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We use the bond-based peridynamics approach to analyze the strength and fracture of dense granular
aggregates with variable amount of a solid binding matrix, distributed according to a simple protocol in the
interstitial space between particles. We show the versatility of the peridynamics approach in application to crack
propagation and its scaling behavior in a homogeneous medium (in the absence of particles and pores). Then
we apply this method to simulate the deformation and failure of aggregates as a function of the amount of the
binding matrix under tensile loading. We find that the tensile strength is a strongly nonlinear function of the
matrix volume fraction. It first increases slowly and levels off as the gap space in-between touching particles is
gradually filled by the binding matrix, up to nearly 90% of the total pore volume, and then a rapid increase occurs
to the maximum strength as the remaining interstitial space, composed of isolated pores between four or more
particles, is filled. By analyzing the probability density functions of stresses in the particle and matrix phases, we
show that the adhesion of the matrix to the particles and the thickening of stress chains (i.e., stresses distributed
over larger cross sections) control the strength in the first case whereas the homogenizing effect of the matrix
by filling the pores (hence reducing stress concentration) is at the origin of further increase of the strength in the
second case. Interestingly, these two mechanisms contribute almost equally to the total strength.

DOI: 10.1103/PhysRevE.102.022906

I. INTRODUCTION

Porous materials are classically described as a homoge-
neous matrix hosting connected or disconnected (open) pores
and associated with upscaling models essentially based on
single-pore or single-crack analysis [1,2]. However, this de-
scription does not cover the class of porous materials in which
porosity is an intrinsic property of their basic microstruc-
ture defined by a dense assembly of elementary constituents.
Granular aggregates partially filled with a binding matrix
belong to this broad class of structured porous materials. It
includes concrete [3,4], sintered powders [5,6], sedimentary
rocks [7], and wheat endosperm (composed of starch granules
distributed in a protein matrix) [8]. Understanding the origins
of their elastic and failure properties is of practical interest
for the design of concretes [9–13], dense particle-filled com-
posites [14], and other new materials [15–17], as well as for
predicting rock fracture [18,19] and the influence of operating
parameters on cereal milling [8,20].

Since these granular aggregates have a rich microstructure,
their mechanical properties depend not only on the phase
volume fractions but also on the geometrical and topological
disorder (connectivity and interactions of the particles) of the
particle phase [21]. For example, the strength and failure of
cemented granular materials and particle-enriched composites
have been shown to depend on the adhesion of the inclusions
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to the matrix [22,23], as well as the size [22] and shapes of the
inclusions [24,25].

In this paper we use peridynamics simulations to quantify
and distinguish two different mechanisms underlying the ten-
sile strength of granular aggregates: (1) stress concentration
by tensile stress chains encompassing the particles and the
binding matrix filling the gap space in between particles, and
(2) stress concentration by isolated pores enclosed between
several particles. The first mechanism is well known for
confined granular materials in which the stress is transmitted
along compressive force chains [26]. The second mechanism
is common to all porous materials in which stress concen-
tration by the pores controls the strength and toughness of
the material [27]. The peridynamics method allows us to dis-
cretize both the particles and the matrix, and to follow the evo-
lution of the stress field throughout the samples. We also use a
protocol for the distribution of the matrix inside our numerical
granular samples so that the interparticle gaps are filled before
the remaining isolated pores begin to be filled as the matrix
volume fraction is gradually increased. As we shall see, this
procedure provides a neat distinction between the two effects.

In the following we first describe the mathematical back-
ground of the bond-based peridynamics method and mesh
convergence in Sec. II. In Sec. III we present the method
used to build the samples. Then in Sec. IV we consider the
tensile strength as a function of the matrix volume fraction.
In Sec. V we investigate the stress transmission to analyze the
two mechanisms underlying the tensile strength. We conclude
with a brief discussion of the results and future lines of
research.
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FIG. 1. Left: Reference configuration B0 of a bond ξ connected
to a material point x and its horizon domainH (x). Right: Deformed
configuration Bt . Representation of displacement field u and relative
displacement field η.

II. NUMERICAL METHOD

The numerical simulation of the deformation and fracture
of inhomogeneous materials is an active field of research
[28,29]. We used the peridynamics method for its capacity
of crack nucleation and computational performance [30,31].
In this method the material is represented as a network of
interacting nodes governed by a nonlocal (integral) formula-
tion of the equations of dynamics inside a given “horizon.”
Bond rupture events lead to damage or to fracture when a
critical number of bonds is damaged. Before its application
to granular aggregates, we provide in this section a brief
description of its principles and show that for brittle materials
considered in this paper, this method is accurate and consistent
with fracture mechanics. These aspects are important for the
validity and robustness of our results.

