A. Pandey, Solid-state Fermentation in Biotechnology: Fundamentals and Applications, 2001.

U. Hölker and J. Lenz, Solid-state fermentation-Are there any biotechnological advantages?, Curr. Opin. Microbiol, vol.8, pp.301-306, 2005.

U. Hölker, M. Höfer, and J. Lenz, Biotechnological advantages of laboratory-scale solid-state fermentation with fungi, Appl. Microbiol. Biotechnol, vol.64, pp.175-186, 2004.

M. Dashtban, H. Schraft, and W. Qin, Fungal bioconversion of lignocellulosic residues; opportunities & perspectives, Int. J. Biol. Sci, vol.5, pp.578-595, 2009.

C. Krishna, Solid-state fermentation systems-an overview, Crit. Rev. Biotechnol, vol.25, pp.1-30, 2005.

J. A. Rodriguez-leon, C. R. Soccol, A. Pandey, and D. E. Rodriguez, Factors Affecting Solid-state Fermentation, Current Developments in Solid-State Fermentation

A. Pandey, C. R. Soccol, and C. Larroche, , pp.26-47, 2008.

, Solid-State Fermentation Technology for Bioconversion of Biomass and Agricultural Residues, In Biotechnology for Agro-Industrial Residues Utilisation, pp.197-221, 2009.

C. H. Christensen, J. Rass-hansen, C. C. Marsden, E. Taarning, and K. Egeblad, The Renewable Chemicals Industry, Chemsuschem, vol.1, pp.283-289, 2008.

J. J. Bozell, Feedstocks for the Future-Biorefinery Production of Chemicals from Renewable Carbon, CLEAN Soil Air Water, vol.36, pp.641-647, 2008.

T. Willke and K. D. Vorlop, Industrial bioconversion of renewable resources as an alternative to conventional chemistry, Appl. Microbiol. Biotechnol, vol.66, pp.131-142, 2004.

P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev, vol.41, pp.1538-1558, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00700173

T. Werpy, J. Holladay, and J. White, Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. DOE Scientific and Technical Information.; Pacific Northwest National Lab, p.419907, 2004.

J. J. Bozell and G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's 'Top 10 revisited, Green Chem, vol.12, 2010.

J. K. Magnuson and L. L. Lasure, Organic Acid Production by Filamentous Fungi, Advances in Fungal Biotechnology for Industry

J. S. Tkacz and L. Lange, , pp.307-340, 2004.

I. Goldberg, J. S. Rokem, and O. Pines, Organic acids: Old metabolites, new themes, J. Chem. Technol. Biotechnol, vol.81, pp.1601-1611, 2006.

G. T. Tsao, N. J. Cao, J. Du, and C. S. Gong, Production of multifunctional organic acids from renewable resources, Adv. Biochem. Eng. Biotechnol, vol.65, pp.243-280, 1999.

N. Liaud, C. Giniés, D. Navarro, N. Fabre, S. Crapart et al., Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi, Fungal Biol. Biotechnol, vol.1, issue.1, 2014.

R. Engel, C. A. Straathof, A. J. Zijlmans, T. W. Van-gulik, W. M. Van-der-wielen et al., Fumaric acid production by fermentation, Appl. Microbiol. Biotechnol, vol.78, pp.379-389, 2008.

Q. Xu, S. Li, H. Huang, and J. Wen, Key technologies for the industrial production of fumaric acid by fermentation, Biotechnol. Adv, vol.30, pp.1685-1696, 2012.

K. Yahiro, S. Shibata, S. R. Jia, W. Park, and M. Okabe, Efficient itaconic acid production from raw corn starch, J. Ferment. Bioeng, vol.84, pp.375-377, 1997.

A. Hevekerl, A. Kuenz, and K. D. Vorlop, Filamentous fungi in microtiter plates-An easy way to optimize itaconic acid production with Aspergillus terreus, Appl. Microbiol. Biotechnol, vol.98, pp.6983-6989, 2014.

T. Willke and K. D. Vorlop, Biotechnological production of itaconic acid, Appl. Microbiol. Biotechnol, vol.56, pp.289-295, 2001.

S. Kanamasa, L. Dwiarti, M. Okabe, and E. Y. Park, Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus, Appl. Microbiol. Biotechnol, vol.80, pp.223-229, 2008.

M. Okabe, D. Lies, S. Kanamasa, and E. Y. Park, Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus, Appl. Microbiol. Biotechnol, vol.84, pp.597-606, 2009.

M. F. Begum and A. R. Alimon, Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production, Electron. J. Biotechnol, vol.14, 2011.

