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Abstract: Toscana virus (TOSV) is a Phlebovirus in the Phenuiviridae family, order Bunyavirales, found in
the countries surrounding the Mediterranean. TOSV is an important cause of seasonal acute meningitis
and encephalitis within its range. Here, we determined the full sequence of the TOSV strain 1500590,
a lineage A virus obtained from an infected patient (Marseille, 2007) and used this in combination
with other sequence information to construct functional cDNA plasmids encoding the viral L, M,
and S antigenomic sequences under the control of the T7 RNA promoter to recover recombinant
viruses. Importantly, resequencing identified two single nucleotide changes to a TOSV reference
genome, which, when corrected, restored functionality to the polymerase L and made it possible to
recover infectious recombinant TOSV (rTOSV) from cDNA, as well as establish a minigenome system.
Using reverse genetics, we produced an NSs-deletant rTOSV and also obtained viruses expressing
reporter genes instead of NSs. The availability of such a system assists investigating questions that
require genetic manipulation of the viral genome, such as investigations into replication and tropism,
and beyond these fundamental aspects, also the development of novel vaccine design strategies.

Keywords: reverse genetics; Phlebovirus; Bunyavirales; Toscana virus

1. Introduction

Toscana virus (TOSV) belongs to the genus Phlebovirus of the Phenuiviridae family
(order Bunyavirales), first isolated in 1971 from Phlebotomus perniciosus and P. perfiliewi sand flies
in Italy [1,2]. This and related viruses are widely spread around the Mediterranean basin [3].
Members of the Phlebovirus genus are characterised by their enveloped, trisegmented, negative-sense
single-stranded RNA genome. The L segment encodes for the RNA dependent RNA polymerase
(RdRp). The M segment encodes the surface glycoprotein precursors Gn and Gc, and a non-structural
protein NSm within a single NSm/Gn/Gc open reading frame. The S segment is ambisense and has
the nucleocapsid protein N in the negative sense and the second non-structural protein NSs in
the positive sense [4–7]. TOSV is prevalent in the countries surrounding the Mediterranean, as well

Viruses 2020, 12, 411; doi:10.3390/v12040411 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0003-1601-619X
https://orcid.org/0000-0001-6673-4697
https://orcid.org/0000-0002-9442-2903
https://orcid.org/0000-0003-4707-726X
https://orcid.org/0000-0003-2271-3549
https://orcid.org/0000-0001-6893-9848
http://www.mdpi.com/1999-4915/12/4/411?type=check_update&version=1
http://dx.doi.org/10.3390/v12040411
http://www.mdpi.com/journal/viruses


Viruses 2020, 12, 411 2 of 15

as islands within, with three distinct co-circulating lineages, i.e., A, B, and C, which roughly correspond
to geographical location with lineage A toward the east and B toward the west. Lineage C appears to
be present in Croatia and Greece, although it has never been isolated. The lineages can co-circulate,
and both lineage A and B are found in France and Turkey [8–17]. TOSV is indeed widespread, with
detection reported in North African countries (reviewed in [8]), and also more recently detection in
Bulgaria [18].

TOSV is found in both the male and female sand flies in the wild, and after artificial infection,
can be sexually transmitted between adults and transovarially transmitted to larvae. Seroprevalence
appears high among domestic animals and dogs in particular. This could play a role in maintaining
levels of TOSV while the sand fly numbers are reduced during the winter months [1,19–25].

Seroprevalence among humans is around 10% to 24%, occasionally reaching 40% within the range
of sand fly distribution; suggesting rates of asymptomatic or mild infection is relatively high
and seroprevalence increases with age, steadily increasing in age groups over 10 years (thus suggesting
exposure time to sand flies is important in transmission and infection) [14,16,18,26–31]. Although mild
cases of TOSV infection generally are self-limiting febrile illnesses that require no treatment, TOSV
exhibits a tropism for the central nervous system (CNS) and cases in the areas around the Mediterranean,
as well as in people who holiday in the Mediterranean area, have been described. The outcome of
infection is usually good and there is no recurrence of symptoms. The virus, however, has the potential
to cause severe aseptic meningitis, meningoencephalitis, and severe infections beyond the currently
known geographical range of the virus [32–44]. Keeping preparedness in focus, it is important to
develop tools to study such viruses.

Studies of TOSV has been limited due to the absence of rescue systems to generate recombinant
virus, thus not allowing for direct genetic manipulation of the virus. Here, we present the development
of a minigenome system, as well as a reverse genetics system for TOSV lineage A and show that genetic
manipulation could be achieved. We generated viruses no longer expressing the type I interferon
antagonist NSs [45], either deleted or replaced with reporter genes. These novel tools could assist
studies on this emerging pathogen by allowing direct manipulation of the virus.

2. Materials and Methods

2.1. Cell Culture

Cells used were A549, A549 NPro (expressing BVDV NPro; a kind gift of R. Randall, University
of St. Andrews), BSR, and BSRT7/5 CL21 [46] (a clone based on BSRT7/5 cells; obtained from K.-K.
Conzelmann, Ludwig-Maxmilians-Universität München, Germany [47]). The A549 and A549 NPro
cells were grown in DMEM (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
10% fetal bovine serum (FBS) and 100 units/mL penicillin and 100 µg/mL streptomycin with the A549
NPro cells additionally supplemented with blasticidin at 10 µg/mL. BSR and BSRT7/5 CL21 cells were
grown in GMEM (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% FBS,
10% tryptose phosphate broth (TPB), pencillin/streptomycin with the BSRT7/5 CL21 cells additionally
supplemented with 0.25 mg/mL G418. All cell culture was carried out at 37 ◦C and 5% CO2.