A. Bond-based peridynamics

The bond-based peridynamics method is a subset of gen-
eral state-based peridynamics approaches [32]. This method
has been successfully used in a wide range of applications
such as the modeling of concrete failure [4], dynamic crack
branching [33,34], polycrystal fracture [35], nanoscale rup-
ture mechanics [36,37], microelectronics materials damage
[38], and wood failure [39].

Let us consider a domain B0 in RD, where D is space
dimension. This domain represents a body in the reference
configuration at time t = 0. The equation of motion for a
material point x ∈ B0 is given by

ρ(x)ü(x, t ) =
∫
H (x)

f [u(x′, t ) − u(x, t ), x′ − x, x]dVx′

+ b(x, t ) , (1)

where ρ, u, and b denote the density, displacement field,
and body force, respectively. All material points originally
at x in B0 are at the position x + u in Bt at time t . The
pairwise force exerted between two material points x and x′ is
denoted by f . The relative position vector, called bond here,
is ξ = x′ − x. H (x) represents the set of bonds connected
to x with lengths below a cutoff distance h called horizon:
H (x) = {ξ ∈ RD | x + ξ ∈ B0 ∧ ‖ξ‖ < h} (Fig. 1).

In the most general implementation of peridynamics,
called nonordinary state-based models, the force density
f [u(x′, t ) − u(x, t ), x′ − x, x] exerted from x on x′ and
f [u(x, t ) − u(x′, t ), x − x′, x′] exerted from x′ on x can have
different directions and magnitudes [32]. In ordinary state-
based models, these two forces are supposed to be radial
but may have different magnitudes. Here, we choose a bond-
based peridynamics approach which neglects the local tangen-
tial and torque components: f [u(x′, t ) − u(x, t ), x′ − x, x] =
− f [u(x, t ) − u(x′, t ), x − x′, x′]. Hence the equation of mo-
tion (1) can be simplified by assuming that each bond ξ

evolves to a deformed state ξ + η, where η = u(x′, t ) −
u(x, t ) is the relative displacement between the bond end-
points:

ρ(x) ü(x, t ) =
∫
H (x)

f (ξ, η, x) dVx′ + b(x, t ) . (2)

Thus a pairwise force f can be defined from the bond initial
state ξ and its relative displacement η:

f (ξ, η) = f (ξ, η, x)
ξ + η

‖ξ + η‖ , (3)

where f (ξ, η, x) is a scalar representing the magnitude of the
force in units of force per unit volume squared. Inserting (3)
into the equation of motion (2) yields

ρ(x) ü(x, t ) =
∫
H (x)

f (ξ, η, x)
ξ + η

‖ξ + η‖ dVx′ + b(x, t ) . (4)

In this paper, inhomogeneous elastic materials are investi-
gated where the force density f depends on different phases.
Hence the elasticity of each bond ξ explicitly depends on both
points x and x + ξ. We assume a harmonic potential energy
for which the force function is given by

f (ξ, η, x) =
⎧⎨
⎩

cx,x+ξ s(ξ, η) ‖ξ‖ � h

0 ‖ξ‖ > h
, (5)

where s is the bond elongation

s(ξ, η) = ‖ξ + η‖ − ‖ξ‖
‖ξ‖ (6)

and cx, x+ξ is the so-called “elastic micro-modulus” and
cx+ξ, x = cx, x+ξ . For all points located in the pores or outside
the domain we set c = 0. The effective Young’s modulus of a
homogeneous sample is given by [34]

E = cπh3(1 − ν)

6
, (7)

which linearly depends on c. The Poisson’s ratio is ν = 1/3
for the bond-based peridynamic approach in two dimensions
(2D) [4].

To take into account the possibility of fracture, we assume
that a bond fails when it exceeds its critical elongation s0,
which depends on the phase (Fig. 2). The fracture energy Gc

of a homogeneous material of elastic modulus E and critical
elongation s0 is given by [34]

Gc = 9Ehs2
0

4π
. (8)
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FIG. 2. (a) Schematic representation of the pairwise force f as a
function of bond elongation s. Failure can occur only in tension for a
critical elongation s0. (b) Connectivity of bonds for a horizon of 3.

Furthermore, the toughness K of the material is related to Gc

and E through K = √
EGc.

