M. Azarakhsh, M. A. Lebedeva, and L. A. Lutova, Identification and expression analysis of Medicago truncatula Isopentenyl Transferase Genes, 2018.

M. C. Baier, A. Barsch, H. Küster, and N. Hohnjec, Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome, Plant Physiology, vol.145, pp.1600-1618, 2007.

R. Bari and J. D. Jones, Role of plant hormones in plant defence responses, Plant Molecular Biology, vol.69, pp.473-488, 2009.

A. Becker, H. Bergès, and E. Krol, Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions, Molecular Plant-Microbe Interactions, vol.17, pp.292-303, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00427505

V. A. Benedito, I. Torres-jerez, and J. D. Murray, A gene expression atlas of the model legume Medicago truncatula, The Plant Journal, vol.55, pp.504-513, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02668894

F. Berrabah, P. Ratet, and B. Gourion, Multiple steps control immunity during the intracellular accommodation of rhizobia, Journal of Experimental Botany, vol.66, pp.1977-1985, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02410342

M. Bezrutczyk, J. Yang, and J. Eom, Sugar flux and signaling in plant-microbe interactions, The Plant Journal, vol.93, pp.675-685, 2018.

A. Breakspear, C. Liu, and S. Roy, The root hair 'infectome' of, 2014.

W. P. Buhian and S. Bensmihen, Nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosis, Frontiers in Plant Science, vol.9, p.1247, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02336142

R. Cabeza, B. Koester, R. Liese, A. Lingner, V. Baumgarten et al., An RNA sequencing transcriptome analysis reveals novel insights into molecular aspects of the nitrate impact on the nodule activity of Medicago truncatula, Plant Physiology, vol.164, pp.400-411, 2014.

D. Capela, C. Filipe, C. Bobik, J. Batut, and C. Bruand, Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection, Molecular Plant-Microbe Interactions, vol.19, pp.363-372, 2006.

G. Clément, M. Moison, F. Soulay, M. Reisdorf-cren, and C. Masclaux-daubresse, Metabolomics of laminae and midvein during leaf senescence and source-sink metabolite management in Brassica napus L. leaves, Journal of Experimental Botany, vol.69, pp.891-903, 2018.

A. C. Darling, B. Mau, F. R. Blattner, and N. T. Perna, Mauve: multiple alignment of conserved genomic sequence with rearrangements, Genome Research, vol.14, pp.1394-1403, 2004.

A. De-zélicourt, A. Diet, J. Marion, C. Laffont, A. F. Moison et al., Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence, The Plant Journal, vol.70, pp.220-230, 2012.

M. A. Dillies, A. Rau, and J. Aubert, A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis, Briefings in Bioinformatics, vol.14, pp.671-683, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00782486

J. L. Durand, J. E. Sheehy, and F. R. Minchin, Nitrogenase activity, photosynthesis and nodule water potential in soyabean plants experiencing water deprivation, Journal of Experimental Botany, vol.38, pp.311-321, 1987.
URL : https://hal.archives-ouvertes.fr/hal-02727667

F. El-yahyaoui, H. Küster, B. Amor, and B. , Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program, Plant Physiology, vol.136, pp.3159-3176, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02683438

B. J. Ferguson and U. Mathesius, Phytohormone regulation of legumerhizobia interactions, Journal of Chemical Ecology, vol.40, pp.770-790, 2014.

B. J. Ferguson, C. Mens, A. H. Hastwell, M. Zhang, H. Su et al., Legume nodulation: the host controls the party, Plant, Cell & Environment, vol.42, pp.41-51, 2019.

O. Fiehn, Metabolite profiling in Arabidopsis, Methods in Molecular Biology, vol.323, pp.439-447, 2006.

E. Gil-quintana, E. Larrainzar, C. Arrese-igor, and E. M. González, Is N-feedback involved in the inhibition of nitrogen fixation in drought-stressed Medicago truncatula, Journal of Experimental Botany, vol.64, pp.281-292, 2013.

E. M. González, A. J. Gordon, and C. L. James, Arrese-lgor C. 1995. The role of sucrose synthase in the response of soybean nodules to drought, Journal of Experimental Botany, vol.46, pp.1515-1523

B. Gourion, F. Berrabah, P. Ratet, and G. Stacey, Rhizobium-legume symbioses: the crucial role of plant immunity, Trends in Plant Science, vol.20, pp.186-194, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02410345

I. Guefrachi, M. Nagymihaly, C. I. Pislariu, W. Van-de-velde, P. Ratet et al., Extreme specificity of NCR gene expression in Medicago truncatula, BMC genomics, vol.15, p.712, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02410355

F. C. Guinel, Ethylene, a hormone at the center-stage of nodulation, Frontiers in Plant Science, vol.6, p.1121, 2015.

E. Huault, C. Laffont, J. Wen, K. S. Mysore, P. Ratet et al., Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase, PLoS Genetics, vol.10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02410348

S. Hunt and D. B. Layzell, Gas exchange of legume nodules and the regulation of nitrogenase activity, Annual Review of Plant Physiology and Plant Molecular Biology, vol.44, pp.483-511, 1993.