2.2. Viral Rescue

All transfections were done using TransIT®-LT1 Transfection Reagent (Mirus, Madison, WI, USA)
according to the manufacturer’s instructions. The BSRT7/5 CL21 cells were seeded at a density of 3 ×
105 cells per well in a six-well plate. After 24 h, and at 80% confluency, cells were transfected with 500
ng of each plasmid containing the antigenomic S, M, and L segments under control of the T7 RNA
polymerase promoter. The plates were kept at 37 ◦C and 5% CO2 until the first sign of CPE, or 6 days.
Then, the media was collected and clarified by centrifugation. Supernatants designed as passage 0 (P0)
stocks were stored at −80 ◦C.
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2.3. Viral Culture and Stocks

TOSV (strain 1500590, lineage A, [12]) was inoculated at a low multiplicity of infection (MOI)
(0.001), or 100 µL of P0 BSRT7/5 CL21 rescue supernatant per 20 mL, into A549 NPro cells in DMEM
supplemented with 2% FBS. Cells were grown at 33 ◦C and media harvested once CPE began to occur
or after 2 weeks, whichever was earlier. The media was clarified by centrifugation and stocks frozen
at −80 ◦C.

2.4. Rescued Viral Culture and Stocks

To create stocks of rTOSV, the media from 6-day-old transfected BSRT7/5 CL21 cells was clarified
by centrifugation before 100 µL was added to a 150 cm2 flask of A549 NPro cells at 60% confluency in
2% FCS containing DMEM. The flask was incubated at 33 ◦C, 5% CO2, for 7 days, until the cells began
to show signs of CPE. The media was removed and clarified by centrifugation before freezing at −80
◦C.

2.5. Virus Titration

The virus was titred by plaque assay on A549 NPro cells under an overlay of 1×MEM (Gibco,
Thermo Fisher Scientific, Waltham, MA, USA), 2% newborn calf serum (NBCS) and 0.6% Avicel.
These were incubated at 37 ◦C and 5% CO2, for 3 to 11 days. Then, cells were fixed in 4% formaldehyde
and stained with trypan blue for visualisation. All viral titres referred to are given as plaque forming
units/mL (PFU/mL).

2.6. Minigenome Replication Assay

A Renilla luciferase reporter plasmid, pTOSV hRen, was designed by substituting the M segment
coding region with a negative-sense, humanised Renilla luciferase ORF under the control of the T7
RNA polymerase promoter, and synthesised (Genscript, Piscataway, NJ, USA). This was transfected
alongside a Firefly luciferase transfection control, pTM1-FFLuc, which was used for normalization
of the Renilla luciferase output. The reporter was used in combination with the L and N expression
plasmids, pTM1-TOSV-L and pTM1-TOSV-N. Unless otherwise described, the plasmids were used
at 500 ng each, transfected into 3 × 105 BSRT7/5 CL21 cells in 6-well plates using TransIT®-LT1.
The luciferase expression was measured from cell lysate after 48 h, using the Promega Dual-Luciferase®

Reporter Assay System.

2.7. Nanoluciferase (NLuc) Expression Assay

Cells were infected with rTOSV ∆NSs:NLuc at the MOI stated in the text. To measure NLuc
expression, the cells were lysed in Promega passive Lysis buffer before the lysate was mixed 1:1 with
Promega (Madison, WI, USA) Nano-Glo Luciferase Assay Substrate. The reactions were allowed to
equilibrate for 10 min at room temperature before measurement.

2.8. Viral Growth Curves

The A549 NPro cells were seeded at a density of 3 × 105 in six-well plates. The virus was added
at a MOI of 0.01 per well. After one hour (37 ◦C, 5% CO2), virus containing media was removed
and the well washed in PBS. After washing, 2 mL of 10% FCS containing DMEM (Gibco, Thermo Fisher
Scientific, Waltham, MA, USA) was added and removed at the appropriate time point. The media was
frozen at −80 ◦C until titration.

2.9. Viral RNA Extraction, cDNA Synthesis, and RACE Analysis

The virus was grown on A549 NPro cells, as previously described, and the supernatant
was collected and clarified by centrifugation. The viral stock was concentrated 10:1 using
a 100 kDa NMWL protein filter. Viral RNA (stocks contain vRNA and cRNA) extraction was
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performed on the concentrate using the Qiagen (Hilden, Germany) QIAamp Viral RNA kit
according to the manufacturer’s protocol. The RNA was polyadenylated using the Ambion
(Austin, TX, USA) polyA tailing kit according to the manufacturers protocol, and cleaned using
the Qiagen (Hilden, Germany) RNeasy Kit, RNA cleanup protocol. cDNA was then synthesised
using SuperscriptIII Reverse Transcriptase and primer Oligo-d(T)v (GACCACGCGTATCGATG
TCGACTTTTTTTTTTTTTTTTv, with v being a variable nucleotide). The 3′ termini of the S
segment genome and antigenome were amplified from the cDNA using primers TOSV_RACE_S1
(CAAAGTGGCTGCCTAGTCC) or TOSV_RACE_S2 (CCTTAGCCCAAAAGGTGG), with primer
RACE_AP (GACCACGCGTATCGATGTCGAC). The 3′ termini of the M segment genome
and antigenome were amplified using the primers TOSV_RACE_M1 (GGTATAAGCTCCATTCCCTGG)
or TOSV_RACE_M2 (CCAGAGCCTCGTAAAGGC), with the RACE_AP primer. The 3′ termini
of the L segment genome and antigenome were amplified using the primers TOSV_RACE_L1
(CAGTCGACTTGTGATCCTCTG) or TOSV_RACE_L2 (GGGTCTTCATATCCATATGGG), with
the RACE_AP primer. The L ORF was also amplified in overlapping 1 kb sections from cDNA
to consolidate sequencing data. Fusion PCR was used to join overlapping sections into 2kb products
which were, in turn, used to create two 4 kb sections covering the entire ORF. Each individual PCR
reaction was sequenced to provide multiple coverage.