In peridynamics approaches, both cracks and interfaces
between phases have a finite thickness depending upon h/δx.
To overcome this blurring effect, higher spatial resolutions
are needed. Another drawback of the bond-based peridynamic
approach is that the mechanical behavior is brittle. An ar-
bitrary mechanical behavior may be implemented by means
of a state-based peridynamic approach, but it involves larger
computing time. Despite the simplicity of the bond-based
peridynamic approach, it has the advantage of allowing for
complex material features to be implemented in this frame-
work, such as anisotropic fabric or a fiber-reinforced matrix
[40–42]. In this paper we focus on highly heterogeneous
distributions of the phases.

Most studies using the peridynamics approach have con-
cerned the dynamic propagation of cracks [31,33,34] and
dynamic fragmentation [31]. In these studies an explicit time
integration scheme is generally used. Much less attention has
been paid to quasistatic conditions, which are of great interest
for low-rate processes [43,44]. Several techniques have been
reported in the literature for quasistatic simulations in the
context of lattice approaches [23]. In most cases, the sample is
loaded until one bond reaches a critical stress (or elongation).
This critical bond is then removed and, after a full relaxation
of the system, the load is incremented. The main disadvantage
of this procedure is its high computational cost. For this
reason, we choose here to allow several bonds to break during
each load increment. See Appendix A for further details.

B. Discretization

The simulated domain is discretized into a two-
dimensional Nx × Ny rectilinear grid of spatial resolution
δx. Each material point i of position xi has a mass mi =
(δx)2ρ(xi ). The system can be viewed as a mass-spring lattice
in which each bond (linear spring) connects two points on the
grid. The equation of motion (4) is discretized on the grid:

miüi(t ) =
∑

x j∈H (xi )

ki js(ξi j, ηi j )
ξi j + ηi j

‖ξi j + ηi j‖
+ bi(t ) , (9)

where ui(t ) = u(xi, t ), ξi j = x j − xi, ηi j = u j − ui, bi(t ) =
(δx)2b(xi, t ), and k = c(δx)4. Since no excluded-volume con-
straints are imposed on the points, the strain should be kept

small enough to avoid overlaps between neighboring bonds
and ensure a macroscopic linear behavior.

The stress tensor at each node i is given by the following
equation [45]:

σi(t ) = 1

δx
2

∑
x j∈H (xi )

f i j ⊗ (ξi j + ηi j ) , (10)

where f i j is the force exerted from material point i to material
point j.

The number of bonds interacting with each grid point
depends on h/δx. Figure 2(b) shows an example of bond
connectivity for a horizon h = 3δx. The node connectivity Wp

increases with h/δx approximately as a power law of exponent
2. For example, for h/δx varying from 1 to 6, we have Wp = 4,
12, 28, 48, 80, and 112, respectively. Finally, it is interesting to
note that, although the determination of the number of points
on a regular lattice within a given distance is numerically
straightforward, it is not fully resolved analytically. This
problem is known as the Gauss circle problem and remains
an open mathematical problem [46]. We developed a parallel
implementation of the discretized bond-based peridynamics
approach with the help of a message passing interface (MPI).
The simulation domain was split into a regular grid of sub-
domains, each one being attributed to a single CPU core. See
Appendix B for further details about the scaling behavior of
the code.

C. Numerical accuracy

The accuracy of a mesh-based simulation depends on
the numerical method, type of elements, and the way the
simulated domain is discretized. One needs to find a tradeoff
between numerical accuracy and computation time. As finer
meshes generally lead to a more accurate solution but longer
computation time, it is necessary to quantify the required
accuracy for the problem at hand and the mesh effects with
respect to the considered behavior, such as failure stress
or toughness. Below, we will show that the global Griffith
fracture approach is consistent with our simulations.

In peridynamics approaches, both the density of the mesh
(which depends on the number of elements in x direction
Nx) and the resolution of the horizon (which depends on
h/δx) should be fixed. For an inhomogeneous material, the
rectilinear mesh leads to the rasterization of the interfaces
but also to a blurring effect due to the nonlocal interactions.
This issue was extensively studied in [47,48], and the authors
concluded that a horizon of 2 should be avoided, but a horizon
of 3, which corresponds to 28 bonds per node, provides a good
compromise between the accuracy of the solution and compu-
tational efficiency. We studied mesh convergence of elasticity
properties, and our results confirmed their conclusion.

