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Abstract

In symbiotic root nodules of legumes, terminally differentiated rhizobia fix atmospheric N2 producing an NH4
+ influx 

that is assimilated by the plant. The plant, in return, provides photosynthates that fuel the symbiotic nitrogen acqui-
sition. Mechanisms responsible for the adjustment of the symbiotic capacity to the plant N demand remain poorly 
understood. We have investigated the role of systemic signaling of whole-plant N demand on the mature N2-fixing 
nodules of the model symbiotic association Medicago truncatula/Sinorhizobium using split-root systems. The whole-
plant N-satiety signaling rapidly triggers reductions of both N2 fixation and allocation of sugars to the nodule. These 
responses are associated with the induction of nodule senescence and the activation of plant defenses against mi-
crobes, as well as variations in sugars transport and nodule metabolism. The whole-plant N-deficit responses mirror 
these changes: a rapid increase of sucrose allocation in response to N-deficit is associated with a stimulation of 
nodule functioning and development resulting in nodule expansion in the long term. Physiological, transcriptomic, and 
metabolomic data together provide evidence for strong integration of symbiotic nodules into whole-plant nitrogen 
demand by systemic signaling and suggest roles for sugar allocation and hormones in the signaling mechanisms.

Keywords:  Legumes, mature nodules, nitrogen, Rhizobium, sugar partitioning, symbiosis, systemic signaling.

Introduction

A hallmark trait of legumes is to form nodules with soil bac-
teria called rhizobia. The symbiotic root organs allow the plant 
to acquire nitrogen (N) from the air. In nodules, terminally 
differentiated bacteroids fix N2 and supply NH4

+ to the plant, 
while sucrose, synthesized in the leaves by the plant and ex-
ported to the nodules by the phloem, is the source of carbon 

(C) and energy fueling symbiotic N2 fixation (SNF). NH4
+ 

produced by nitrogenase is exported from the bacteroids into 
the cytosol of the infected cell, where it is rapidly assimilated 
by GS/GOGAT (glutamine synthetase/glutamate synthase) 
in the presence of α-ketoglutarate to synthesize amino acids 
that are exported outside of the nodule (mainly asparagine 
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in the case of Medicago truncatula). Efflux transporters of the 
SWEET family are likely to be involved in the translocation 
of sucrose from the phloem to the nodule (Kryvoruchko et al., 
2016; Sugiyama et al., 2017). Once unloaded in the nodule, su-
crose is generally metabolized by sucrose synthase (Baier et al., 
2007). UDP-glucose and free hexoses are produced, which, 
after phosphorylation by hexokinases, enter the glycolytic or 
oxidative pentose phosphate pathways and are metabolized 
to malate that is finally imported into the bacteroid to fuel 
the tricarboxylic acid (TCA) cycle (Udvardi and Day, 1997). 
In bacteroids, the anaplerotic ‘γ-aminobutyric acid (GABA) 
shunt’ involving pyruvate and GABA (most probably provided 
by the plant) has been proposed to bypass two steps of the 
TCA cycle by producing succinate semialdehyde, alanine, and 
finally succinate (Prell et  al., 2009). This pathway might en-
hance energy generation under hypoxic conditions and, there-
fore, might improve the efficiency of SNF (Prell et al., 2009; 
Sulieman and Schulze, 2010; Sulieman, 2011).

The carbon metabolite cost of SNF is elevated, and the 
plant generally favors mineral N nutrition when the mineral 
N resource is not limiting plant growth. Indeed, formation of 
symbiotic organs requires low mineral N availability, whereas 
high levels of the mineral N repress SNF, inhibit nodule forma-
tion, and trigger nodule senescence (Streeter and Wong, 1988). 
Cysteine protease genes up-regulated in response to high ni-
trate concentrations are responsible for bacteroid proteolysis 
(Pérez Guerra et al., 2010; Pierre et al., 2014). Although air is 
an unlimited N source (air is composed of 80% N2), plant sym-
biotic N acquisition is frequently spatially and/or temporally 
limited because nodules are highly sensitive to local environ-
mental constraints, such as drought, that strongly inhibit SNF 
(Durand et  al., 1987; Serraj et  al., 1999; Gil-Quintana et  al., 
2013). Symbiotic organs are controlled by the local N envir-
onment of the root, but also by systemic signals originating 
from the other organs to adjust symbiotic capacities to the N 
demand and the photosynthetic capacity of the whole plant. 
Split-root systems involving N2-fixing Medicago/Sinorhizobium 
holobionts allowed characterization of these controls. The 
availability of a high level of mineral N was associated with 
the systemic repression of SNF (Ruffel et al., 2008). Plant N 
limitation by suppressing SNF of one side of a split-root system 
(Ar/O2 treatment) was associated with systemic stimulation 
of mature nodule growth and new nodule initiations on the 
other N2-fixing roots not directly exposed to the treatment 
(Jeudy et al., 2010; Laguerre et al., 2012). This stimulation was 
associated with an increased allocation of photosynthates to 
these roots (Jeudy et al., 2010). Several longstanding hypoth-
eses to explain the modulation of SNF by the plant have been 
proposed. A popular model is related to the so-called ‘nodule 
oxygen diffusion barrier’ that tightly correlates with the SNF 
activity of mature nodules (Sheehy et  al., 1983; Hunt and 
Layzell, 1993). However whether the variations of the oxygen 
flux inside the nodule are the cause or the consequence of the 
regulation of SNF remains unclear. Another hypothesis is an 
‘N-feedback’ inhibition of SNF by downstream N metabol-
ites accumulated in the plant, including glutamate, asparagine, 
or GABA (Parsons et al., 1993; Bacanamwo and Harper, 1997; 
Sulieman et al., 2010; Sulieman and Schulze, 2010; Sulieman, 

2011). The amino acid auxotrophy of bacteroids would be 
consistent with such control (Lodwig et al., 2003). Finally, as 
carbon metabolites provided by the plant to the nodule are 
the primary nutritional source of bacteroids, a control of SNF 
by sucrose synthase and organic acid allocation has also been 
suggested (González et  al., 1995; Schwember et  al., 2019). 
However, the molecular mechanisms involved in these controls 
remain unknown, and none of these models has yet been val-
idated. Nodule formation is under the control of the N status 
of the plant and the systemic repression of pre-existing nodules 
by the mechanism of autoregulation of nodule number (AON; 
Kosslak and Bohlool, 1984; reviewed by Ferguson et al., 2019). 
Super-/hypernodulating mutants impaired in AON form 
nodules in the presence of a high level of mineral N, sug-
gesting a role for this pathway in the control of nodulation 
by N signaling (Olsson et al., 1989). Nevertheless, because the 
systemic response of mature nodule growth to N demand 
remains active in such mutants, the systemic control of ma-
ture nodules is likely to be operated by an AON-independent 
pathway (Jeudy et al., 2010). Another pathway, acting in parallel 
with AON, involved in the stimulation of nodule formation in 
the plant under mineral N deficit has been described but it has 
little (if any) impact on mature nodule development (Huault 
et al., 2014; Laffont et al., 2019).

