necessarily highlighted here, we know that forest fires with large burnt areas

avoid future fire occurrences during a vegetation regeneration period. Such

cases of strong inhibition may be modeled by hybrid Gibbs point processes with

a hardcore component like the hybrid Geyer hardcore point process. We recently470

extended our work to this model.
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