C. Jeudy, S. Ruffel, and S. Freixes, Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses, New Phytologist, vol.185, pp.817-828, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00507524

A. Kereszt, P. Mergaert, J. Montiel, G. Endre, and É. Kondorosi, Impact of plant peptides on symbiotic nodule development and functioning, Frontiers in Plant Science, vol.9, p.1026, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02179882

M. Kinkema and P. M. Gresshoff, Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK, Molecular Plant-Microbe Interactions, vol.21, pp.1337-1348, 2008.

R. M. Kosslak and B. B. Bohlool, Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side, Plant Physiology, vol.75, pp.125-130, 1984.

I. S. Kryvoruchko, S. Sinharoy, I. Torres-jerez, D. Sosso, C. I. Pislariu et al., , 2016.

, MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula, Plant Physiology, vol.171, pp.554-565

C. Laffont, E. Huault, P. Gautrat, G. Endre, P. Kalo et al., Independent regulation of symbiotic nodulation by the SUNN negative and CRA2 positive systemic pathways, Plant Physiology, vol.180, pp.559-570, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02404353

G. Laguerre, K. Heulin-gotty, B. Brunel, A. Klonowska, L. Quéré et al., Local and systemic N signaling are involved in Medicago truncatula preference for the most efficient Sinorhizobium symbiotic partners, The New Phytologist, vol.195, pp.437-449, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00776952

Y. Li, G. Krouk, G. M. Coruzzi, and S. Ruffel, Finding a nitrogen niche: a systems integration of local and systemic nitrogen signalling in plants, Journal of Experimental Botany, vol.65, pp.5601-5610, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01118819

M. Libault, A. Farmer, and L. Brechenmacher, Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection, Plant Physiology, vol.152, pp.541-552, 2010.

A. Liu, C. A. Contador, K. Fan, and H. M. Lam, Interaction and regulation of carbon, nitrogen, and phosphorus metabolisms in root nodules of legumes, Frontiers in Plant Science, vol.9, p.1860, 2018.

E. M. Lodwig, A. H. Hosie, A. Bourdès, K. Findlay, D. Allaway et al., Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis, Nature, vol.422, pp.722-726, 2003.

D. P. Lohar, N. Sharopova, G. Endre, S. Peñuela, D. Samac et al., Transcript analysis of early nodulation events in Medicago truncatula, Plant Physiology, vol.140, pp.221-234, 2006.

R. Luo, B. Liu, and Y. Xie, SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler, vol.1, p.18, 2012.

R. M. Mitra and S. R. Long, Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis, Plant Physiology, vol.134, pp.595-604, 2004.

S. Moreau, M. Verdenaud, T. Ott, S. Letort, F. De-billy et al., Transcription reprogramming during root nodule development in Medicago truncatula, PLoS One, vol.6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02647172

V. Mortier, D. Wever, E. Vuylsteke, M. Holsters, M. Goormachtig et al.,

, Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling, The Plant Journal, vol.70, pp.367-376

T. Nakagawa and M. Kawaguchi, Shoot-applied MeJA suppresses root nodulation in Lotus japonicus, Plant & Cell Physiology, vol.47, pp.176-180, 2006.

S. Okamoto, R. Tabata, and Y. Matsubayashi, Long-distance peptide signaling essential for nutrient homeostasis in plants, Current Opinion in Plant Biology, vol.34, pp.35-40, 2016.

G. E. Oldroyd, J. D. Murray, P. S. Poole, and J. A. Downie, The rules of engagement in the legume-rhizobial symbiosis, Annual Review of Genetics, vol.45, pp.119-144, 2011.

J. E. Olsson, P. Nakao, B. B. Bohlool, and P. M. Gresshoff, Lack of systemic suppression of nodulation in split root systems of supernodulating soybean (Glycine max, L.] Merr.) mutants. Plant Physiology, vol.90, pp.1347-1352, 1989.

R. Parsons, A. Stanforth, J. A. Raven, and J. I. Sprent, Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen, Plant, Cell & Environment, vol.16, pp.125-136, 1993.

Y. Pecrix, S. E. Staton, and E. Sallet, Whole-genome landscape of Medicago truncatula symbiotic genes, Nature Plants, vol.4, pp.1017-1025, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02383693

P. Guerra, J. C. Coussens, G. , D. Keyser, A. De-rycke et al., Comparison of developmental and stress-induced nodule senescence in Medicago truncatula, Plant Physiology, vol.152, pp.1574-1584, 2010.