The failure stress or the strength σc of a homogeneous
material can be deduced from the Young’s modulus E and
critical elongation s0 as σc = Es0. In multiphase or damaged
materials, failure is triggered by stress concentration in the
vicinity of defects, and the failure is described in terms of
both the strength σc and toughness K of the material [49–51].
According to the classical fracture mechanics, for a single
crack of length 2a, the toughness in mode-I fracture is given
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FIG. 3. Stress field around a crack before failure for h/δx = 6,
a = 0.0125 and (a) Nx = 128, (b) Nx = 256, (c) Nx = 512, and
(d) Nx = 1024.

by

K = σc
√

πa = √
EGc , (11)

where Gc is the critical energy release rate. Hence the ratio
σc/K as a function of 1/

√
πa is expected to be a linear func-

tion of slope 1. In the same way, setting that the theoretical
toughness is Kth = √

EGc, the ratio σc/Kth as a function of
1/

√
πa should be a linear function of slope K/Kth, where K =

σc
√

πa is the value of toughness measured from peridynamics
simulations.

In the case of a sufficiently small defect, knowing that σc =
Es0, a length lp can be defined from Eqs. (8) and (11):

lp = 2

π

(
K

σc

)2

= 9

2π2
h . (12)

This length represents that of the fracture process zone (FPZ),
where the material undergoes damage ahead of the fracture
tip. The above expression indicates that the horizon h is more
than a purely numerical parameter and can be physically
interpreted as the size of FPZ.

To investigate the evolution of K as a function of both spa-
tial resolution and horizon and for different values of the crack
length, we performed extensive simulations of a homogeneous
sample containing a single central crack perpendicular to the
direction of extension, as shown in Fig. 3. The sample is
square-shaped and its side length is 1. The initial crack is a
segment, and the bonds crossing it are broken at time t = 0.
The simulations were carried out for a set of values of h/δx =
2, 3, 4, 5, 6, 7, 8 and Nx = 128, 256, 512, 665, 1024, and in
each case the crack half-length was set to different values

 0

 1

 2

 3

 4

 5

 6

 0  0.002  0.004  0.006  0.008  0.01

σ c
 / 

K
th

1 / N x

a=0.0125
a=0.025

a=0.05
a=0.1

FIG. 4. Failure stress σc of a homogeneous material including a
single crack of length 2a as a function of 1/Nx for h/δx = 3 and
several values of a. σc is normalized by the theoretical toughness
Kth = √

EGc. The straight lines are a linear regression to the data
points.

a = 0.1, 0.05, 0.025, 0.0125. With these sets of parameters,
140 simulations were performed.

Let us first consider the spatial mesh convergence at a
fixed value of h/δx. Figure 4 displays σc/Kth as a function
of 1/Nx for different values of a in the case h/δx = 3. For all
crack lengths, we observe a nearly linear increase of σc as Nx

increases, with larger variations and larger strength for shorter
crack lengths. The asymptotic value of the strength can be
obtained by a linear extrapolation in the limit 1/Nx → 0 (limit
of infinite precision). The finite spatial resolution leads to
reduced elastic moduli and failure stress due to the insufficient
number of elements or meshes to represent the continuum
elasticity correctly [13,52,53]. This value depends on both a
and the horizon h/δx. Its values are plotted as a function of
1/

√
πa for different values of h/δx in Fig. 5. As expected,

[σc/Kth]Nx→∞ is a linear function of 1/
√

πa, and the slope of
the curve for a given h/δx can be identified as [K/Kth]Nx→∞,
measured by peridynamics simulations. This slope is plotted
in Fig. 6 as a function of h/δx. Its value is above 1 at small
horizon and tends to 1 as the horizon increases.

The above results show how the accuracy of peridynamics
simulations increases with h/δx. However, a large horizon
such as h/δx = 8 implies a larger number of interactions
and thus long simulations. The choice h/δx = 3 remains a
good compromise between numerical efficiency and accuracy.
This is consistent with earlier results [54]. Furthermore, the
accuracy gained by a larger value of h/δx is too expensive and
unnecessary to delineate the regime transition addressed in the
following.

The examples presented and discussed in this section prove
that the peridynamics method captures the continuum-scale
quantities such as toughness despite its discrete nature, which
removes stress singularities and does not necessarily meet
the assumptions of scale separability as required by the
continuum mechanics models of fracture. The bond-based
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FIG. 5. Extrapolated value of normalized failure stress at infinite
resolution in a homogeneous sample that contains a single crack of
length 2a as a function of 1/

√
πa for several values of h/δx. Straight

lines represent linear fits to the data. The slopes represent in each
case the ratio [K/Kth]Nx→∞ in the high-resolution limit.

peridynamics is used here for both its capacity of crack nucle-
ation and propagation and its computational performance and
versatility. In its basic formulation, the simulated mechanical
behavior is brittle and Poisson’s ratio is 1/3. Although this
method can be extended for the simulation of other mechani-
cal behaviors, it is fully suited in its basic form to multiphase
materials in which the complexity of the mechanical behavior
arises from the geometrical texture.