The plant transcriptional reprogramming associated with 
nodule formation and functioning has been characterized 
(El Yahyaoui et al., 2004; Mitra and Long, 2004; Lohar et al., 
2006; Benedito et al., 2008; Libault et al., 2010; Moreau et al., 
2011; Breakspear et al., 2014; Roux et al., 2014). It involves the 
up-regulation of hundreds of specific plant genes with roles in 
the early signaling responses, bacterial infection, nodule for-
mation, bacteroid differentiation, and SNF activation (Oldroyd 
et al., 2011). These two late phases are marked by the induction 
of large families of genes encoding nodule-specific cysteine-
rich (NCR) and glycine-rich nodule-specific peptides (GRP) 
associated with bacteroid differentiation (Kereszt et al., 2018) 
as well as the genes encoding leghemoglobins allowing the 
bacterial nitrogenase to be active (Rutten and Poole, 2019). 
Bacteroid differentiation is characterized by the up-regulation 
of bacterial genes involved in SNF under microoxic condi-
tions, but also by the down-regulation of an extensive number 
of the genes expressed in free-living cells (Becker et al., 2004; 
Capela et al., 2006). A network of plant hormones tightly regu-
lates the symbiotic developmental program. Ethylene has been 
implicated in the negative control of nodule formation and 
nodule infection (Guinel, 2015; Reid et al., 2018). Modulating 
shoot methyl jasmonate or cytokinin (CK) accumulation has 
suggested roles for these molecules in the systemic control of 
nodulation in Lotus japonicus (Nakagawa and Kawaguchi, 2006; 
Kinkema and Gresshoff, 2008; Sasaki et  al., 2014; Azarakhsh 
et al., 2018). CLE and CEP hormone peptides have been im-
plicated in the long-distance control of nodule formation 
and AON as well as in root formation and nitrate acquisition 
(Mortier et al., 2012; Okamoto et al., 2016; Taleski et al., 2018; 
Laffont et al., 2019). However, the role of these peptides in ma-
ture nodules remains poorly documented.

A few studies have shown that the addition of a high level 
of mineral N to the roots of the holobionts is associated with 
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extensive nodule transcriptome reprogramming affecting me-
tabolism and development (Moreau et al., 2011; Cabeza et al., 
2014). However, mineral N is a local signal by itself that is 
known to strongly affect the root transcriptome (Li et  al., 
2014). These studies did not discriminate between the local 
effects of mineral N (i.e. at the site of application) and the sys-
temic effects (i.e. related to the satisfaction of the whole-plant 
N demand). A previous report based on the analysis of split-
root systems has shown that whole-plant systemic N signaling 
has a substantial impact on the transcriptome of whole nodu-
lated roots, but the effects on nodule formation and/or ma-
ture nodule development could not be separated (Ruffel et al., 
2008). In this study, we have investigated the impact of systemic 
N signaling on mature N2-fixing nodules of M. truncatula. We 
used split-root systems to investigate systemic N satiety and N 
deficit responses. We monitored N2 fixation, bacteroid senes-
cence, metabolite accumulation, and plant and bacteroid tran-
scriptomes in order to characterize the early responses.

Materials and methods

Split-root plant growth condition
Seeds of M. truncatula genotype A17 were scarified in 97% H2SO4 for 
5 min and cold-treated at 4.0  °C in water for 48 h, before germin-
ation at room temperature in the dark. After 4 d, the primary root tips 
were cut to promote branching of the root system. Individual plant-
lets were transferred into hydroponic culture tanks containing a vigor-
ously aerated basal nutrient solution renewed every week comprising 
1  mM KH2PO4, 1  mM MgSO4, 0.25  mM CaCl2, 0.25  mM K2SO4, 
50 μM KCl, 30 μM H3BO3, 5 μM MnSO4, 1 μM ZnSO4, 1 μM CuSO4, 
0.7 μM (NH4)6Mo7O24, and 100 μM Na-Fe-EDTA supplemented with 
1  mM KNO3. The pH was adjusted to 5.8 with KOH. Plants were 
grown under 16  h light/8  h dark cycles, 250  μmol s−1 m−2 photo-
synthetically active radiation light intensity, 22  °C/20  °C day/night 
temperature, and 70% relative humidity. The 3-week-old plants were 
transferred to a nutrient solution adjusted to pH 7 supplemented with 
0.5 mM KNO3 containing the Sinorhizobium medicae md4 bacteria (107 
cfu ml–1). Nodules appeared after 4–6 d and were functional after 2 
weeks. Nutrient solutions, renewed every week, were adjusted to pH 7 
but not supplemented with mineral N. For split-root experiments, the 
root systems of 5-week-old plants were separated into two parts, each 
side being installed in a separate compartment. Differential N treat-
ments were initiated that modify the N provision to one side of the 
root system while the other side remains supplied with aerated nutrient 
solution without mineral N. The N-satiety treatment (SN2) consists of 
supplying the roots with a nutrient solution supplemented with 10 mM 
NH4NO3. The N-limitation treatment (DN2) consists of removing N2 
from the treated compartment by applying a continuous flow of 80% 
argon/20% O2. Nutrient solutions were changed daily after the initi-
ation of treatments.

MD4 genome sequencing and annotation
Bacterial genomic DNA was extracted using the standard Doe Joint 
Genone Institute procedure. Genomic libraries were constructed 
with the Nextera XT DNA Library Prep Kit (Illumina). Sequencing 
was performed on illumina HiSeq 2500. Velvet (Zerbino and Birney, 
2008), SOAPdenovo, and SOAPGapCloser (Luo et  al., 2012) packages 
were used to assemble the genome. Non-redundant contigs were or-
dered using the MAUVE aligner program (Darling et al., 2004) utilizing 
the Ensifer medicae WSM419 genome as a reference, uploaded into the 
MicroScope platform, and subjected to an automatic annotation pipe-
line (Vallenet et al., 2017). The NCBI genome sequence accession code 
is PRJEB29797.