2.10. Viral RNA Extraction and RNA Sequencing

The virus was grown in large volume cell culture flasks (5 × 225 cm2 flasks, 150 mL media)
on A549 NPro cells as in Section 2.3, and the supernatant was collected and clarified by centrifugation.
The viral stock was concentrated to a final volume of 20 mL using a 100 kDa NMWL protein filter.
Then, the viral particles were pelleted by ultracentrifugation at 25,000 rpm, 4 ◦C, for 2 h. Then, the viral
RNA was extracted using a Qiagen (Hilden, Germany) RNEasy kit according to the manufacturer’s
instructions, including on column DNA digestion. QC of the extracted RNA with Qubit (Thermo Fisher
Scientific, Waltham, MA, USA) DNA and RNA high sensitivity assays showed that residual DNA was
still present. To minimise the amount of DNA carried over into sequencing, the sample was subjected
to an additional DNase treatment. Two technical replicate sequencing libraries were prepared from
the RNA sample using a TruSeq stranded RNA kit, according to the manufacturer’s instructions. Then,
the DNA sequencing libraries were pooled together and sequenced on a MiSeq using a v2 300 cycle
Micro kit for a total of around 10 million reads. Following this, the paired end fastq files were subjected
to quality control using FastQC [48], before adaptor trimming using Cutadapt [49]. All available
complete nucleotide sequences relating to TOSV were downloaded from NCBI [50] and 2,856,292
paired end reads retained after QC and preprocessing were mapped to the downloaded viral nucleotide
sequences using Bowtie2 aligner [51]. Then, 1,390,120 viral mapped reads were used to perform
denovo assembly using SPADES genome assembler [52] using different K-mer lengths. The scaffolds
were manually assembled into the L, M, and S segments. The final assembly was compared with
the nucleotide collection database using BLAST [53]. The assembled sequences (complemented with
RACE data) were deposited in GenBank with accession numbers MT032308, MT032307, MT032306 for
L, M, and S segments, respectively. The raw transcriptome data sequenced from two TOSV samples
used for the assembly are available in NCBI (Bioproject PRJNA604562, Biosample SAMN13974122,
Library 1 (2 paired end sequencing files) SRR11015404 and Library 2 (2 paired end sequencing files)
SRR11015403).

2.11. NSs Deletion Plasmids

In order to create antigenome expression plasmids with NSs deleted, the pUC57-TOSV-S plasmid
was linearised by PCR using the primers S_NLuc_Fw and S_NLuc_Rv, which include the N mRNA
termination signal adding 5′ overhangs with homology to NLuc. NLuc was amplified in the negative
sense from a Zika virus NLuc-encoding cDNA clone [54] using the primers NLuc_Fw and NLuc_Rv
(Appendix B, Table A5) adding 5′ homology to the S segment. Then, the plasmid pUC57-TOSV-S
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∆NSs:NLuc was assembled from the fragments using InPhusionHD (Clontech, Mountain View, CA,
USA). The NSs gene was also replaced with two fluorescent reporter genes, mCherry and mRuby, using
the primers S_FP_Fw and S_FP_Rv to amplify the pUC57-TOSV-S backbone and FP_Fw and FP_Rv
to amplify mCherry and mRuby (Appendix B, Table A5), generating pUC57-TOSV-S ∆NSs:mCherry
and pUC57-TOSV-S ∆NSs:mRuby. In order to delete the entire NSs ORF, the N mRNA termination
signal was joined directly to the 3′ antigenome UTR by amplification of pUC57-TOSV-S using primers
S_∆NSs_Fw and S_∆NSs_Rv (Appendix B, Table A5) before reassembly, as described previously.

2.12. Western Blotting

Cells were lysed in passive lysis buffer and samples reduced before being run on 4% to 12%
gradient BIS-TRIS polyacrylamide gels. Anti TOSV-N-MA29010 was used at a final dilution of 1:2000
and incubated overnight at 4 ◦C. A loading control of anti-tubulin was used at the same concentration.

The TOSV-N antibody was made by Eurogentec (Liège, Belgium) and was raised against
the peptide sequence VKERGTAKGRDWKKD, amino acids 44 to 58 in the N terminus of the N
sequence. This sequence, whilst exposed on a single N protein monomer, was possibly hidden by
the suspected helical arrangement of N protein in its intracellular state [55]. The antibody unfortunately
was non-conclusive in immunofluorescence experiments but did, however, detect the N protein in
Western blots.

2.13. Microscopy and Image Analysis

Images were captured using an EVOS (Thermo Fisher Scientific, Waltham, MA, USA) Fl imaging
system and viewed using FIJI imageJ (imagej.net/Fiji).

2.14. Statistical Analysis

Statistical analysis was performed using Minitab 19 (Minitab, State College, PA, USA).

2.15. Data Availability

Data underlying figures with luciferase readings and virus titres can be found under DOI
10.5525/gla.researchdata.967

3. Results and Discussion

3.1. Replication of a TOSV Minigenome and Viral Rescue Require Correction of the L Sequence

Initially, three plasmids based on the TOSV reference genome sequences (NC_006319.1,
NC_006318.1, and NC_006320.1) in combination with some sequencing information for TOSV 1500590
were constructed. These plasmids consisted of antigenomic L, M, and S segments followed by
the hepatitis delta virus (HDV) ribozyme and under control of the T7 RNA polymerase promoter
and terminator: pUC57-TOSV-L, pUC57-TOSV-M and pUC57-TOSV-S. Two helper plasmids, expressing
the L and the nucleocapsid N proteins in pTM1 were also constructed. The plasmids expressed
an internal ribosome entry site (IRES) followed by the ORF, under control of the T7 RNA polymerase
promoter and terminator: pTM1-TOSV-L and pTM1-TOSV-N. These plasmids, alongside BSRT7/5 CL21
cells, which constitutively express T7 RNA polymerase, comprised the reverse genetics system based
on the previously published BUNV protocol [56]. The minigenome plasmid contained the untranslated
regions (UTR) of the M segment flanking an anti-sense, humanised Renilla luciferase ORF followed
by the HDV ribozyme and T7 terminator, again under the control of the T7 RNA promoter called
pTOSV hRen. When transfected alongside the helper L and N plasmids, the luciferase protein can
only be expressed if the L protein replicates and transcribes the minigenome RNA following correct
encapsidation by N. Unfortunately, the minigenome failed to function and repeated attempts using
different combinations and quantities of plasmid also failed to produce any recoverable virus.



