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SOFTWARE

DiCoExpress: a tool to process multifactorial 
RNAseq experiments from quality controls 
to co-expression analysis through differential 
analysis based on contrasts inside GLM models
Ilana Lambert1, Christine Paysant‑Le Roux2,3, Stefano Colella1  and Marie‑Laure Martin‑Magniette2,3,4* 

Abstract 

Background: RNAseq is nowadays the method of choice for transcriptome analysis. In the last decades, a high num‑
ber of statistical methods, and associated bioinformatics tools, for RNAseq analysis were developed. More recently, sta‑
tistical studies realised neutral comparison studies using benchmark datasets, shedding light on the most appropriate 
approaches for RNAseq data analysis.

Results: DiCoExpress is a script‑based tool implemented in R that includes methods chosen based on their perfor‑
mance in neutral comparisons studies. DiCoExpress uses pre‑existing R packages including FactoMineR, edgeR and 
coseq, to perform quality control, differential, and co‑expression analysis of RNAseq data. Users can perform the full 
analysis, providing a mapped read expression data file and a file containing the information on the experimental 
design. Following the quality control step, the user can move on to the differential expression analysis performed 
using generalized linear models thanks to the automated contrast writing function. A co‑expression analysis is 
implemented using the coseq package. Lists of differentially expressed genes and identified co‑expression clusters 
are automatically analyzed for enrichment of annotations provided by the user. We used DiCoExpress to analyze a 
publicly available RNAseq dataset on the transcriptional response of Brassica napus L. to silicon treatment in plant 
roots and mature leaves. This dataset, including two biological factors and three replicates for each condition, allowed 
us to demonstrate in a tutorial all the features of DiCoExpress.

Conclusions: DiCoExpress is an R script‑based tool allowing users to perform a full RNAseq analysis from quality 
controls to co‑expression analysis through differential analysis based on contrasts inside generalized linear models. 
DiCoExpress focuses on the statistical modelling of gene expression according to the experimental design and facili‑
tates the data analysis leading the biological interpretation of the results.
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Background
During the last decades, Next-Generation Sequencing 
(NGS) technologies have developed at a fast pace with 
the improvement of data quality coupled with a reduc-
tion of experimental costs. Since the early years of NGS, 
the use of RNAseq to profile transcriptomes became 
the method of choice replacing in time microarray-
based analyses [1]. Plant biologists use RNAseq-based 
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transcriptomic extensively, generating knowledge about 
transcriptional regulation in several biological processes 
[2–5]. Differential gene expression analysis across dif-
ferent experimental conditions is classically used to gain 
insight into gene regulation events and gene co-expres-
sion analysis to identify functional modules.

A classical analysis workflow starts with a data nor-
malization step to account for technical biases that affect 
the number of reads mapped to a gene. Several meth-
ods are available, and among the most used, we can 
find RPKM (Reads Per Kilobase per Million mapped 
reads) [6], Upper quartile normalization [7], RLE (Rela-
tive Log Expression) [8] and TMM (Trimmed Mean of 
the M-values) [9]. Multiple methods, based on different 
statistical modelling of data, are available to perform dif-
ferential expression analysis. Negative binomial-based 
models with robust mean–variance modelling, have been 
used extensively at the beginning, and they are avail-
able in the R-packages edgeR [10] and DESeq [11]. More 
recently, the linear models and their generalized exten-
sions for negative binomial distributions (GLM) have 
been proposed to account for the versatility of multifac-
torial experiments. They are available in the R-package 
limma [12] for the linear models and in the R-packages 
edgeR [10] and DESeq2 [11] for the generalized linear 
models. Following differential gene expression analysis, 
several approaches to identify and group co-expressed 
genes have been in use over the years. Pearson’s or Spear-
man’s correlations, WGCNA (Weighted correlation net-
work analysis) method [13], hierarchical clustering and 
K-means are the most conventional approaches found in 
the literature [14, 15]. With these approaches, the num-
ber of clusters is chosen, either a priori or a posteriori, 
by the user. Mixture models offer a different approach by 
identifying an underlying structure which corresponds to 
clusters of co-expressed genes. Moreover, a model selec-
tion criterion allows determining the most appropriate 
cluster number [16, 17].

To perform such analysis, tools associated with the 
methods are available in R to quite quickly get from data 
to results [18]. In parallel bioinformatics tools offering a 
Graphical User Interface (GUI), and interactive visualiza-
tion tools were developed. First-generation tools included 
the RNAseq read-mapping step [19–21], more often real-
ized independently at present, depending on data and 
genome availability. Several of these GUI tools [22–28] 
ease the use of the main RNAseq analysis R-packages for 
normalisation and differential expression analysis such 
as limma [12], DESeq [9], DESeq2 [11] and edgeR [10]. 
The role of these GUI is to realize R-based RNAseq data 
analysis with little or no experience in the command line. 
More recent tools take advantage of the R-shiny frame-
work that eases the creation of a GUI for R-packages and 

pipelines [29]. The majority of these GUI tools includes 
a high number of data visualisation options and the pos-
sibility to generate figures for publications.