RNA sequencing (RNAseq) analysis
Nodule samples (150–200 mature nodules) were collected from 
split-root systems described in Fig.  1A. For each condition, tripli-
cates were collected simultaneously and separately on three plants of 
the same age (Fig.  1B). Treatments consist of 0 (control), 1, or 3 d 
of N-satiety or N-deficit. RNAs were extracted from nodules using 
the miRNeasy® Mini Kit (Qiagen) according to the supplier’s re-
commendations. Plant and bacterial rRNAs were depleted using the 
strategy of Roux et  al. (2014). Modified oligonucleotides used to 
capture rRNAs from E. medicae MD4 were described by Sallet et al. 
(2013) with the exception of 23S-1532-LNA that was replaced by 
AAG+TTAAG+CAAT+CCGTCACTA+CC (‘+’ preceding locked 
nucleotides) to match the sequence of E. medicae MD4. For each RNA 
extraction, polyadenylated plant mRNA- and rRNA-depleted total 
RNA libraries were generated and sequenced. They were prepared 
using the TruSeq Stranded mRNA Sample Preparation Kit (Illumina). 
Clustering and sequencing were performed in mode single-read 50 
nt on illumina HiSeq 2500 according to the manufacturer’s instruc-
tions, consumables, and software. The sequencing reads (ArrayExpress 
database accession number E-MTAB-8597) were mapped on the 
M. truncatula v4.2 and the E. medicae MD4 strain genomes using the 
glint software (T. Faraut and E.  Courcelle; http://lipm-bioinfo.tou-
louse.inra.fr). The edgeR (v.3.22.3) Bioconductor package (Robinson 
et al., 2010) was used for differential expression analysis in R version 
3.5.1. The counts per million method was used with a threshold of one 
read per million in half of the samples. Libraries were normalized using 
the Trimmed Mean of M-values method (Robinson et al., 2010; Dillies 
et al., 2013). The differential expression analysis was applied on DN2 and 
SN2 samples separately using generalized linear models (GLMs). For 
each treatment (N-deficit or N-satiety), the log of the average gene ex-
pression was used as an additive function of a replicate effect and a time 
effect (zero time is the no treatment control). A  likelihood ratio test 
was performed to evaluate the expression change between two con-
secutive times, and the probabilities of significance were adjusted using 
the Benjamini–Hochberg procedure. Differentially expressed genes 
(DEGs) were selected using an adjusted P-value threshold of 0.05. The 
robustness of the analysis was confirmed by assaying the response to 
N signaling of nine DEG transcripts encoding leghemoglobin, cyst-
eine protease, and SWEET11 in nodules collected from three inde-
pendent split-root experiments (Supplementary Fig. S9 at JXB online). 
The co-expression analysis was performed by the ‘Coseq’ (v.1.4.0) 
Bioconductor R package (Rau and Maugis-Rabusseau, 2018). As clus-
tering by the Coseq algorithm may vary depending on the initializa-
tion point, the clustering was repeated 40 times, and the integrated 
completed likelihood (ICL) was used as a criterion to choose the best 
modeling of the data. MtV4 annotation was supplemented with Plant 
metabolic network (PMN)-Mediccyc annotation of biochemical path-
ways (Urbanczyk-Wochniak and Sumner, 2007). Hypergeometric tests 
with a P-value threshold of 0.05 allowed for the identification of func-
tional enrichment in particular gene subgroups as compared with their 
representation in the whole genome. Plant Gene Ontology (GO) ana-
lysis was performed with the online tools AgriGO (Tian et al., 2017).

Metabolomics and 15N2 fixation
Samples (pool of the mature nodules of two plants) were collected in five 
replicates after 0, 1, or 4 d of N-satiety or N-deficit treatments at the same 
time on plants of the same age. Metabolites were extracted and analyzed 
by GC/MS after grinding and homogenization in liquid nitrogen as de-
scribed (Fiehn, 2006; Clément et al., 2018). The 15N2 fixation activity was 
quantified according to Ruffel et al. (2008).

Histological analyses
Longitudinal sections of fresh mature nodules (70 µm thickness) were 
transferred to the LIVE/DEAD® solution of the BacLight™ Bacterial 
Viability Kit for 15 min in darkness and then incubated in calco-fluorine 
solution (0.1 mg ml–1) for 15 min in the dark. The observations are made 
using a confocal fluorescence microscope (LSM 700, Zeiss).
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Results

Split-root systems to characterize the responses of 
mature N2-fixing nodules to the whole-plant N demand

Split-root systems were used to investigate the systemic con-
trol exerted by the whole-plant N status on mature nodules. 
Roots of individual plants carrying mature N2-fixing nodules 
were separated in two compartments, and different N regimes 
were applied for 4 d (Fig. 1). All roots of control (C) plants 

were supplied with air and a nutrient solution without min-
eral N.  ‘N-satiety’ plants grew in the same conditions, but a 
high level of mineral N (NH4NO3 10 mM) was provided on 
half of their root system. ‘N-deficit’ plants had half of their 
roots supplied with a nutrient solution without mineral N, 
but aerated with a gas mixture of Ar/O2 80%/20% instead of 
air (suppression of the N2 source), resulting in the immediate 
arrest of SNF at the site of treatment. Systemic effects of N 
treatment were investigated by comparing the SN2, DN2, and 
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Fig. 1. Split-root systems used to study N-deficit and N-satiety signaling on the mature nodules of symbiotic plants. Plants were grown hydroponically. 
(A) Treatments were applied on one half of root systems and effects were studied on the other sides on the SN2, C, DN2, nodules of N-satiety (blue), 
control (gray), and N-deficit (red) plants, respectively. N-satiety treatment (blue) was achieved by providing 10 mM NH4NO3. N-deficit treatment (red) was 
achieved by replacing air by Ar/O2 80%/20% (v/v). Control plants (gray) were not treated. The untreated roots of all plants remained normally aerated with 
air. (B) N-satiety, N-deficit, and control plants of the same age were harvested simultaneously. Effect of the treatments (N-satiety and N-deficit) applied 
during different times before harvest were compared. 
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C nodulated roots (Fig. 1). SN2, DN2, and C nodules (Fig. 1) 
were in the same local condition, permissive to SNF (nutrient 
solution without mineral N and air), but connected to whole 
plants grown under ‘N-satiety’, ‘N-deficit’, and ‘control’ N re-
gimes (resulting from the supply of the other side of their root 
system).