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10

[ K
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th

 ] N
x 
→
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h / δx

FIG. 6. Infinite-resolution normalized toughness [K/Kth]Nx→∞
measured from peridynamics simulations as a function of h/δx. Error
bars represent standard deviation.

αd

αd
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(c) (d)

FIG. 7. (a) Algorithm for inserting the binding matrix in the form
of pairwise trapezoidal bridges in the gap space in between pairs of
neighboring particles. Snapshots for α = 0.25 (b), α = 0.5 (c), and
α = 0.75 (d).

III. SAMPLE BUILDING

To generate the microstructure with a distribution of
nonoverlapping particles, we used the discrete element
method (DEM). The particles are polydisperse disks placed
initially inside a 2D simulation box of side lengths Lx and
Lz. Then a weak confining pressure (compared to particle
stiffness) is applied to the walls of the simulation box until
a fully jammed state is reached with an aspect ratio Lz 
 2Lx

[45]. The particle volumes have a uniform distribution [55]
with a size ratio of 2 between the largest and smallest particles.
Due to isotropic compaction, the resulting packing has an
isotropic texture in terms of contact orientations and forces.
Ten independent samples of 400 particles were prepared using
this procedure.

The binding matrix is then added to the interstitial space
between particles according to the following protocol. A
trapezoidal-shaped bridge of the matrix phase is added in
the gap space between all pairs of particles for which the
center-to-center distance is below β(d + d ′)/2, where d and
d ′ are the diameters of the paired particles and β is a control
parameter [8,56]. For β = 1, the eligible pairs include only the
pairs of touching particles. As illustrated in Fig. 7, the thick-
ness of the bridges is a fraction α of the particle diameters. For
sufficiently low values of α, to which we will refer as a gap-
filling factor, the binding matrix connects only adjacent pairs
of particles [Fig. 7(b)]. When α increases, the thickness of the
matrix bridge increases as shown in Fig. 7(c), and for α = 1,
the bridge fills nearly the whole gap between the two particles;
see Fig. 7(d). At this point, some neighboring bridges overlap.
In particular, all the pores enclosed between three particles are
filled, and the remaining pore space is composed of isolated
pores enclosed between four or more particles. To fill these
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FIG. 8. Saturation factor S of the binding matrix as a function
of the gap-filling factor α. The data points are averages over ten
independent samples. Error bars are smaller than the symbols.

pores, α must further be increased beyond 1. In the following,
we refer to the matrix for α < 1 as a gap-filling matrix. Of
course, other protocols for the distribution of the matrix phase
are possible. The protocol used here has the advantage of
allowing the gap-filling matrix to be clearly distinguished
from the pores of higher order, i.e., pores that do not belong
to a gap space in between a pair of particles.

In our simulations, we set β = 1.1 so that the solid bridges
are attributed only to the touching and very close pairs of
particles. The parameter α was varied from 0.25 to 1.25. Let
	m be the matrix volume fraction and 	v the volume fraction
of the interstitial space between particles (called also void
space). The saturation factor S = 	m/(	m + 	v ) represents
the volume fraction of the void space filled by the matrix. The
saturation factor increases with α, as shown in Fig. 8. Note
that S is a nearly linear function of α for intermediate values
of α. For α = 1, 90% of the interstitial space is filled. This
means that the isolated pores at this filling degree represent
only 10% of the interstitial volume between particles. We also
created a sample with S = 1 by simply filling the whole void
space.

Figure 9 displays zoomed snapshots of the pore space for
different values of the saturation factor S. Both the number
and size of the pores decrease by orders of magnitude with
increasing S. We used a flood fill algorithm to build the list
of pores and their volumes in the samples. Figures 10 and
11 show the number and average volume (area in 2D) of the
pores, respectively, as a function of S. We see that the number
of pores declines continuously beyond S = 0.34, whereas the
average pore volume declines significantly only at higher
values of S close to 1, reflecting the filling of isolated pores.
The largest pore volume, shown also in Fig. 11, follows a
similar trend.

FIG. 9. Pores in cemented granular materials for (a) S = 0.064,
(b) S = 0.34, (c) S = 0.67, (d) S = 0.91, and (e) S = 0.97.

IV. TENSILE STRENGTH

The samples created by the compaction of rigid particles in
a box and filled with a given amount of matrix are discretized
on a lattice. The lateral walls (along the x axis) are removed,
and the top and bottom walls are assumed to have the same
mechanical properties as the particles. The bottom wall is
fixed, and the top wall is subjected to incremental quasistatic
extension at constant rate along the z axis.
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FIG. 10. Number of pores in a sample as a function of the
saturation factor S.

