M. C. Abt, P. T. Mckenney, and E. G. Pamer, Clostridium difficile colitis: pathogenesis and host defence, Nat. Rev. Microbiol, vol.14, pp.609-620, 2016.

F. Amman, M. T. Wolfinger, R. Lorenz, I. L. Hofacker, P. F. Stadler et al., TSSAR: TSS annotation regime for dRNA-seq data, BMC Bioinform, vol.15, p.89, 2014.

G. Andre, S. Even, H. Putzer, P. Burguiere, C. Croux et al., , 2008.

S. and T. , riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum, Nucleic Acids Res, vol.36, pp.5955-5969

B. R. Anjuwon-foster and R. Tamayo, A genetic switch controls the production of flagella and toxins in Clostridium difficile, PLoS Genet, vol.13, p.1006701, 2017.

A. Antunes, E. Camiade, M. Monot, E. Courtois, F. Barbut et al., Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile, Nucleic Acids Res, vol.40, pp.10701-10718, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01370790

A. Aubry, G. Hussack, W. Chen, R. Kuolee, S. M. Twine et al., Modulation of toxin production by the flagellar regulon in Clostridium difficile, Infect. Immun, vol.80, pp.3521-3532, 2012.

J. Babski, K. A. Haas, D. Nather-schindler, F. Pfeiffer, K. U. Forstner et al., Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq), BMC Genom, vol.17, p.629, 2016.

S. S. Banawas, Clostridium difficile infections: a global overview of drug sensitivity and resistance mechanisms, Biomed. Res. Int, p.8414257, 2018.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B, vol.57, pp.289-300, 1995.

L. Bouillaut, W. T. Self, and A. L. Sonenshein, Proline-dependent regulation of Clostridium difficile Stickland metabolism, J. Bacteriol, vol.195, pp.844-854, 2013.

W. J. Bradshaw, J. F. Bruxelle, A. Kovacs-simon, N. J. Harmer, C. Janoir et al., Molecular features of lipoprotein CD0873: a potential vaccine against the human pathogen Clostridioides difficile, J. Biol. Chem, vol.294, pp.15850-15861, 2019.

V. Braun, T. Hundsberger, P. Leukel, M. Sauerborn, V. Eichel-streiber et al., Definition of the single integration site of the pathogenicity locus in Clostridium difficile, Gene, vol.181, pp.29-38, 1996.

M. S. Brouwer, P. J. Warburton, A. P. Roberts, P. Mullany, A. et al., Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile, PLoS One, vol.6, p.23014, 2011.

D. F. Browning and S. J. Busby, Local and global regulation of transcription initiation in bacteria, Nat. Rev. Microbiol, vol.14, pp.638-650, 2016.

R. R. Burgess, A. , and L. , How sigma docks to RNA polymerase and what sigma does, Curr. Opin. Microbiol, vol.4, pp.177-183, 2001.

J. P. Carlier and N. Sellier, Gas chromatographic-mass spectral studies after methylation of metabolites produced by some anaerobic bacteria in spent media, J. Chromatogr, vol.493, pp.257-273, 1989.

K. C. Carroll and J. G. Bartlett, Biology of Clostridium difficile: implications for epidemiology and diagnosis, Annu. Rev. Microbiol, vol.65, pp.501-521, 2011.

Y. Chao, K. Papenfort, R. Reinhardt, C. M. Sharma, and J. Vogel, An atlas of Hfq-bound transcripts reveals 3' UTRs as a genomic reservoir of regulatory small RNAs, EMBO J, vol.31, pp.4005-4019, 2012.

J. Cuklina, J. Hahn, M. Imakaev, U. Omasits, K. U. Forstner et al., Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis -a rich resource to identify new transcripts, proteins and to study gene regulation, BMC Genomics, vol.17, p.302, 2016.

H. Dannheim, T. Riedel, M. Neumann-schaal, B. Bunk, I. Schober et al., Manual curation and reannotation of the genomes of Clostridium difficile 630Deltaerm and C. difficile 630, J. Med. Microbiol, vol.66, pp.286-293, 2017.

A. E. Danson, M. Jovanovic, M. Buck, and X. Zhang, Mechanisms of sigma(54)-dependent transcription initiation and regulation, J. Mol. Biol, vol.431, pp.3960-3974, 2019.

A. Deloughery, J. B. Lalanne, R. Losick, and G. W. Li, Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillus subtilis, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.5585-5594, 2018.

J. Deutscher, C. Francke, and P. W. Postma, How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol, Mol. Biol. Rev, vol.70, pp.939-1031, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00164056

S. S. Dineen, S. M. Mcbride, and A. L. Sonenshein, Integration of metabolism and virulence by Clostridium difficile CodY, J. Bacteriol, vol.192, pp.5350-5362, 2010.