Systemic repression of SNF by ‘N-satiety’ was monitored 
using 15N2 labeling after 8 h, and 1, 2, and 4 d of N treatment 
(Fig. 1B). We observed an extreme repression of the SNF of 
the SN2 nodules between 8 h and 24 h (Fig. 2) when com-
pared with the control nodules (Fig.  3A, B). Nodule senes-
cence was investigated by fluorescence imaging using life/dead 
staining in SN2 and DN2 nodules after 4 d of N treatments. 
Systemic ‘N-satiety’ signaling was associated with bacteroid 
senescence (Fig. 3E, F), whereas a reduction of bacteroid mor-
tality was observed in response to systemic ‘N-deficit’ signaling 
(Fig. 3C, D).

To investigate the early metabolic and transcriptional re-
sponses to systemic N signaling potentially involved in the 
developmental responses (i.e. nodule senescence or nodule 
expansion) characterized after long-term treatments, we col-
lected nodules during the first 4 d of treatments before sig-
nificant differences in biomass allocation related to treatments 
could be measured.

Root metabolite pool responses to systemic N 
signaling

Variation of soluble metabolite content associated with sys-
temic N signaling was investigated by GC/MS analysis in 

C, SN2, and DN2 nodules after 1 d and 4 d of N treatments 
(Fig. 1). We detected 266 chemical species in the nodules, and 
we could unambiguously identify 107 of them. Most of them 
were soluble sugars, amino acids, and organic acids. Global 
soluble metabolite content varies in response to systemic 
N signaling: plant N-deficit stimulated their accumulation, 
whereas plant N-satiety decreased it (Fig. 4A).

Impacts of both N-deficit and N-satiety systemic signaling 
on the pool of soluble sugars in nodules were already observed 
after 1 d of treatment (Fig.  4B; Supplementary Table S1). 
N-satiety signaling was associated with a reduction of the con-
tent of sucrose, glucose, glucose 6-phosphate, fructose, and fruc-
tose 6-phosphate, and other minor sugars derived from them. 
Conversely, N-deficit stimulated the accumulation of these 
sugars in nodules. Nevertheless, levels of some minor sugars 
(e.g. galactose, xylose, and rhamnose) were affected to only a 
very small degree by the treatment, indicating that these exten-
sive changes were not generalized to all sugars (Supplementary 
Table S1). Together with soluble sugar variations, we observed 
variations in nodule amino acid and organic acid contents 
(Fig. 4C, D; Supplementary Tables S2, S3). N-satiety signaling 
was associated with a transient stimulation of the accumula-
tion of several of these metabolites after 1 d of treatment fol-
lowed by a substantial reduction, while N-deficit stimulated 
their accumulation in mature nodules. Major amino acids such 
as asparagine, and glutamate, and minor ones such as alanine 
and GABA (Fig. 4C; Supplementary Table S2), displayed these 
variations, as did primary organic acids such as malate, pyru-
vate, succinate, and fumarate (Fig.  4D; Supplementary Table 
S3). Interestingly, succinic semialdehyde, a minor organic acid 
that is barely detectable in control samples and N-sufficient 
plants, accumulated in nodules under N-deficit (Fig.  4D; 
Supplementary Table S3). Together with GABA and alanine 
(Fig.  4C; Supplementary Table S2), they mark the stimula-
tion of the ‘GABA shunt’ of the TCA cycle in response to 
systemic N-deficit signaling under the anaerobic conditions of 
mature nodules. Nonetheless, not all amino and organic acids 
followed these trends. Many minor nodule amino acids, such 
as tryptophan, valine, arginine, and isoleucine, were strongly 
accumulated in response to plant N-satiety and displayed only 
little variation under N-deficit (Fig. 4C; Supplementary Table 
S2). Systemic N signaling does not significantly affect citrate 
(the primary organic acid of the nodule) and malonate pools 
(Fig.  4D; Supplementary Tables S3). Altogether, these results 
revealed a specific impact of systemic N signaling on metab-
olite contents in nodules.

Global responses of the mature nodule transcriptome 
to systemic N signaling

The effect of systemic N signaling on the transcriptome re-
sponses of the two symbiotic partners was investigated. We used 
the split-root systems described in Fig. 1A. DN2 or SN2 nodules 
were collected in triplicate on N-deficit or N-satiety plants 
(1 d or 3 d treatments) and compared with the nodules col-
lected from control plants (Fig. 1B). To simultaneously monitor 
plant and bacterial gene expression, RNAseq analysis was per-
formed on both polyadenylated RNA- and rRNA-depleted 
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Fig. 2. Effect of systemic N-satiety signaling on the specific SNF of 
SN2 mature nodules. N2 acquisition activity per biomass of nodule was 
measured using 15N2 labeling on the SN2 nodules exposed to 8, 24, 48, 
and 96 h of N-satiety treatment (the detailed experimental split-root design 
is described in Fig. 1). Measurements are made on 8–10 nodulated root 
samples collected from 8–10 split-root plants. Errors bars are the SD. 
Kruskal–Wallis tests (significance threshold of 0.05) followed by Wilcoxon 
pairwise comparisons between treatments with corrections for multiple 
testing (significance threshold of adjusted P-value of 0.05) were performed. 
Letters indicate distinct groups of values deduced from the Wilcoxon test.
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total RNAs. A total of 9110 plant DEGs in at least one condi-
tion (adjusted P-value <0.05) were identified (Supplementary 
Fig. S1; Supplementary Tables S4, S5). Systemic N signaling 
has a major impact on the nodule transcriptome as 44% of 
the plant genes expressed in the symbiotic organ are DEGs 

(39% and 13% in response to N-satiety and N-deficit, respect-
ively). Only 5% of these genes were identified by the pre-
vious studies describing N responses of the symbiotic organs 
(Supplementary Fig. S2; Ruffel et al., 2008; Cabeza et al., 2014). 
Although N-deficit and N-satiety signaling targeted rather 