Y. C. Tsai, M. C. Huang, S. F. Lin, and Y. C. Su, Method for the production of itaconic acid using Aspergillus terreus solid state fermentation, p.9, 2001.

T. P. West, Fumaric acid production by Rhizopus oryzae on corn distillers' grains with solubles, Res. J. Microbiol, vol.3, pp.35-40, 2008.

A. Jiménez-quero, E. Pollet, M. Zhao, E. Marchioni, L. Averous et al., Itaconic and fumaric acid production from biomass hydrolysates by Aspergillus strains, J. Microbiol. Biotechnol, vol.26, pp.1557-1565, 2016.

A. Jiménez-quero, E. Pollet, M. Zhao, E. Marchioni, L. Averous et al., Fungal fermentation of lignocellulosic biomass for itaconic and fumaric acid production, J. Microbiol. Biotechnol, vol.27, pp.1-8, 2017.

R. Te-biesebeke, G. Ruijter, Y. S. Rahardjo, M. J. Hoogschagen, M. Heerikhuisen et al., Aspergillus oryzae in solid-state and submerged fermentations, Fems Yeast Res, vol.2, pp.245-248, 2002.

S. B. Ummalyma, R. D. Supriya, R. Sindhu, P. Binod, R. B. Nair et al., Biological pretreatment of lignocellulosic biomass-Current trends and future perspectives. In Second and Third Generation of Feedstocks, pp.197-212, 2019.

R. Kumar, S. Singh, and O. V. Singh, Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives, J. Ind. Microbiol. Biotechnol, vol.35, pp.377-391, 2008.

P. Gervais and P. Molin, The role of water in solid-state fermentation, Biochem. Eng. J, vol.13, pp.85-101, 2003.

A. H. Mondala, Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects, J. Ind. Microbiol. Biotechnol, vol.42, pp.487-506, 2015.

J. Wang, X. Chen, C. Chio, C. Yang, E. Su et al., Delignification overmatches hemicellulose removal for improving hydrolysis of wheat straw using the enzyme cocktail from Aspergillus niger, Bioresour. Technol, vol.274, pp.459-467, 2019.

C. Sandhya, J. Sumantha, G. Szakacs, and A. Pandey, Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation, Process Biochem, vol.40, pp.2689-2694, 2005.

S. Koser, Z. Anwar, Z. Iqbal, A. Anjum, T. Aqil et al., Utilization of Aspergillus oryzae to produce pectin lyase from various agro-industrial residues, J. Radiat. Res. Appl. Sci, vol.7, pp.327-332, 2014.

G. Viniegra-gonzález, E. Favela-torres, C. N. Aguilar, S. J. De-rómero-gomez, G. Díaz-godínez et al., Advantages of fungal enzyme production in solid state over liquid fermentation systems, Biochem. Eng. J, vol.13, pp.157-167, 2003.

M. Ayyachamy, V. K. Gupta, F. E. Cliffe, and M. G. Tuohy, Enzymatic Saccharification of Lignocellulosic Biomass, In Laboratory Protocols in Fungal Biology

V. K. Gupta, M. G. Tuohy, M. Ayyachamy, K. M. Turner, and A. O'donovan, , pp.475-481, 2013.

C. Zhao, S. Chen, and H. Fang, Consolidated bioprocessing of lignocellulosic biomass to itaconic acid by metabolically engineering Neurospora crassa, Appl. Microbiol. Biotechnol, vol.102, pp.9577-9584, 2018.

H. H. Tehrani, A. Tharmasothirajan, E. Track, L. M. Blank, and N. Wierckx, Engineering the morphology and metabolism of pH tolerant Ustilago cynodontis for efficient itaconic acid production, Metab. Eng, vol.54, pp.293-300, 2019.

N. Nemestóthy, P. Bakonyi, P. Komáromy, and K. Bélafi-bakó, Evaluating aeration and stirring effects to improve itaconic acid production from glucose using Aspergillus terreus, Biotechnol. Lett, vol.41, pp.1383-1389, 2019.

A. P. Molnar, Z. Németh, I. S. Kollath, E. Fekete, M. Flipphi et al., High oxygen tension increases itaconic acid accumulation, glucose consumption, and the expression and activity of alternative oxidase in Aspergillus terreus, Appl. Microbiol. Biotechnol, vol.102, pp.8799-8808, 2018.

C. Du and A. A. , Fermentative Itaconic Acid Production, J. Biodivers. Bioprospecting Dev, vol.1, issue.2, 2014.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, Sample Availability: Not available. © 2020 by the authors. Licensee MDPI