Viruses 2020, 12, 411 6 of 15

We subsequently reassessed viral sequences. Initially, it was thought that the problem could lie
within the UTRs sequences of the minigenome as a single incorrect nucleotide can quench the replicative
ability of the system [57,58]. Rapid amplification of cDNA ends (RACE) analysis was carried out
on viral RNAs (from TOSV lineage A strain 1500590) and a mismatch was identified in the 5′ UTR
of the antigenomic M segment sequence, on which the M rescue plasmid was based (Figure 1A).
The virus contains a G at position 10 of the antigenome 5′ UTR, whereas the M-based rescue plasmid
contains an A. The corresponding position to A at position 10 in the minigenome plasmid (with
the transcribed minigenome RNA in genome orientation) was also changed to a G to make pTOSV
hRenG10. In parallel, to investigate whether mutations in the sequences led to failure to rescue the virus,
the entire L ORF was amplified in short overlapping 1 kb sections which were in turn assembled using
multiple sequential overlap extension PCR reactions. Then, all the resulting fragments and the entire
segment were sequenced. Moreover, the genome of TOSV 1500590 was also resequenced by RNA
sequencing and assembled as described in Materials and Methods and combined with the RACE
data to obtain up to date sequences for the entire L, M, and S segments (some relevant sequence
variations are shown in Appendix A Tables A1–A4). Importantly, these approaches identified two
single nucleotide (nt) changes in the ORF between the plasmid-encoded L clones, and that of the virus,
i.e., a missing A at position 4814 and an extra T at position 4820. This changed three amino acids from
KRS (as present in the virus) to RDL (as present in the plasmid) at amino acids 1599 to 1601 of the L
protein (Figure 1B). Importantly, the KRS sequence at this location is highly conserved amongst TOSV
isolates and appears to be highly conserved amongst phleboviruses as a whole, Table 1.

Table 1. L protein sequences of Toscana virus (TOSV) (amino acid positions 1599 to 1601) and sequences
of related phleboviruses in this region.

Consensus P V K K R S G M

SFNV
HM566172 · · · · · · · ·

HM566167 · · R · · · · ·

TOSV

NC_006319 · · · R D L · ·

MK422498 · · · · · · · ·

KU925899 · · · · · · · ·

KU204977 · · · · · · · ·

EF656363 · · · · · · · ·

KU935735 · · · · · · · ·

KU904265 · · · · · · · ·

KX010934 · · · · · · · ·

KU922127 · · · · · · · ·

KC776216 · · · · · · · ·

KU204980 · · · · · · · ·

KU573067 · · · · · · · ·

JX867534 · · · · · · · ·

KU935736 · · · · · · · ·

SFSV KM042102 · · · · · · · L

SFTV
NC_015412 · · · · · · · L
GQ847513 · · · · · · · L
GQ847513 · · · · · · · L

RVFV NC_014397 · · · · · · · V

Indicated are GenBank accession numbers for each virus. Abbreviations: SFNV, sand fly fever Naples virus; TOSV,
Toscana virus; SFSV, sand fly fever Sicilian virus; SFTV sand fly fever Turkey virus; and RVFV, Rift Valley fever virus.

Once this sequence was corrected in pTM1-L, Renilla luciferase activity could be determined in
the minigenome assay, and thus this sequence change appeared to be critical for L activity (Figure 1C),
and Renilla activity was observed with both versions of the minigenome (Figure 1D). Indeed, the original
minigenome (pTOSV hRen) and that matching the viral UTR (pTOSV hRenG10) were both efficiently
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replicated, although the latter showed a small (though significant) decrease in activity. As the A to
G swap is not seen in any of the other available TOSV M segment sequences, it was not corrected in
the rescue plasmid to keep as genetic marker for successful virus rescue.
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Figure 1. RNA sequencing of TOSV revealed critical errors in published TOSV sequences; regions
in bold and (A) and (B) indicate sequence changes. (A) RACE analysis of TOSV identified a change
at position 10 of the 5′ untranslated regions (UTR) of the M segment. As this was the segment on
which the minigenome was based, this was introduced in the Renilla luciferase reporter plasmid to
create pTOSV hRenG10; (B) Two critical changes in the L segment from that of GenBank submission
NC_006319.1 were identified. This sequence only appears in this GenBank submission and not in other
available sequences (see Table 1); (C) Replication of minigenome pTOSV hRen. After corrections to the L
expression plasmid (TOSV LKRS) minigenome replication was observed, N = 16; (D) G at position 10 of
the 5′ antigenome UTR reduced replication in the minigenome replication system, N = 6. Two sample
t test, error bars show standard deviations. Assays shown in (C) and (D) are representative of three
independent experiments. RLU, relative light units.

3.2. Rescue of Recombinant TOSV from cDNA

To reassess the virus rescue experiments, pUC57-TOSV-L and pTM1-TOSV-L plasmids were
corrected to pUC57-TOSV-LKRS and pTM1-TOSV-LKRS, respectively, to provide a functioning L protein.
Then, 500 ng of each of the antigenome plasmids plus 500 ng of the helper plasmids (pTM1-TOSV-LKRS

and pTM1-TOSV-N) were transfected into BSRT7/5 CL21 cells in a six-well plate for a five-plasmid
rescue. This was repeated without the two helper plasmids to test virus rescue in a the three-plasmid
rescue system; a graphical representation of the rescue systems is shown in Figure 2. After six days
the media was harvested, clarified by centrifugation, and then plaqued on A549 NPro cells. These initial
tests indicated that the three-plasmid system was much more efficient than the five, producing titres
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reaching 106 and 104 PFU/mL, respectively. The rescue was repeated three separate times to ensure
reproducibility, with each producing similar results. The three-plasmid system was, therefore, used for
further TOSV rescue experiments.
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Figure 2. The TOSV rescue system. In the 5-plasmid system, the antigenome is expressed coupled to
the hepatitis delta virus ribozyme (HDVr) for efficient RNA cleavage under control of the T7 RNA
polymerase promoter (T7p) and T7 RNA polymerase terminator (T7t). These are supplemented with
the L (RNA-dependent RNA polymerase, RdRp) and N (nucleocapsid) proteins. The 3-plasmid system
omits these helper plasmids and relies solely on the antigenome-encoding plasmids.