Fig. 3. Effect of systemic N-satiety signaling on the bacteroid viability of C, DN2, and SN2 mature nodules. N-satiety split-root plants were cultivated as 
described in Fig. 1 and nodules were collected after 4 d of N-satiety treatment. Confocal microscopy images of transversal sections of control (A, B), 
DN2 (C, D), and SN2 (E, F) nodules upon live/dead and calco-fluorine staining. Viable bacteroids appear green (arrowheads) and dead bacteroids red 
(double arrowheads) inside plant cells. Control plants contained red- and green-labeled bacteroids. In SN2 nodules, bacteroids were almost completely 
destroyed, and only undifferentiated bacteria (arrows) were observable after 4 d (E, F). A higher level of green signal is found in DN2 nodules as compared 
with control nodules, suggesting delayed mortality compared with control nodules. Scale bars correspond to 200 µm in (A), (C), and (E), and 50 µm in 
higher magnification panels (B), (D), and (F). 
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specific DEG groups, they also targeted a broad set of 1778 
common genes (common DEGs) responding to both treat-
ments (Supplementary Fig. S1). Total DEGs were strongly en-
riched with plant genes displaying responses to both treatments 
as compared with total expressed genes (hypergeometric test, 

P<0.01). N-satiety- and N-deficit-responsive genes display 
specific enrichments of some GO terms as compared with the 
entire transcriptome (Supplementary Table S6). Comparing 
these enrichments confirmed the specificities of the two sys-
temic N responses (i.e. GO terms enriched in one group and 
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Fig. 4. Effect of systemic N signaling on mature nodule metabolite content. Analysis was performed by GC/MS. Measurements were done on five 
independent biological replicates (one biological replicate is 200–300 nodules of two plants). Error bars are the SDs. (A) Total metabolite content. Gray, 
blue, and red bars correspond, respectively, to control, SN2, and DN2 nodules consistently with the colors in Fig. 1. We performed Kruskal–Wallis test 
(0.05 significance threshold) followed by Wilcoxon pairwise comparisons between treatments with corrections for multiple testing (0.05 significance 
threshold of the adjusted P-value). Letters indicate distinct groups of values deduced from the Wilcoxon test. (B) Sugar contents. Colors correspond to 
the five most abundant sugars of the nodules, representing >95% of the total sugar content of the mature nodules of control plants (complete data and 
statistical analysis are given in Supplementary Table S1). (C) Amino acid contents. Colors correspond to the eight most abundant amino acids of the 
nodules representing >95% of the total amino acid content of the mature nodules of control plants (complete data and statistical analysis are given in 
Supplementary Table S2) (D) Organic acid contents. Colors correspond to the seven most abundant organic acids of the nodules, representing >95% of 
the total organic acid content of mature nodules of control plants (complete data and statistical analysis are given in Supplementary Table S3). 
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not in the other), but also revealed enrichments of the same 
functions (i.e. the same GO terms enriched in both groups). 
Such massive transcriptome reprogramming was not observed 
in bacteria as only 674 differentially accumulated bacterial 
transcripts were identified (Supplementary Tables S7, S8), rep-
resenting 11% and 1% of the expressed bacterial genes in re-
sponse to N-satiety and N-deficit, respectively. Within the few 
N-deficit-responsive transcripts of the bacteria, we found no 
clear evidence of the transcriptional activation of the ‘GABA 
shunt’ of the TCA cycle at the level of metabolite accumu-
lation. Most of the bacterial DEGs were identified in the 
nodules exposed to 3 d of N-satiety treatment (Supplementary 
Fig. S1B). However, at this stage of the treatment, the viability 
of bacteroids, the main fraction of bacterial cells present in 
the mature nodules, was probably impaired (Fig. 3). Bacteroid 
death had most probably (i) reduced the overall expression level 
of bacterial genes (that is assumed to be stable during the treat-
ments); and (ii) modified the relative level of viable free-living 
versus differentiated bacteria in the samples. Therefore, the ef-
fect of long-term N-satiety treatments on the bacterial tran-
scriptome needs to be interpreted with caution as the changes 
were probably related to bacteroid death and only indirectly to 
N signaling.

Analysis of plant transcriptome reprogramming in 
response to systemic N signaling

Co-expression analysis was performed on plant DEGs to 
cluster genes displaying closely related responses to systemic N 
signaling. The procedure was able to classify 86% of total DEGs 
within 15 clusters (Fig. 5; Supplementary Table S9). We com-
bined 11 clusters (representing 85% of the total plant DEGs) 
in two metaclusters. Metaclusters A (clusters 1, 2, 5, 11, 13, and 
14) and B (clusters 3, 6, 7, 8, and 9) were formed by regrouping 
clusters displaying respectively up- and down-regulation re-
sponses to N-satiety signaling. Most DEGs correspond to 
genes expressed in the various zones of the mature nodules de-
scribed by Roux et al. (2014) (Supplementary Table S10). The 
transcript accumulations of the genes belonging to the A and 
B metaclusters were not equivalently spatially distributed in 
nodules. The A and B metacluster genes were abundant in the 
early infection zone, but the A  metacluster genes were par-
ticularly active in the N2-fixing zone containing symbiosomes 
and differentiated bacteroids, whereas B metacluster tran-
scripts were particularly abundant in the meristematic and the 
late infection zone (Supplementary Table S10). Enrichments 
of particular plant gene annotations were estimated by 
hypergeometric tests. The frequencies of annotations in clus-
ters/metaclusters were compared with frequencies in the entire 
transcriptome to estimate whether observed enrichments were 
the result of chance or possibly related to a biological function 
(Fig. 6; Supplementary Tables S9, S11). Globally, DEGs were 
enriched in genes of the symbiotic-related islands (SRIs) phys-
ically clustered within the M, truncatula genome (Pecrix et al., 
2018), illustrating the strong impact of systemic N signaling on 
symbiosis (36% of the SRI genes were DEGs).