O. Pierre, J. Hopkins, M. Combier, F. Baldacci, G. Engler et al., Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules, New Phytologist, vol.202, pp.849-863, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02138588

J. Prell, A. Bourdès, R. Karunakaran, M. Lopez-gomez, and P. Poole, Pathway of gamma-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis, Journal of Bacteriology, vol.191, pp.2177-2186, 2009.

A. Rau and C. Maugis-rabusseau, Transformation and model choice for RNA-seq co-expression analysis, Briefings in Bioinformatics, vol.19, pp.425-436, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02624483

D. Reid, H. Liu, S. Kelly, Y. Kawaharada, T. Mun et al., Dynamics of ethylene production in response to compatible Nod factor, Plant Physiology, vol.176, pp.1764-1772, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02628869

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

A. Rogers, Y. Gibon, M. Stitt, P. B. Morgan, C. J. Bernacchi et al., Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume, Plant, Cell & Environment, vol.29, pp.1651-1658, 2006.

B. Roux, N. Rodde, and M. Jardinaud, An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using lasercapture microdissection coupled to RNA sequencing, The Plant Journal, vol.77, pp.817-837, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639318

S. Ruffel, S. Freixes, and S. Balzergue, Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula, Plant Physiology, vol.146, pp.2020-2035, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00275798

P. J. Rutten and P. S. Poole, Oxygen regulatory mechanisms of nitrogen fixation in rhizobia, Advances in Microbial Physiology, vol.75, pp.325-389, 2019.

E. Sallet, B. Roux, and L. Sauviac, Next-generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti, DNA Research, vol.20, pp.339-354, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02644625

T. Sasaki, T. Suzaki, T. Soyano, M. Kojima, H. Sakakibara et al., Shoot-derived cytokinins systemically regulate root nodulation, Nature Communications, vol.5, p.4983, 2014.

A. R. Schwember, J. Schulze, A. Del-pozo, and R. A. Cabeza, Regulation of symbiotic nitrogen fixation in legume root nodules, vol.8, p.333, 2019.

R. Serraj, T. R. Sinclair, and L. C. Purcell, Symbiotic N 2 fixation response to drought, Journal of Experimental Botany, vol.50, pp.143-155, 1999.

J. E. Sheehy, F. R. Minchin, and J. F. Witty, Biological control of the resistance to oxygen flux in nodules, Annals of Botany, vol.52, pp.565-571, 1983.

J. Streeter and P. P. Wong, Inhibition of legume nodule formation and N 2 fixation by nitrate, Critical Reviews in Plant Sciences, vol.7, pp.1-23, 1988.

A. Sugiyama, Y. Saida, M. Yoshimizu, K. Takanashi, D. Sosso et al., Molecular characterization of LjSWEET3, a sugar transporter in nodules of Lotus japonicus, Plant & Cell Physiology, vol.58, pp.298-306, 2017.

S. Sulieman, Does GABA increase the efficiency of symbiotic N 2 fixation in legumes?, Plant Signaling & Behavior, vol.6, pp.32-36, 2011.

S. Sulieman, S. A. Fischinger, P. M. Gresshoff, and J. Schulze, Asparagine as a major factor in the N-feedback regulation of N 2 fixation in Medicago truncatula, Physiologia Plantarum, vol.140, pp.21-31, 2010.

S. Sulieman and J. Schulze, Phloem-derived ?-aminobutyric acid (GABA) is involved in upregulating nodule N 2 fixation efficiency in the model legume Medicago truncatula, Plant, Cell & Environment, vol.33, pp.2162-2172, 2010.

M. Taleski, N. Imin, and M. A. Djordjevic, CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development, Journal of Experimental Botany, vol.69, pp.1829-1836, 2018.

T. Tian, Y. Liu, H. Yan, Q. You, X. Yi et al., update. Nucleic Acids Research, vol.45, pp.122-129, 2017.

M. K. Udvardi and D. A. Day, Metabolite transport across symbiotic membranes of legume nodules, Annual Review of Plant Physiology and Plant Molecular Biology, vol.48, pp.493-523, 1997.

M. Udvardi and P. S. Poole, Transport and metabolism in legume-rhizobia symbioses, Annual Review of Plant Biology, vol.64, pp.781-805, 2013.

E. Urbanczyk-wochniak and L. W. Sumner, MedicCyc: a biochemical pathway database for Medicago truncatula, Bioinformatics, vol.23, pp.1418-1423, 2007.

D. Vallenet, A. Calteau, and S. Cruveiller, MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes, D517-D528. van Loon LC, vol.45, pp.2733-2744, 2003.

D. R. Zerbino and E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Research, vol.18, pp.821-829, 2008.