Then, the stock was titrated by plaque assay on A549 NPro cells and the plaques were of
a similar morphology, although larger compared with TOSV strain 1500590. The rescued virus (rTOSV)
replicated to high titres and slightly faster than the TOSV strain 1500590 (Figure 3). This could be
due to the observed change in position 10 of the M segment, which could affect virus production
(see Figure 1D for the observations with the minigenome system); or other changes in rescued virus
as compared with strain 1500590. Further work will be required to investigate this question.
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Figure 3. Rescue of TOSV. (A) rTOSV (virus rescued by three plasmid system) replication as compared
with TOSV 1500590 on A549 NPro cells. The timecourse was repeated twice independently with
similar results, N = 3. Error bars show standard deviations; (B) Plaque morphology of TOSV 1500590
(left panel) and rTOSV (right panel) on A549 NPro cells after 72 h.
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3.3. Rescue of Recombinant TOSV with the NSs Protein Replaced or Deleted

NSs proteins of phleboviruses have been shown to antagonise innate immune responses, and thus
are virulence factors [45], and TOSV NSs has indeed been shown to interact with the antiviral type
I interferon response [59–61], as an E3 ubiquitin ligase inducing Rig-I degradation [62], as well
as reducing PKR levels [63,64]. When the TOSV NSs ORF is swapped into the Rift Valley fever virus
MP-12 strain, the neuroinvasiveness of MP-12 was increased in mice [65], suggesting that this protein
plays a role in the tropism or propagation of TOSV. Previous studies have identified that the N protein
mRNA terminates within the NSs ORF and the termination signal is important for efficient viral
replication, and the TOSV termination signal has been mapped previously as the sequence 3′ CCGUCG
5′ in genome RNA [66]. As NSs is non-essential for replication the rescue system was further validated
by targeting this open reading frame for deletion or replacement, Figure 4.
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Figure 4. The rTOSV NSs deletion mutants. The rTOSV with NSs removed was generated from NSs
deletion plasmids which replaced or deleted the NSs ORF (yellow) whilst retaining the N mRNA
termination signal (CCGUCG). N ORF is represented in blue. The N mRNA termination signal resides
within the NSs ORF. Reporter (Rep) (orange box) constructs where the NSs ORF has been replaced by
a reporter gene retain a short C-terminal peptide of NSs containing the N mRNA termination signal
through to the authentic NSs stop codon. For the ∆NSs construct, the NSs stop codon and the N mRNA
termination signal were maintained, but the remainder of the ORF was deleted.

As proof of principle and in order to create the first deletion, the NSs ORF was replaced with
NLuc. Then, this was used in the rescue system to generate rTOSV ∆NSs:NLuc. Following this,
NLuc expression was measured over time in A549 NPro cells and activity was indeed detected
(Figure 5A). The NSs gene was also replaced with two fluorescent reporter genes; mCherry and mRuby
and the rescued viruses expressed mCherry and mRuby in A549 NPro cells (Figure 5C).

Finally, the entire NSs ORF was deleted and rTOSV ∆NSs was rescued. All the NSs-deletant TOSV
were found to grow on A549 NPro cells (Figure 5B). The successful deletion of the NSs protein was
confirmed by generating cDNA generated from the rescued virus. The S segment was amplified from
the cDNA and the product sequenced. The sequences confirmed deletion of the nucleotides between
898 and 1814 of the S segment of the TOSV antigenome, and removal of most of the NSs sequence
whilst retaining the mRNA termination signal of N protein.

In summary, here we present the first system for generating infectious lineage A TOSV using a T7
RNA polymerase driven, plasmid-based system containing antigenomic sequences in BSRT7/5 CL21
cells. The system provides the ability to rescue the virus from three antigenome segments encoding
cDNA. We have shown that it is possible to generate recombinant viruses with altered and deleted S
segments, by successfully replacing and removing the open reading frame of the virulence factor NSs.
This system provides the ability to study the role(s) of proteins such as NSs. However, investigations
into other elements in the TOSV genome are also now possible, as well as vaccine design for attenuated
viruses. The reverse genetics system described, in this study, opens new possibilities to understand
this emerging pathogen.
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Figure 5. Generation of TOSV NSs deletion mutants. (A) Replacement of the NSs ORF with NLuc allows
for measurements of viral replication within the A549 NPro cells. rTOSV is shown as a baseline control
to ensure the light readings reflect NLuc activity from the replicating, reporter gene expressing virus.
RLU, relative light units. The luciferase assay was repeated twice independently, N = 3; (B) Replication
of TOSV NSs deletion/replacement mutants in A549 NPro cells (MOI of 0.1). Each time course was
repeated twice independently, N = 3; (C) When NSs was replaced with mRuby, infected cells were
clearly visible in the red fluorescence channel (mCherry is identical to mRuby), the scale bar is 200 µm;
(D) Western blot detection of N protein in BSR cells after 48 h (MOI 0.1), tubulin detection with anti
α-tubulin to show loading control. Error bars show standard deviations.
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Appendix A

Tables A1–A4 show, as indicated, selected relevant nucleotide and amino acid changes between L,
M, and S segments of TOSV reference sequences and sequences of TOSV 1500590, and of rescue plasmids.

Table A1. RNA sequencing of L revealed a single insertion and deletion in the TOSV reference sequence
at 4814 to 4820 in the GenBank TOSV sequence NC_006319 when compared with TOSV 1500590,
changing the protein sequence.

Position 4814 4820

NC_006319 C C T G T A A A A A G A G A T C T T G G C A T G
Translation P V K R D L G M

TOSV
1500590 · · · · · · · · · · A G A G A T C · · · · · · ·

Translation P V K K R S G M

↑ ↑

A ins T del

Table A2. A single nucleotide change was identified in L at position 5416 in the rescue plasmid when
compared with both the TOSV reference sequence NC_006319 and TOSV 1500590.