Metacluster A  gene annotations were enriched with the 
keyword ‘senescence’. Consistently, the transcript encoding 

MtNAC969 (Medtr4g081870; de Zélicourt et  al., 2012), a 
transcription factor controlling nodule senescence, was found 
in cluster 5. Furthermore, cluster 1 was enriched for cysteine 
protease transcripts involved in the proteolysis of bacteroids 
during nodule senescence. The corresponding transcripts were 
down-regulated in response to N-deficit, suggesting that they 
were instrumental in both N responses (Supplementary Figs 
S3, S4). Three genes encoding cystatin, an inhibitor of cyst-
eine protease (van Wyk et  al., 2014; clusters 14, 5, and 11; 
Medtr3g084780, Medtr4g01762, and Medtr3g043750, respect-
ively) were also up-regulated in response to N-satiety systemic 
signaling. In addition, gene annotations of the metacluster 
A and particularly cluster 5 were strongly enriched with key-
words ‘chitinase’ or ‘glucanase’ or ‘pathogenesis-related’ (16 
transcripts), indicating that systemic N-satiety signaling stimu-
lated the accumulation plant transcripts related to defense re-
sponses against microorganisms. This stimulation paralleled 
the up-regulation of the jasmonic acid biosynthesis genes (11 
transcripts in metacluster A). Nevertheless association of these 
functions with the response to systemic N-satiety signaling was 
not systematic, as other transcripts annotated as ‘chitinase’ or 
‘glucanase’ or ‘pathogenesis-related’ were enriched in down-
regulated gene clusters or clusters displaying other expression 
profiles (clusters 6, 4, 10, 12, and 15), suggesting that transcripts 
related to defense against microorganisms were contributing to 
several N signaling responses. Metacluster A transcripts were en-
riched in annotations related to CK synthesis and degradation: 
two-component response regulators (eight transcripts), and en-
zymes involved in the inactivation of CKs by glycosylation 
(five transcripts). The up-regulation of these transcripts in re-
sponse to N-satiety parallels the repression of the accumulation 
of three other transcripts belonging to metacluster B encoding 
isopentenyl transferase (IPT; clusters 6 and 7) and CK riboside 
5'-monophosphate phosphoribohydrolase (cluster 12), both 
involved in the biosynthesis of active CKs, but also a transcript 
encoding CK oxidase (cluster 7)  involved in the inactivation 
of CKs.

Genes belonging to metacluster B were repressed by systemic 
N-satiety signaling. The down-regulation of the transcripts 
encoding leghemoglobins (clusters 6 and 7; Supplementary Fig. 
S5), ammonium assimilation, and l-asparagine synthesis (both 
pathways enriched in metacluster B) paralleled the repression 
of SNF. The expression of many metacluster B genes marked 
the repression of sugar metabolism and transport in response 
to systemic N-satiety systemic signaling. Transcripts related to 
pathways of glycolysis, gluconeogenesis, sucrose, and starch 
metabolism were represented in metacluster B.  Metacluster 
B also included 11 transcripts annotated as involved in su-
crose transport. Striking examples were transcripts encoding 
the main nodule efflux sucrose transporters, MtSWEET11 
(Medtr3g098930), MtSWEET15c (Medtr7g405730), and 
MtSWEET12 (Medtr8g096320), that were down-regulated 
by N-satiety. However, enrichment in sugar transporter tran-
scripts was found in metacluster A (namely in cluster 11; six 
transcripts). These transcripts were up-regulated during nodule 
senescence and might be involved in the remobilization of 
sugars from the senescent organs to the plant. Whether these 
different behaviors of sugar transporter transcripts are related to 
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the direction of the sugar flux mediated by these transporters 
remains to be determined. Although transcripts encoding en-
zymes involved in ethylene biosynthesis may display different 
responses to systemic N signaling, this annotation was globally 
overenriched in metacluster B (10 transcripts). Many transcripts 
associated with nodule formation and/or development belong 
to metacluster B. Repression by N-satiety signaling of 35 core 
histone and 18 cyclin transcripts (enriched in metacluster B; 
Supplementary Tables S9, S11) were probably correlated with 
a reduction of nodule cell division. Metacluster B was en-
riched in numerous nodule-specific transcripts: 24 encoding 
GRP peptides (Supplementary Fig. S6), 257 encoding NCR 
peptides (Supplementary Fig. S8), and 20 others annotated as 

‘nodulins’ (Supplementary Fig. S7). Two subgroups of NCR 
transcripts were easily discriminated based on their accumula-
tion kinetics in response to N-satiety systemic signaling: early 
(before 1 d of treatment; 114 trancripts) or late (between 1 
d and 3 d treatment; 101 genes) down-regulation. In add-
ition, several key transcripts associated with flavonoid bio-
synthesis (overenriched in metacluster B; nine transcripts), 
as well as Rhizobium infection and nodule formation, such 
as MtPUB1 (Medtr5g083030), MtDMI1 (Medtr5g083030), 
MtLIN (Medtr1g090320), MtRPG (Medtr1g090807), 
MtEFD (Medtr4g008860), MtMMPL1 (Medtr5g036083), 
MtVPY (Medtr5g083030), MtNFY-A1 (Medtr1g056530), 
MtNOOT1 (Medtr7g090020), MtDME (Medtr1g492760), 
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Fig. 5. Clusters and metaclusters of DEGs co-expressed in response to systemic N signaling. Normalized expression profiles of genes (relative transcript 
accumulations) are represented per cluster using box plots. C, D1 and D3, and S1 and S3 correspond, respectively, to control (gray), DN2 (1 d and 3 d of 
N-deficit treatment in red and brown), and SN2 (1 d and 3 d of N-satiety treatments in light and dark blue), as the samples described in Fig. 1. The total 
number of DEGs (i.e. differentially expressed in response to N-satiety or N-deficit) as well as the numbers of common DEGs (i.e. differentially expressed in 
response to N-satiety and N-deficit) of the clusters are indicated. 
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MtN21 (Medtr3g012420), and MtN6 (Medtr1g062710), also 
belonged to metacluster B. Some of the transcripts involved 
in nodule development were also up-regulated by N-deficit 
(cluster 3); that is, most of the NCRs (including MtDNF4/
NCR211; Medtr4g035705) and GRPs accumulated tran-
scripts as well as MtDME and MtN13. Nevertheless, not all 
key genes of early or late nodule development are down-
regulated by N-satiety signaling. For example, MtENOD11 
(Medtr3g415670), MtNIN (Medtr5g099060), MtFLOT2 
(Medtr3g106420), MtSymRem (Medtr8g097320), MtLYK3 
(Medtr5g086130), MtRSD (Medtr3g063220), MtDNF2 
(085800), and MtSymCRK (Medtr3g079850) are expressed but 
did not respond significantly, while MtNSP1 (Medtr8g020840) 

and MtENOD40 (Medtr8g069785) were slightly up-regulated 
(in metacluster A).