Each bond connecting two lattice points i and j (closer
than the horizon h) has a stiffness ki j depending on the phase
in which the points are located. When i or j is in the pores,
ki j = 0; when i and j are in the matrix, ki j = kMM ; and when i
and j are in the same particle, ki j = kPP. Otherwise, ki j = kPM

when i and j are in different phases or in different particles.
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FIG. 11. The average volume of pores and the largest pore vol-
ume in a sample as a function of the saturation factor S.
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FIG. 12. Stress-strain relationships for different values of S. The
stress is normalized by the matrix failure stress, and the strain is
normalized by the matrix failure strain.

The value of the critical elongation s0i j follows the same
assumptions: when i and j are in the matrix, s0i j = s0MM ;
when i and j are in the same particle, s0i j = s0PP; otherwise,
s0i j = s0PM .

The ratio of Young’s modulus EPP of the particles to that
of the matrix EMM was set to ψ = EPP/EMM = 4. This choice
implies that most of the deformation occurs in the matrix
phase. In the same way, the ratio of the toughness of the
particles to that of the matrix was set to KPP/KMM = ψ = 4.
The particle-matrix interface is assumed to have the same
properties as the matrix: EPM = EMM and KPM = KMM . This
choice of the mechanical parameters was motivated by the
general observation that in most aggregates the matrix is
the weakest phase and the properties of the interface are
generally closer to those of the weaker phase. The focus of
this paper is on the effect of the binding matrix. According
to our earlier results [57], the value ψ = 4 is high enough to
ensure that particles will not be damaged during tensile tests
and the cracks propagate only inside the binding matrix. A
similar analysis can be performed for other values of the phase
material properties.

Figure 12 shows the vertical stress, normalized by the
tensile strength σ m

c of the matrix, as a function of vertical
strain ε, normalized by the fracture strain εm

c = σ m
c /EMM , for

different values of S. In all cases we observe a brittle linear
elastic behavior with an increasing effective Young’s modulus
and fracture stress as S increases. The tensile strength of the
aggregate is the fracture stress σc at the failure point. Up to
the failure point, no breakage events are observed inside the
sample, which continues to deform elastically. At failure, a
crack nucleates and propagates instantly across the sample,
leading to sudden stress drop. Figure 13 shows two examples
of typical crack paths. The cracks are extended damaged
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FIG. 13. Zoomed snapshots of crack paths for (a) S = 0.34 and
(b) S = 0.67.

zones with a constant thickness controlled by the size of the
peridynamics horizon. As expected, they are initiated in the
matrix and cannot penetrate the particles since the matrix has
a lower toughness than the particles (ψ = 4). For this reason
the tensile strength depends on the strength of the matrix
phase and the arrangement of the particles, and may thus be
quantified in terms of a tortuosity parameter [58].

Figure 14 shows the tensile strength σc as a function of
the saturation factor S. The tensile strength first increases
rapidly with S in the range from 0 to 0.4, then increases
only slightly from 0.4 to 0.9 before rising strongly again as S
increases from 0.9 to 1. The tensile strength is nearly doubled
in this range, increasing from σc 
 0.38σ m

c to σc 
 0.78σ m
c .

This means that for S = 1, the matrix filling the isolated
higher-order voids, representing only 10% of the total matrix
volume, contributes as much to the strength of the aggregate
as the gap-filling matrix, corresponding to 90% of the total
matrix volume. This behavior reflects stress concentration by
both the particle chains and the isolated pores that we analyze
in detail below. In the fully saturated case S = 1, the ratio
σc/σ

m
c 
 0.78 reflects the fact that the crack propagates only

in the matrix phase following a tortuous path.

V. STRESS TRANSMISSION

The tensile stress in cemented aggregates is transmitted
through both the particle phase and the matrix phase. As the
amount of the matrix increases, we expect an increasingly
homogeneous transmission of the stress, with the matrix play-
ing two different roles depending on whether it fills the gaps
in-between the particles or the remaining isolated pores when
the gaps are filled. In other words, as long as the saturation
factor S is below 0.9, we expect the matrix just to bridge the
particles, allowing tensile stresses to be transmitted across the
particle phase. For larger values of S the higher-order pores
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FIG. 14. Tensile strength σc normalized by the strength σ m
c of

the matrix phase as a function of the saturation factor S. The data
points are averages over ten samples, and the error bars are the
corresponding standard deviations.

are filled by the matrix, and thus stress concentration by the
pores is reduced. We would like to clarify the signature of
these two different effects on the distribution of tensile and
compressive stresses inside the material.