T. Dubois, M. Dancer-thibonnier, M. Monot, A. Hamiot, L. Bouillaut et al., Control of Clostridium difficile physiopathology in response to cysteine availability, Infect. Immun, vol.84, pp.2389-2405, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01370880

B. Dupuy and A. L. Sonenshein, Regulated transcription of Clostridium difficile toxin genes, Mol. Microbiol, vol.27, pp.107-120, 1998.
URL : https://hal.archives-ouvertes.fr/pasteur-02445966

D. Eckweiler, C. A. Dudek, J. Hartlich, D. Brotje, J. et al., PRODORIC2: the bacterial gene regulation database, Nucleic Acids Res, vol.46, pp.320-326, 2018.

I. El-meouche, J. Peltier, M. Monot, O. Soutourina, M. Pestel-caron et al., Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR, PLoS One, vol.8, p.83748, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370779

J. E. Emerson, C. B. Reynolds, R. P. Fagan, H. A. Shaw, D. Goulding et al., A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein, Mol. Microbiol, vol.74, pp.541-556, 2009.

K. A. Fimlaid, J. P. Bond, K. C. Schutz, E. E. Putnam, J. M. Leung et al., Global analysis of the sporulation pathway of Clostridium difficile, PLoS Genet, vol.9, p.1003660, 2013.

N. Fonknechten, A. Perret, N. Perchat, S. Tricot, C. Lechaplais et al., A conserved gene cluster rules anaerobic oxidative degradation of L-ornithine, J. Bacteriol, vol.191, pp.3162-3167, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02503069

C. Francke, T. Groot-kormelink, Y. Hagemeijer, L. Overmars, V. Sluijter et al., Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior, BMC Genomics, vol.12, p.385, 2011.

J. R. Garneau, F. Depardieu, L. C. Fortier, D. Bikard, and M. Monot, PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data, Sci. Rep, vol.7, p.8292, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01613364

T. M. Gruber and C. A. Gross, Multiple sigma subunits and the partitioning of bacterial transcription space, Annu. Rev. Microbiol, vol.57, pp.441-466, 2003.

H. Gu, K. Shi, Z. Liao, H. Qi, S. Chen et al., Time-resolved transcriptome analysis of Clostridium difficile R20291 response to cysteine, Microbiol. Res, vol.215, pp.114-125, 2018.

H. Gu, Y. Yang, M. Wang, S. Chen, H. Wang et al., Novel cysteine desulfidase CdsB involved in releasing cysteine repression of toxin synthesis in Clostridium difficile, Front. Cell Infect. Microbiol, vol.7, p.531, 2017.

M. S. Guo, T. B. Updegrove, E. B. Gogol, S. A. Shabalina, C. A. Gross et al., MicL, a new sigmaE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein, Genes Dev, vol.28, pp.1620-1634, 2014.

T. T. Harden, C. D. Wells, L. J. Friedman, R. Landick, A. Hochschild et al., Bacterial RNA polymerase can retain sigma70 throughout transcription, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.602-607, 2016.

T. D. Ho and C. D. Ellermeier, PrsW is required for colonization, resistance to antimicrobial peptides, and expression of extracytoplasmic function sigma factors in Clostridium difficile, Infect. Immun, vol.79, pp.3229-3238, 2011.

J. Hor, S. A. Gorski, and J. Vogel, Bacterial RNA biology on a genome scale, Mol. Cell, vol.70, pp.785-799, 2018.

S. Jackson, M. Calos, A. Myers, and W. T. Self, Analysis of proline reduction in the nosocomial pathogen Clostridium difficile, J. Bacteriol, vol.188, pp.8487-8495, 2006.

D. Jager, K. U. Forstner, C. M. Sharma, T. J. Santangelo, and J. N. Reeve, Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis, BMC Genom, vol.15, p.684, 2014.

D. Jager, C. M. Sharma, J. Thomsen, C. Ehlers, J. Vogel et al., Deep sequencing analysis of the methanosarcina mazei Go1 transcriptome in response to nitrogen availability, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.21878-21882, 2009.

C. Janoir, Virulence factors of Clostridium difficile and their role during infection, Anaerobe, vol.37, pp.13-24, 2016.

H. Jorjani and M. Zavolan, TSSer: an automated method to identify transcription start sites in prokaryotic genomes from differential RNA sequencing data, Bioinformatics, vol.30, pp.971-974, 2014.

E. C. Keessen, W. Gaastra, and L. J. Lipman, Clostridium difficile infection in humans and animals, differences and similarities, Vet. Microbiol, vol.153, pp.205-217, 2011.