Finally, we paid particular attention to the 15 transcripts 
detected in mature nodules encoding CLE and CEP peptide 
hormones. A number of them were differentially accumu-
lated in response to systemic signaling (11 CLE and two 
CEP transcripts; Supplementary Fig. S8). Their accumulation 
profiles were diverse as they are related to either metacluster 
A  (one CEP and four CLE transcripts) or metacluster B 
(three CLE transcripts), or display other expression profiles 
(one CEP and four CLE transcripts), suggesting that they 
may be associated with multiple responses to systemic N 
signaling.
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Discussion

This study shows that the whole-plant N status triggers sys-
temic signaling impacting mature nodule functioning and 
development associated with massive metabolic changes and 
transcriptome reprogramming(s).

The whole-plant N-satiety treatment results in the systemic 
repression of SNF. This down-regulation occurs within hours 
after providing a high level of mineral N to the treated side of 
the split-root system (Fig. 2) and is correlated with the sys-
temic activation of the senescence of the N2-fixing bacteroids 
(Fig. 3). At the transcriptional level, these responses correlate 
with the down-regulation of the leghemoglobin gene family, 
several transcripts involved in ammonium assimilation, as well 
as in the rapid up-regulation of the transcripts encoding nodule 
cysteine proteases and many other plant proteins involved in 
nodule senescence, including the MtNAC969 transcription 
factor. Up-regulation of cysteine proteases and MtNAC969 
transcripts during nitrate-induced nodule senescence has been 
previously reported (Pérez Guerra et  al., 2010; de Zélicourt 
et al., 2012; Pierre et al., 2014). This up-regulation does not re-
quire the presence of nitrate at the periphery of the nodules per 
se, but is under the control of the nutrient status of the whole 
plant. Our data are compatible with the hypothesis of nodule 
senescence being the cause direct of the down-regulation of N2 
fixation, but does not rule out that additional mechanisms may 
also contribute to this repression. Systemic N-satiety signaling 
stimulates accumulation of transcripts encoding chitinase, 
glucanase, and pathogenesis-related proteins, as well as tran-
scripts involved in jasmonic acid biosynthesis (van Loon et al., 
2006; Bari and Jones, 2009) that are known components of 
the pathogen-triggered immunity response generally attenu-
ated during nodule formation (Berrabah et al., 2015; Gourion 
et  al., 2015). The re-activation of defense responses against 
microorganisms parallels the arrest of the symbiotic associ-
ation during systemically induced nodule senescence. Systemic 
N satiety signaling down-regulates the accumulation of nu-
merous transcripts involved in cell division and meristematic 
activity (cyclin, core histones) as well as transcripts specific to 
the symbiotic organ development program such as transcripts 
encoding nodulins, GRPs, and most of the transcripts of the 
large NCR peptide family. Interestingly, two classes of NCR 
transcripts are discriminated based on their early or late re-
sponses to systemic N-satiety signaling. Diversity within the 
NCR gene family related to transcript accumulation kinetics, 
impact on bacteroid differentiation, and host specificity have 
already been reported (Guefrachi et  al., 2014; Kereszt et  al., 
2018). Whether the differential responses to N-deficit signaling 
are related to the distinct functions of these peptides remains to 
be investigated. Previous work has evidenced that the systemic 
N-deficit signaling has no clear effect on nodule SNF specific 
activity (SNF per biomass of nodule) but stimulates nodule 
expansion that finally results in elevating nodule SNF in the 
long term (SNF per nodule; Ruffel et  al., 2008; Jeudy et  al., 
2010; Laguerre et al., 2012). Although the impact of N-deficit 
on mature nodule expansion is hardly measurable after 3 d, we 
observed an early inhibition of bacteroid senescence, an early 
down-regulation of nodule cysteine protease gene expression, 

as well as an early stimulation of the accumulation of NCR 
and GRP peptide transcripts in response to N-deficit systemic 
signaling. As NCRs and GRPs have been implicated in early 
and late bacteroid differentiation (Kereszt et  al., 2018), these 
responses may mark the early stimulation of the bacteroid dif-
ferentiation that has been already characterized as a long-term 
response to N-deficit signaling (Laguerre et al., 2012). Massive 
reprogramming was not observed in symbiotic bacteria as the 
main variations affecting bacterial transcripts were probably 
indirectly related to the lysis of bacteroids rather to a direct 
response of bacteroid gene expression to N signaling. Globally 
the data are consistent with the view of plant systemic N 
signaling having the driving role in determining mutualism be-
havior of the mature symbiotic organs. Altogether the data give 
further support to the model of bacteroid differentiation and 
persistence being tuned by the plant through activation of de-
fenses and senescence (Berrabah et al., 2015), and further sug-
gest that systemic N signaling pilots these controls. However, at 
this stage, it cannot be ruled out that variation of genetic ex-
pression in bacteroids operates at the post-transcriptional level. 
A  striking example that may argue for post-transcriptional 
regulation in bacteroids in response to N signaling is the ap-
parent discrepancy between the impact of N-deficit on the 
‘GABA shunt’ activity in mature nodules that is well observed 
at the level of metabolite accumulation but not associated with 
clear variation of the accumulation of the transcripts encoding 
the related enzymes.

Systemic N signaling triggers major variations of the me-
tabolite pools of the mature nodule that are inversely cor-
related with the whole-plant N demand. They illustrate the 
variations of the exchanges between nodules and the whole 
plant. Whole-plant N-satiety and N-deficit signaling, respect-
ively, trigger a dramatic reduction and substantial increase of 
sugar pools within the first day of treatment. These variations 
are correlated with changes of the levels of transcripts in-
volved in glycolysis, sucrose metabolism, starch degradation, 
and biosynthesis. Because most of these responses tend to 
compensate sugar pool variations, they are likely to be the 
consequences rather than the cause of changes of the sugar 
content of the nodule. As the sucrose produced by photosyn-
thesis and translocated from the shoot to the root through the 
phloem stream is the primary source of nodule carbon me-
tabolites (Udvardi and Poole, 2013; Liu et al., 2018), the sugar 
pool variations are probably due to changes in the phloem-
driven sucrose partitioning from the shoot to the symbiotic 
organ rather than to nodule metabolism activity. Interestingly, 
variations in the sugar content of the nodule correlate with 
variations of the accumulation of several transcripts involved 
in sugar transport, some encoding SWEET sugar trans-
porters that are potentially involved in the sugar export from 
the source tissue to the nodule (Kryvoruchko et  al., 2016). 
Variations of assimilate partitioning from the shoot to the 
nodules have already been correlated with early systemic 
N-deficit signaling using 13CO2 labeling in M.  truncatula 
nodulated plants exposed to a local suppression of N2 fixation 
(4 d of Ar/O2 treatment; Jeudy et al., 2010). These N-deficit 
systemic responses include rapid variation of sugar content 
of the nodule already measured after 1 d of partial arrest of 
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SNF. N-satiety is associated with the reduction of the aspara-
gine and glutamate pools produced by the assimilation of the 
NH4