Figure 15 displays several zoomed maps of the vertical
stress field σzz for different values of S for ε/εc

m = 1.62 ×
10−2. At low values of S, the tensile (positive) stresses are
concentrated at the contact points between particles, which
define stress chains across the contacts and particles through-
out the system, although they are blurred inside the particles,
showing both large stresses close to the contact points and
a large number of vanishing stress values. The stress chains
thicken with increasing volume of the matrix, while losing
their intensity. At larger values of S we still observe the stress
chains, but the patterns of stress concentration are correlated
both with the remaining pores and with the particle positions.
This is consistent with a recent work showing that stress
chains can be induced not only by the contact network but
also by the presence of disordered pores inside a continuous
matrix [27].

The compressive forces (not shown in Fig. 15) are by
at least one order of magnitude lower than tensile forces.
The mean values of the tensile (positive) and compressive
(negative) vertical stress σzz for ε/εc

m = 1.62 × 10−2 are
shown in Fig. 16 as a function of S. As expected, the average
tensile stress increases with S. Moreover, its value is well
above that in the matrix alone (〈σzz〉/σ m > 1). This reflects
the fact that the particle phase carries the largest stresses due
its largest volume fraction. The mean compressive stress is
approximately 10 times lower than the tensile stress, and it
declines with increasing S. In particular, its rapid decrease
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FIG. 15. Zooms in typical vertical stress maps in simulated
aggregates for ε/εc

m = 1.62 × 10−2 and (a) S = 0.064, (b) S =
0.34, (c) S = 0.67, (d) S = 0.91, and (e) S = 0.97. The stress is
normalized by the mean vertical tensile (positive) stress. The color
scale ranges from heavy blue for zero stress to heavy red for strong
stresses.
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FIG. 16. Average value of tensile (positive) and compressive
(negative) vertical stresses in the sample as a function of the ma-
trix saturation factor S for ε/εc

m = 1.62 × 10−2. The stresses are
normalized by the stress in pure matrix at the same strain. The data
points are averages over ten samples and the vertical error bars are
the corresponding values of the standard deviation.

towards zero for values of S close to 1 is a signature of load
transfer from the particles to the matrix as the isolated voids
are filled by the matrix.

The probability density functions (PDFs) of vertical
stresses σzz are shown in Fig. 17 for different values of S. For
small values of S we observe a broad distribution, with the
largest tensile stresses extending to several times the average
tensile stress of the sample. As S increases the PDF shrinks,
reflecting larger homogeneity of stress transmission. For all
values of S we observe a pronounced peak centered on the
average tensile stress. Its increasing value with S is another
signature of the increasing homogeneity due to the pore-filling
role of the matrix. The number of compressive stresses also
declines and vanishes as S → 1. The PDFs are also charac-
terized by a peak or kink at zero stress. This peak is clearly
a signature of the inhomogeneous stress distributions inside
the particles. The strongest stresses are located at the contact
zones between particles, but the stresses in the outer layers or
rims of the particles that are not covered by the matrix are in-
duced by the small deformations of the particles, and thus they
are vanishingly small. These small stresses are also induced
by the arching effect, i.e., deviation of stress lines due to local
archlike structures, giving rise to low-stress regions [26].

A common feature of the stress PDFs is the exponential
falloff at large tensile stresses:

P(σ ) ∝ e−θσzz/〈σ+
zz 〉 . (13)
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FIG. 17. Probability density function (PDF) of vertical stresses
in granular aggregates for different values of S. The stresses are
normalized by the average tensile stress (positive) σ+

zz in each sample.
On each curve, a symbol is drawn every five points. The straight lines
represent exponential functions that are added here as a guide to the
eyes.

This feature is a hallmark of force transmission in granular
materials [26,59–62]. It is generally associated with the force
chains, i.e., long-range correlations of strong forces across
the contact network. Since we observe tensile stress chains
(Fig. 15) in our aggregates, we may conclude that the ex-
ponential tails represent a signature of the contact network,
connecting the particle phase at least in the gap-filling stage
(S < 0.9). For larger values of S, the exponential tails can be
attributed to disorder in the distribution of isolated pores [27].
This distinction between the two origins of the exponential
tails is best quantified in Fig. 18, where the coefficient θ is
plotted as a function of S. We observe a nearly linear increase
of θ with S, followed by a rapid increase for the largest values
of S. This sudden change is consistent with the rapid increase
of the tensile strength in Fig. 14. This change can be described
as a transition from stress concentration by the particle chains
to stress concentration by pores.