S. Keilty and M. Rosenberg, Constitutive function of a positively regulated promoter reveals new sequences essential for activity, J. Biol. Chem, vol.262, pp.6389-6395, 1987.

N. Kint, C. Janoir, M. Monot, S. Hoys, O. Soutourina et al., The alternative sigma factor sigmaB plays a crucial role in adaptive strategies of Clostridium difficile during gut infection, Environ. Microbiol, vol.19, pp.1933-1958, 2017.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

A. W. Lo, D. G. Moriel, M. D. Phan, B. L. Schulz, T. J. Kidd et al., Omic' approaches to study uropathogenic Escherichia coli virulence, Trends Microbiol, vol.25, pp.729-740, 2017.

A. Maikova, J. Peltier, P. Boudry, E. Hajnsdorf, N. Kint et al., Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile, Nucleic Acids Res, vol.46, pp.4733-4751, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833638

N. Mani and B. Dupuy, Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.5844-5849, 2001.
URL : https://hal.archives-ouvertes.fr/pasteur-02445958

N. Mani, D. Lyras, L. Barroso, P. Howarth, T. Wilkins et al., Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression, J. Bacteriol, vol.184, pp.5971-5978, 2002.
URL : https://hal.archives-ouvertes.fr/pasteur-02445952

I. Martin-verstraete, J. Peltier, and B. Dupuy, The regulatory networks that control Clostridium difficile toxin synthesis, Toxins, vol.8, p.153, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-02440544

S. Matamouros, P. England, and B. Dupuy, Clostridium difficile toxin expression is inhibited by the novel regulator TcdC, Mol. Microbiol, vol.64, pp.1274-1288, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-02444062

M. Monot, C. Boursaux-eude, M. Thibonnier, D. Vallenet, I. Moszer et al., Reannotation of the genome sequence of Clostridium difficile strain 630, J. Med. Microbiol, vol.60, pp.1193-1199, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01370838

M. Monot, M. Orgeur, E. Camiade, C. Brehier, and B. Dupuy, COV2HTML: a visualization and analysis tool of bacterial next generation sequencing (NGS) data for postgenomics life scientists, OMICS, vol.18, pp.184-195, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01370754

K. S. Murakami and S. A. Darst, Bacterial RNA polymerases: the wholo story, Curr. Opin. Struct. Biol, vol.13, pp.31-39, 2003.

S. Nakagawa, Y. Niimura, K. Miura, and T. Gojobori, Dynamic evolution of translation initiation mechanisms in prokaryotes, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.6382-6387, 2010.

M. Neumann-schaal, J. D. Hofmann, S. E. Will, and D. Schomburg, Time-resolved amino acid uptake of Clostridium difficile 630Deltaerm and concomitant fermentation product and toxin formation, BMC Microbiol, vol.15, p.281, 2015.

M. Neumann-schaal, D. Jahn, and K. Schmidt-hohagen, Metabolism the difficile way: the key to the success of the pathogen Clostridioides difficile, Front. Microbiol, vol.10, p.219, 2019.

X. Nie, W. Dong, Y. , and C. , Genomic reconstruction of sigma(54) regulons in Clostridiales, BMC Genomics, vol.20, p.565, 2019.

K. Papenfort, K. U. Forstner, J. P. Cong, C. M. Sharma, and B. L. Bassler, Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.766-775, 2015.

F. C. Pereira, L. Saujet, A. R. Tome, M. Serrano, M. Monot et al., The spore differentiation pathway in the enteric pathogen Clostridium difficile, PLoS Genet, vol.9, p.1003782, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370787

K. Pishdadian, K. A. Fimlaid, and A. Shen, SpoIIID-mediated regulation of sigmaK function during Clostridium difficile sporulation, Mol. Microbiol, vol.95, pp.189-208, 2015.

I. Rosinski-chupin, E. Sauvage, A. Fouet, C. Poyart, and P. Glaser, Conserved and specific features of Streptococcus pyogenes and Streptococcus agalactiae transcriptional landscapes, BMC Genomics, vol.20, p.236, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02290934

I. Rosinski-chupin, E. Sauvage, O. Sismeiro, A. Villain, V. Da-cunha et al., Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae, BMC Genomics, vol.16, p.419, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01169621

M. Rupnik, M. H. Wilcox, and D. N. Gerding, Clostridium difficile infection: new developments in epidemiology and pathogenesis, Nat. Rev. Microbiol, vol.7, pp.526-536, 2009.

T. Sahr, C. Rusniok, D. Dervins-ravault, O. Sismeiro, J. Y. Coppee et al., Deep sequencing defines the transcriptional map of L. pneumophila and identifies growth phase-dependent regulated ncRNAs implicated in virulence, RNA Biol, vol.9, pp.503-519, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01338351

A. E. Saliba, S. C. Santos, and J. Vogel, New RNA-seq approaches for the study of bacterial pathogens, Curr. Opin. Microbiol, vol.35, pp.78-87, 2017.