Position 5411 5423

NC_006319 T G G A T G T A T G G T T T C
Translation W M Y G F

TOSV 1500590 · · · · · · · · · · · · · · ·

Translation W M Y G F

pUC57-TOSV-L · · · · · · C · · · · · · · ·

Translation W M H G F

Table A3. Changes were identified in the 5′ antigenomic UTRs of TOSV 1500590 when compared with
the reference sequences.

Position 1 10 20

L
NC_006319 A C A C A G A G A G G C C C A A A T A T

pUC57-TOSV-L · · · · · A · · · · · · · · · · · · · ·

TOSV 1500590 · · · · · A · · · · · · · · · · · · · ·

M
NC_006320 A C A C A G A G A A G G T G C T T A T G

pUC57-TOSV-M · · · · · A · · · · · · · · · · · · · ·

TOSV 1500590 · · · · · A · · · G · · · · · · · · · ·

S
NC_006318 A C A C A G A G A T T C C C G T G T A T

pUC57-TOSV-S · · · · · · · · · · · · · · · · · · · ·

TOSV 1500590 · · · · · · · · · · · · · · · · · · · ·

Table A4. Changes were identified in the 3′ antigenomic UTRs of TOSV 1500590 when compared with
the reference sequences.

Position 40 30 20 10 1

L
NC_006319 T A T A T C T A T A A G T T A T T T A A G A A T T G G G C G G T C T T T G T G T

pUC57-TOSV-L · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

TOSV 1500590 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

M
NC_006320 A C A T A T T T T G T T T T G T T C T T T A A A G C A C C G G T C T T T G T G T

pUC57-TOSV-M · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

TOSV 1500590 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

S
NC_006318 A T T A C T A G C T C T G G T T T A G C A A T A C G G G A G G T C T T T G T G T

pUC57-TOSV-S · · · · T · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

TOSV 1500590 · · · · T · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Appendix B

Table A5 shows primer sequences used for this study.

Table A5. Primer sequences.

S_NLuc_Fw aagacCATGGCTGTCTAGAAGTCTATTATTAGCTC
S_NLuc_Rv aCTGGCGTGGCTGCCTAGTCCCCCC

Nluc_Fw aagaccatGGCTGTCTAGAAGTCTATTATTAGCTC
Nluc_Rv agacagccATGGTCTTCACACTCGAAGATTTC
S_FP_Fw ctcaccatGGCTGTCTAGAAGTCTATTATTAGCTC
S_FP_Rv gtacaagTGGCTGCCTAGTCCCCCC
FP_Fw ctcaccatGGCTGTCTAGAAGTCTATTATTAGCTC
FP_Rv agacagccATGGTGAGCAAGGGCGAG

S_∆NSs_Fw ctaggcagccAGGCTGTCTAGAAGTCTATTATTAGCTCTG
S_∆NSs_Rv tagacagcctGGCTGCCTAGTCCCCCCC
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30. Punda-Polić, V.; Jerončić, A.; Mohar, B.; Kraljevićc, K.Š. Prevalence of Toscana virus antibodies in residents of
Croatia. Clin. Microbiol. Infect. 2012, 18, E200–E203. [CrossRef]

31. Terrosi, C.; Olivieri, R.; Bianco, C.; Cellesi, C.; Cusi, M.G. Age-dependent seroprevalence of Toscana virus in
central Italy and correlation with the clinical profile. Clin. Vaccine Immunol. 2009, 16, 1251–1252. [CrossRef]
[PubMed]

32. Charrel, R.N.; Gallian, P.; Navarro-Mari, J.M.; Nicoletti, L.; Papa, A.; Sánchez-Seco, M.P.; Tenorio, A.;
de Lamballerie, X. Emergence of Toscana virus in Europe. Emerg. Infect. Dis. 2005, 11, 1657–1663. [CrossRef]
[PubMed]

33. Baldelli, F.; Ciufolini, M.G.; Francisci, D.; Marchi, A.; Venturi, G.; Fiorentini, C.; Luchetta, M.L.; Bruto, L.;
Pauluzzi, S. Unusual presentation of life-threatening Toscana virus meningoencephalitis. Clin. Infect. Dis.
2004, 38, 515–520. [CrossRef]

34. Bartels, S.; de Boni, L.; Kretzschmar, H.A.; Heckmann, J.G. Lethal encephalitis caused by the Toscana virus in
an elderly patient. J. Neurol. 2012, 259, 175–177. [CrossRef]

http://dx.doi.org/10.1111/1469-0691.12347
http://dx.doi.org/10.1016/j.jiph.2019.07.008
http://dx.doi.org/10.1371/journal.pntd.0005063
http://dx.doi.org/10.1089/vbz.2010.0065
http://dx.doi.org/10.4269/ajtmh.1985.34.174
http://www.ncbi.nlm.nih.gov/pubmed/3918472
http://dx.doi.org/10.1186/s13071-014-0476-8
http://www.ncbi.nlm.nih.gov/pubmed/25306250
http://dx.doi.org/10.4269/ajtmh.14-0322
http://dx.doi.org/10.1111/j.1365-2915.1993.tb00689.x
http://www.ncbi.nlm.nih.gov/pubmed/8369564
http://dx.doi.org/10.1099/jgv.0.000592
http://www.ncbi.nlm.nih.gov/pubmed/27589865
http://dx.doi.org/10.23749/mdl.v109i2.5024
http://www.ncbi.nlm.nih.gov/pubmed/29701628
http://dx.doi.org/10.1016/j.jiph.2017.02.001
http://dx.doi.org/10.1186/s12879-014-0598-9
http://dx.doi.org/10.1016/j.ijid.2013.08.008
http://dx.doi.org/10.1111/j.1469-0691.2012.03840.x
http://dx.doi.org/10.1128/CVI.00376-08
http://www.ncbi.nlm.nih.gov/pubmed/19553552
http://dx.doi.org/10.3201/eid1111.050869
http://www.ncbi.nlm.nih.gov/pubmed/16318715
http://dx.doi.org/10.1086/381201
http://dx.doi.org/10.1007/s00415-011-6121-y