VI. CONCLUSION

The central idea of this work was to investigate the origins
of the tensile strength in granular aggregates for a varying
amounts of the binding matrix. The bond-based peridynamics
model was used for its versatile nature, allowing for the
discretization of both particle and matrix phases on the same
underlying lattice and crack nucleation based on a local stress
criterion. We showed that the Griffith model is in full agree-
ment with peridynamics simulations for crack propagation,
and we investigated the mesh effects and the choice of nu-
merical parameters such as lattice step and the peridynamics

FIG. 18. The coefficient θ of the exponential falloff of tensile
stresses as a function of the saturation factor S. The dashed line is
plotted as a guide to the eyes.

horizon, identified here as the size of the fracture process
zone.

The sample building procedure was designed to allow
filling the gap space between pairs of particles by the binding
matrix in the first stage. This procedure leads to a fraction S =
0.9 of the interstitial space between particles to be filled. The
remaining fraction is composed of isolated pores that are filled
in a second stage. By subjecting the samples to tensile loading,
we found that the contributions of the gap-filling matrix and
pore-filling matrix to the tensile strength of the aggregates are
nearly equal. The underlying physical effects are, respectively,
tensile stress chains in the presence of a gap-filling matrix in
the first stage and reduced stress concentration by the pores as
they are filled by the matrix in the second stage.

The granular samples used in this work were dense pack-
ings created by compaction. Hence the number and volumes
of isolated (higher-order) pores is small once all the gaps
between pairs of particles are filled. For a lower packing
fraction we expect this fraction to increase. It would therefore
be interesting to consider in a future work samples of different
packing fractions and evaluate the effect of the binding matrix.
Further simulations can also be performed to analyze the shear
strength of the aggregates by subjecting them to simple shear.
A similar work in three dimensions (3D) requires much more
computation time and memory. Although the pore structure
in 3D packings is different, we still may distinguish the inter-
particle gap space from higher-order pores. For this reason,
we expect similar results in 3D. Finally, the peridynamics
approach can be used to investigate other classes of structured
porous materials such as cellular solids where both porosity
and stress correlations should underlie their strength and
failure properties.
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APPENDIX A: QUASISTATIC LOADING

In order to enforce quasistatic loading, we damp elastic
waves by adding a viscous force −νu̇i(t ) to all material points
[43]. The viscosity ν should be below the critical viscosity
min{√2mik} to avoid supercritical damping.

Upon failure, the stored elastic energy is released. Under
stress-controlled conditions, this may lead to unstable crack
propagation and bifurcations. To remain in quasistatic regime,
one may decrease the loading rate at incipient breakage.
Following the idea of the snap-back method [9], we use a
regulation procedure which consists of applying the strain ε at
a rate �(t ) which depends on the cumulative damage energy
ω:

ω̇ = − 1

τ
ω +

∑
i

δ(t − iδt )�ωi , (A1)

�̇ = − 1

τ
(� − �0 e− ω

ω0 ) , (A2)

where τ is a relaxation time, �0 is the imposed strain rate,
δ is the Dirac function, and �ωi represents the total damage
energy of all bonds broken during the ith time step. ω0 is the
energy required to open a crack of length �� in mode I in
the weakest phase. A value of �� below 1% of the system
characteristic size is sufficiently small to ensure quasistatic
loading with a reasonable CPU time. This value was used in
all the simulations reported in this paper.

APPENDIX B: PARALLEL IMPLEMENTATION

Mechanical simulation of natural materials generally re-
quires: (1) highly resolved samples accounting for their

FIG. 19. Speedup of the developed peridynamics code (for
h/δx = 3) as a function of the number of processes for two reso-
lutions: 512 × 1024 and 1024 × 2048.

complex microstructures, and (2) a large statistical set of tests
to fully capture the mean behaviors and their variability. For
these reasons and due to the CPU cost of the simulations,
parallel computing is necessary.

We developed a parallel bond-based peridynamic computer
code relying on the message-passing interface (MPI), which
provides efficient routines to exchange data between a set of
processes. In this code the spatial domain is split in equal-
size subdomains which is attributed to a single process. The
scalability of the code was tested on the French national clus-
ter “Genotoul Bioinformatics.” In this cluster, each computer
node involves two IvyBridge 10 cores hyperthreaded micro-
processors of frequency 2.5 GHz interconnected through a
Quad Data Rate (QDR) infiniband network for both MPI and
input/output communications.

Figure 19 shows the speedup as a function of the number
P of processes involving up to 200 cores. The global trend
shows a good scalability of the parallel algorithm. However,
the speedup is not linear due to the nonlocal third-order
neighborhood employed in the computation, which increases
the exchange of data during the communication steps.
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