L. Saujet, M. Monot, B. Dupuy, O. Soutourina, and I. Martin-verstraete, The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile, J. Bacteriol, vol.193, pp.3186-3196, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01370840

L. Saujet, F. C. Pereira, A. O. Henriques, and I. Martin-verstraete, The regulatory network controlling spore formation in Clostridium difficile, FEMS Microbiol. Lett, vol.358, pp.1-10, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02436999

L. Saujet, F. C. Pereira, M. Serrano, O. Soutourina, M. Monot et al., Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile, PLoS Genet, vol.9, p.1003756, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370780

M. Sebaihia, B. W. Wren, P. Mullany, N. F. Fairweather, N. Minton et al., The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome, Nat. Genet, vol.38, pp.779-786, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-02444071

W. Shao, M. N. Price, A. M. Deutschbauer, M. F. Romine, and A. P. Arkin, Conservation of transcription start sites within genes across a bacterial genus, mBio, vol.5, pp.1398-1412, 2014.

C. M. Sharma, S. Hoffmann, F. Darfeuille, J. Reignier, S. Findeiss et al., The primary transcriptome of the major human pathogen Helicobacter pylori, Nature, vol.464, pp.250-255, 2010.

C. M. Sharma and J. Vogel, Differential RNA-seq: the approach behind and the biological insight gained, Curr. Opin. Microbiol, vol.19, pp.97-105, 2014.

N. Sierro, Y. Makita, M. De-hoon, and K. Nakai, DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information, Nucleic Acids Res, vol.36, pp.93-96, 2008.

E. Sineva, M. Savkina, and S. E. Ades, Themes and variations in gene regulation by extracytoplasmic function (ECF) sigma factors, Curr. Opin. Microbiol, vol.36, pp.128-137, 2017.

G. K. Smyth and T. Speed, Normalization of cDNA microarray data, Methods, vol.31, pp.265-273, 2003.

R. Sorek and P. Cossart, Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity, Nat. Rev. Genet, vol.11, pp.9-16, 2010.

O. A. Soutourina, M. Monot, P. Boudry, L. Saujet, C. Pichon et al., Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile, PLoS Genet, vol.9, p.1003493, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370770

R. A. Stabler, D. N. Gerding, J. G. Songer, D. Drudy, J. S. Brazier et al., Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains, J. Bacteriol, vol.188, pp.7297-7305, 2006.

E. Stevenson, N. P. Minton, and S. A. Kuehne, The role of flagella in Clostridium difficile pathogenicity, Trends Microbiol, vol.23, pp.275-282, 2015.

J. Stulke, M. Arnaud, G. Rapoport, and I. Martin-verstraete, PRD-a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria, Mol. Microbiol, vol.28, pp.865-874, 1998.

N. Sudarsan, E. R. Lee, Z. Weinberg, R. H. Moy, J. N. Kim et al., Riboswitches in eubacteria sense the second messenger cyclic di-GMP, Science, vol.321, pp.411-413, 2008.

A. Trinquier, S. Durand, F. Braun, and C. Condon, Regulation of RNA processing and degradation in bacteria, Biochim. Biophys. Acta Gene Regul. Mech, vol.1863, p.194505, 2020.

D. Vallenet, A. Calteau, M. Dubois, P. Amours, A. Bazin et al., MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis, Nucleic Acids Res, vol.48, pp.579-589, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02403170

G. Vedantam, A. Clark, M. Chu, R. Mcquade, M. Mallozzi et al., Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response, Gut Microb, vol.3, pp.121-134, 2012.

E. C. Woods, K. L. Nawrocki, J. M. Suarez, and S. M. Mcbride, The Clostridium difficile Dlt pathway is controlled by the extracytoplasmic function sigma Factor sigmaV in response to Lysozyme, Infect. Immun, vol.84, pp.1902-1916, 2016.

O. Wurtzel, R. Sapra, F. Chen, Y. Zhu, B. A. Simmons et al., A single-base resolution map of an archaeal transcriptome, Genome Res, vol.20, pp.133-141, 2010.

O. Wurtzel, N. Sesto, J. R. Mellin, I. Karunker, S. Edelheit et al., Comparative transcriptomics of pathogenic and non-pathogenic Listeria species, Mol. Syst. Biol, vol.8, p.583, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02647835

O. Wurtzel, D. R. Yoder-himes, K. Han, A. A. Dandekar, S. Edelheit et al., The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature, PLoS Pathog, vol.8, p.1002945, 2012.