Viruses 2020, 12, 411 14 of 15

35. Kuhn, J.; Bewermeyer, H.; Hartmann-Klosterkoetter, U.; Emmerich, P.; Schilling, S.; Valassina, M. Toscana
virus causing severe meningoencephalitis in an elderly traveller. J. Neurol. Neurosurg. Psychiatry 2005,
76, 1605–1606. [CrossRef]

36. Calisher, C.H.; Weinberg, A.N.; Muth, D.J.; Lazuick, J.S. Toscana virus infection in United States citizen
returning from Italy. Lancet 1987, 1, 165–166. [CrossRef]

37. Schwarz, T.; Gilch, S.; Jäger, G. Travel-related Toscana virus infection. Lancet 1993, 342, 803–804. [CrossRef]
38. Charrel, R.N.; Bichaud, L.; de Lamballerie, X. Emergence of Toscana virus in the mediterranean area. World J.

Virol. 2012, 1, 135–141. [CrossRef]
39. Pierro, A.; Ficarelli, S.; Ayhan, N.; Morini, S.; Raumer, L.; Bartoletti, M.; Mastroianni, A.; Prati, F.;

Schivazappa, S.; Cenni, P.; et al. Characterization of antibody response in neuroinvasive infection caused by
Toscana virus. Clin. Microbiol. Infect. 2017, 23, 868–873. [CrossRef]

40. Varani, S.; Gelsomino, F.; Bartoletti, M.; Viale, P.; Mastroianni, A.; Briganti, E.; Ortolani, P.; Albertini, F.;
Calzetti, C.; Prati, F.; et al. Meningitis Caused by Toscana Virus Is Associated with Strong Antiviral Response
in the CNS and Altered Frequency of Blood Antigen-Presenting Cells. Viruses 2015, 7, 5831–5843. [CrossRef]

41. Braito, A.; Ciufolini, M.G.; Pippi, L.; Corbisiero, R.; Fiorentini, C.; Gistri, A.; Toscano, L.
Phlebotomus-transmitted toscana virus infections of the central nervous system: A seven-year experience in
Tuscany. Scand. J. Infect. Dis. 1998, 30, 505–508. [CrossRef]

42. Braito, A.; Corbisiero, R.; Corradini, S.; Fiorentini, C.; Ciufolini, M.G. Toscana virus infections of the central
nervous system in children: A report of 14 cases. J. Pediatr. 1998, 132, 144–148. [CrossRef]

43. Braito, A.; Corbisiero, R.; Corradini, S.; Marchi, B.; Sancasciani, N.; Fiorentini, C.; Ciufolini, M.G. Evidence of
Toscana virus infections without central nervous system involvement: A serological study. Eur. J. Epidemiol.
1997, 13, 761–764. [CrossRef] [PubMed]

44. Nicoletti, L.; Verani, P.; Caciolli, S.; Ciufolini, M.G.; Renzi, A.; Bartolozzi, D.; Paci, P.; Leoncini, F.; Padovani, P.;
Traini, E.; et al. Central nervous system involvement during infection by Phlebovirus toscana of residents in
natural foci in central Italy (1977–1988). Am. J. Trop. Med. Hyg. 1991, 45, 429–434. [CrossRef]

45. Wuerth, J.D.; Weber, F. Phleboviruses and the Type I Interferon Response. Viruses 2016, 8, 174. [CrossRef]
46. Mottram, T.J.; Li, P.; Dietrich, I.; Shi, X.; Brennan, B.; Varjak, M.; Kohl, A. Mutational analysis of Rift Valley

fever phlebovirus nucleocapsid protein indicates novel conserved, functional amino acids. PLoS Negl.
Trop. Dis. 2017, 11, e0006155. [CrossRef]

47. Buchholz, U.J.; Finke, S.; Conzelmann, K.K. Generation of bovine respiratory syncytial virus (BRSV) from
cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region
acts as a functional BRSV genome promoter. J. Virol. 1999, 73, 251–259. [CrossRef]

48. Andrews, S. Babraham Bioinformatics-FastQC a Quality Control Tool for High Throughput Sequence Data.
2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 6 April
2020).

49. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet. J. 2011,
17, 3. [CrossRef]

50. Information, N.C.F.B. Nucleotide [Internet]; TOSV Complete; National Library of Medicine (US), National
Center for Biotechnology Information: Bethesda, MD, USA, 1988.

51. Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359.
[CrossRef]

52. Nurk, S.; Bankevich, A.; Antipov, D.; Gurevich, A.; Korobeynikov, A.; Lapidus, A.; Prjibelsky, A.; Pyshkin, A.;
Sirotkin, A.; Sirotkin, Y.; et al. Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads.
In Annual International Conference on Research in Computational Molecular Biology; Springer: Berlin/Heidelberg,
Germany, 2013; Volume 7821, pp. 158–170.

53. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol.
1990, 215, 403–410. [CrossRef]

54. Mutso, M.; Saul, S.; Rausalu, K.; Susova, O.; Žusinaite, E.; Mahalingam, S.; Merits, A. Reverse genetic system,
genetically stable reporter viruses and packaged subgenomic replicon based on a Brazilian Zika virus isolate.
J. Gen. Virol. 2017, 98, 2712–2724. [CrossRef] [PubMed]

55. Olal, D.; Dick, A.; Woods, V.L., Jr.; Liu, T.; Li, S.; Devignot, S.; Weber, F.; Saphire, E.O.; Daumke, O. Structural
insights into RNA encapsidation and helical assembly of the Toscana virus nucleoprotein. Nucleic Acids Res.
2014, 42, 6025–6037. [CrossRef] [PubMed]

http://dx.doi.org/10.1136/jnnp.2004.060863
http://dx.doi.org/10.1016/S0140-6736(87)92005-8
http://dx.doi.org/10.1016/0140-6736(93)91568-7
http://dx.doi.org/10.5501/wjv.v1.i5.135
http://dx.doi.org/10.1016/j.cmi.2017.03.017
http://dx.doi.org/10.3390/v7112909
http://dx.doi.org/10.1080/00365549850161539
http://dx.doi.org/10.1016/S0022-3476(98)70500-1
http://dx.doi.org/10.1023/A:1007422103992
http://www.ncbi.nlm.nih.gov/pubmed/9384264
http://dx.doi.org/10.4269/ajtmh.1991.45.429
http://dx.doi.org/10.3390/v8060174
http://dx.doi.org/10.1371/journal.pntd.0006155
http://dx.doi.org/10.1128/JVI.73.1.251-259.1999
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://dx.doi.org/10.14806/ej.17.1.200
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1099/jgv.0.000938
http://www.ncbi.nlm.nih.gov/pubmed/29022864
http://dx.doi.org/10.1093/nar/gku229
http://www.ncbi.nlm.nih.gov/pubmed/24688060


Viruses 2020, 12, 411 15 of 15

56. Lowen, A.C.; Noonan, C.; McLees, A.; Elliott, R.M. Efficient bunyavirus rescue from cloned cDNA. Virology
2004, 330, 493–500. [CrossRef] [PubMed]

57. Brennan, B.; Li, P.; Zhang, S.; Li, A.; Liang, M.; Li, D.; Elliott, R.M. Reverse Genetics System for Severe Fever
with Thrombocytopenia Syndrome Virus. J. Virol. 2015, 89, 3026–3037. [CrossRef]

58. Dunn, E.F.; Pritlove, D.C.; Jin, H.; Elliott, R.M. Transcription of a recombinant bunyavirus RNA template by
transiently expressed bunyavirus proteins. Virology 1995, 211, 133–143. [CrossRef]

59. Brisbarre, N.M.; Plumet, S.; de Micco, P.; Leparc-Goffart, I.; Emonet, S.F. Toscana virus inhibits the interferon
beta response in cell cultures. Virology 2013, 442, 189–194. [CrossRef]

60. Gori Savellini, G.; Weber, F.; Terrosi, C.; Habjan, M.; Martorelli, B.; Cusi, M.G. Toscana virus induces interferon
although its NSs protein reveals antagonistic activity. J. Gen. Virol. 2011, 92, 71–79. [CrossRef]

61. Gori-Savellini, G.; Valentini, M.; Cusi, M.G. Toscana virus NSs protein inhibits the induction of type I
interferon by interacting with RIG-I. J. Virol. 2013, 87, 6660–6667. [CrossRef]

62. Gori Savellini, G.; Anichini, G.; Gandolfo, C.; Prathyumnan, S.; Cusi, M.G. Toscana virus non-structural
protein NSs acts as E3 ubiquitin ligase promoting RIG-I degradation. PLoS Pathog. 2019, 15, e1008186.
[CrossRef]

63. Wuerth, J.D.; Habjan, M.; Wulle, J.; Superti-Furga, G.; Pichlmair, A.; Weber, F. NSs Protein of Sandfly Fever
Sicilian Phlebovirus Counteracts Interferon (IFN) Induction by Masking the DNA-Binding Domain of IFN
Regulatory Factor 3. J. Virol. 2018, 92. [CrossRef]

64. Kalveram, B.; Ikegami, T. Toscana virus NSs protein promotes degradation of double-stranded
RNA-dependent protein kinase. J. Virol. 2013, 87, 3710–3718. [CrossRef] [PubMed]

65. Indran, S.V.; Lihoradova, O.A.; Phoenix, I.; Lokugamage, N.; Kalveram, B.; Head, J.A.; Tigabu, B.; Smith, J.K.;
Zhang, L.; Juelich, T.L.; et al. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains
neuroinvasiveness in mice. J. Gen. Virol. 2013, 94, 1441–1450. [CrossRef] [PubMed]

66. Albariño, C.G.; Bird, B.H.; Nichol, S.T. A Shared Transcription Termination Signal on Negative and Ambisense
RNA Genome Segments of Rift Valley Fever, Sandfly Fever Sicilian, and Toscana Viruses. J. Virol. 2007,
81, 5246–5256. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.virol.2004.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15567443
http://dx.doi.org/10.1128/JVI.03432-14
http://dx.doi.org/10.1006/viro.1995.1386
http://dx.doi.org/10.1016/j.virol.2013.04.016
http://dx.doi.org/10.1099/vir.0.025999-0
http://dx.doi.org/10.1128/JVI.03129-12
http://dx.doi.org/10.1371/journal.ppat.1008186
http://dx.doi.org/10.1128/JVI.01202-18
http://dx.doi.org/10.1128/JVI.02506-12
http://www.ncbi.nlm.nih.gov/pubmed/23325696
http://dx.doi.org/10.1099/vir.0.051250-0
http://www.ncbi.nlm.nih.gov/pubmed/23515022
http://dx.doi.org/10.1128/JVI.02778-06
http://www.ncbi.nlm.nih.gov/pubmed/17329326
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Cell Culture 
	Viral Rescue 
	Viral Culture and Stocks 
	Rescued Viral Culture and Stocks 
	Virus Titration 
	Minigenome Replication Assay 
	Nanoluciferase (NLuc) Expression Assay 
	Viral Growth Curves 
	Viral RNA Extraction, cDNA Synthesis, and RACE Analysis 
	Viral RNA Extraction and RNA Sequencing 
	NSs Deletion Plasmids 
	Western Blotting 
	Microscopy and Image Analysis 
	Statistical Analysis 
	Data Availability 

	Results and Discussion 
	Replication of a TOSV Minigenome and Viral Rescue Require Correction of the L Sequence 
	Rescue of Recombinant TOSV from cDNA 
	Rescue of Recombinant TOSV with the NSs Protein Replaced or Deleted 

	
	
	References