+ by SNF, as well as the malate pool, the primary carbon 
and energy source provided by the plant to the bacteroid 
(Udvardi and Poole, 2013). N-satiety also reduces the GABA, 
alanine, and succinic semialdehyde pools that mark the ac-
tivity of the so-called ‘GABA shunt’. This metabolic pathway 
was suggested to allow the hypoxic symbiotic tissues to main-
tain the efficiency of the TCA cycle (Prell et al., 2009) and 
was proposed to be regulated by the plant through GABA 
partitioning from the shoot to the nodule (Sulieman and 
Schulze, 2010; Sulieman, 2011). N-deficit signaling mirrors 
N-satiety systemic responses by increasing these metabolite 
pools. Amino acids have been suggested as potential signals 
for systemic N regulation of symbiosis, indicating a specific 
‘N-feedback’ mechanism (Parsons et  al., 1993; Bacanamwo 
and Harper, 1997; Sulieman and Schulze, 2010; Sulieman 
et al., 2010). Nevertheless, although the levels of many amino 
acids and some organic acids vary in response to systemic N 
signaling, their accumulation kinetics are late as compared 
with sugars, early transcriptome reprogramming, and SNF (in 
the case of N-satiety). Therefore, the variatons in amino acids 
and organic acids are more likely to be consequences of su-
crose partitioning. Sugar allocation by the plant to the nodule 
may behave as a systemic metabolic signal that drives nodule 
function and development. Earlier reports indicated that (i) 
carbon partitioning is limiting nodule development and func-
tion at vegetative stages (Voisin et al., 2003); and (ii) increasing 
partitioning of photosynthates from the shoot to the roots by 
elevating ambient CO2 enhances SNF in legumes (Rogers 
et al., 2006). Furthermore the role of SWEET transporters in 
the control of the plant interaction with pathogenic microbes 
has already been documented (Bezrutczyk et al., 2018). This 
work suggests that these transporters may also contribute to 
adjusting the benefits of beneficial microorganisms to plant 
nutritional demand. However, how the whole-plant N status 
is perceived in order to modulate sucrose allocation remains 
to be discovered.

Although the variation of sugar allocation is, to our know-
ledge, the earliest known response to systemic N signaling in 
mature nodules, it cannot be excluded that there is a conse-
quence of reprogramming of nodule development by hor-
monal and/or peptide signals. Systemic N signaling modulates 
the accumulation of a number of transcripts involved in (i) 
the CK transduction pathway as well as in CK inactivation 
and biosynthesis; (ii) ethylene biosynthesis; (iii) jasmonic acid 
biosynthesis; and (iv) expression of several genes encoding 
CEP and CLE peptide hormones. All of these hormones and 
peptides can be mobile signals, have been implicated in the 
control of nodule formation and development (Ferguson and 
Mathesius, 2014; Buhian and Bensmihen, 2018), and therefore 
could be involved in the systemic control of mature nodules. 
Further investigations are required to discriminate whether 
these hormones and peptides may be direct systemic signals of 
N status of the plant or secondary components of the systemic 
N responses.

This study illustrates that the function and develop-
ment of the symbiotic organs are highly integrated at the 

whole-holobiont level. Systemic regulations could be inter-
preted according to a mutualism model based on plant C–N 
trade-offs. Plants under N-deficit stimulate SNF by allocating 
photosynthates toward N2-fixing mature nodules, whereas 
when the N demand is satisfied by addition of mineral N 
the plants shut down this allocation and promote symbiotic 
organ senescence as the C cost of SNF is excessive as com-
pared with mineral N nutrition. Because of climate change, 
atmospheric ambient CO2 is expected to increase, modifying 
the conditions of symbiotic C–N trade-offs (Rogers et  al., 
2006). How this may consequently modify the equilibrium 
of Rhizobium–legume mutualism is an open question that de-
serves further investigation.
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Fig. S4. Heat map of transcript accumulation of expressed 
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Fig. S5. Heat map of transcript accumulation of plant DEGs 
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Fig. S6. Heat map of transcript accumulation of plant DEGs 
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Fig. S7. Heat map of transcript accumulation of plant DEGs 
annotated as nodule cysteine-rich (NCR) peptides.

Fig. S8. Heat map of transcript accumulation of expressed 
plant genes annotated as CLE or CEP peptides.

Fig. S9. Box-plot representation of the relative accumulation 
of leghemoglobin, cysteine protease, and sweet 11 transcripts in 
response to systemic N-satiety or N-deficit signaling in three 
independent split-root experiments.

Table S1. Effect of systemic N signaling on sugar contents 
of mature nodules.

Table S2. Effect of systemic N signaling on soluble amino 
acid contents of mature nodules.

Table S3. Effect of systemic N signaling on organic acid 
contents of mature nodules.

Table S4. RNAseq data of the plant genes expressed in con-
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plant DEG transcripts in the various temporal contrasts of the 
analysis (DE_groups).

Table S6. Gene Ontology (GO) enrichment comparison be-
tween N-satiety and N-deficit plant DEGs.

Table S7. RNAseq data of the bacterial genes expressed 
in control, DN2, and SN2 mature nodules (log2-normalized 
counts).
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Table S9. Assignment of total plant DEGs to co-expression 
clusters and metaclusters.

Table S10. Preferential expression of the DEGs in the nodule 
zones deduced from the data of Roux et al, 2014.

Table S11. Enrichment in the functional annotation terms of 
the co-expressed DEGs as compared with their representation 
in the whole genome (Mtv4.2) by hypergeometric tests.
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