Even with all these tools, a biologist is often facing a 
dilemma on how to analyse his dataset correctly. Indeed 
a characteristic shared by the majority of GUI tools 
developed up to date is to offer the user the possibility 
to choose among multiple statistical methods for each 
step of the analysis with no specific propositions. How-
ever, the RNAseq data specificities, such as heterogeneity 
of counts or overdispersion among biological replicates, 
represent a methodological challenge that has to be 
addressed by proper statistical modelling of the gene 
expression. It is worth noting that in the case of multi-
factorial experiments, if interaction terms are included in 
the modelling, the writing of the contrasts might become 
tricky, requiring a good understanding of some statisti-
cal concepts, not always mastered by a biologist. As a 
result, the large-scale data analysis of RNAseq data is not 
straightforward for a biologist.

To respond to some of these challenges in RNAseq data 
analysis, we developed DiCoExpress to analyse RNAseq 
projects with at most two biological factors and an unbal-
anced number of replicates for any condition.

Implementation
DiCoExpress is a script-based tool implemented in R 
with a set of directories where data, scripts and results 
are organised. The potential users of DicoExpress should 
know what a linear model and a contrast to be tested in 
such a context are. Regarding programming skills, the 
users should know how to use a function in R, identifying 
required and optional arguments.

Selection of the statistical methods
DiCoExpress offers a validated set of methods, based on 
three neutral comparison studies [17, 30, 31]. The idea of 
such studies is to design and implement a framework to 
generate realistic benchmark datasets with known truth 
to make an objective and reproducible performance 
assessment. Comparing normalisation methods, Dillies 
et al. [30] showed that the RLE method implemented in 
the package DESeq2 [11] and the TMM method imple-
mented in the package edgeR [10] demonstrate satisfac-
tory behaviour in the presence of highly expressed genes. 
Both these methods maintain a reasonable false-positive 
rate without loss of power. The choice of both methods 
was confirmed by Reddy et al. [32] and Evans et al. [33] 
even in experiments with slightly asymmetric differential 
expression or different amounts of mRNA/cell per condi-
tion. Based on these detailed evaluations, both RLE and 
TMM are suitable, but we decided to choose the TMM 
normalisation as the default method and proposed RLE 
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as an alternative due to the choice made for the differen-
tial analysis described below.

Rigaill et  al. [31] made a neutral comparison study 
among differential gene expression methods, including 
negative binomial-based, generalized linear models, and 
linear models on transformed data. Performance analy-
ses based on the p-value distributions, ROC curves, and 
proportion of true and false-positive rates show a clear 
difference of behaviour between negative binomial-based 
methods and the others. Linear models on transformed 
data or generalized linear models are consequently the 
most adapted for the differential analysis. Among these 
models, as also observed in Schurch et  al. [34], when 
the proportion of differentially expressed genes is low, 
the results obtained with the method implemented in 
the edgeR package are more satisfying. We thus chose 
the statistical model implemented in the edgeR pack-
age as a method of choice for differential expression data 
analysis. Moreover, we propose automatic writing of a 
large number of contrasts in order to facilitate the com-
parisons between the biological conditions considered 
in the experimental design. This automatic writing is a 
real advantage because, in the available R-packages, most 
contrasts in GLM with interactions between two fac-
tors must be handwritten and require thus an excellent 
understanding of the statistical modelling.

For the co-expression analysis, we preferred mixture 
models to correlation-based approaches. Mixture mod-
els aim at identifying an underlying structure in mod-
elling the unknown distribution by a weighted sum of 
parametric distributions, each one representing a group 
of co-expressed genes. Gaussian mixture models were 
relevant for microarray data and were applied with suc-
cess on several datasets [35, 36]. For RNAseq data, which 
are discrete, Rau et al. [16] first concluded that normal-
ized expression profiles modelled with a Poisson mix-
ture are relevant for co-expression analysis. However, in 
the Poisson mixture, the dependence structure between 
samples is not considered and can mislead the results. 
To tackle this problem, they proposed then a Gaussian 
mixture after a transformation of the normalized expres-
sion profiles [17]. This model seems to be more suit-
able for RNAseq co-expression analysis by providing a 
proper identification of the groups of co-expressed genes 
because it accounts for per-cluster correlation structures 
among samples. For these reasons, we chose this Gauss-
ian mixture implemented in the coseq R-package [17].

Architecture of DiCoExpress
Using these neutral comparison studies, we combined 
the most suitable methods for each step of a standard 
RNAseq analysis. The tool DiCoExpress is a direc-
tory composed of a set of subdirectories that is to be 

installed on a computer for analysing RNAseq datasets 
(see Fig. 1). The directory Data stores all the projects, 
and the directory Results contains a subdirectory per 
project with all the results of the different steps. The 
directory Sources contains the R functions used by 
DiCoExpress. Finally, the directory Template_scripts 
contains an R script file for each project, allowing a 
semi-automated data analysis where the user is guided 
through all the steps from normalisation to co-expres-
sion analysis. With DiCoExpress, our objective is to 
automate the statistical analysis of gene expression 

Fig. 1 DiCoExpress workspace. A visual representation of the 
DiCoExpress Workspace. a Sources directory contains all R functions 
implemented in DiCoExpress. b Template_scripts directory is the 
directory where an analysis script for each project analyzed must be 
saved. c Data directory is the directory where for each project, the 
input files (target and count tables) must be saved. If an annotation 
file used to describe biologically the different result tables as well as 
an reference file for the enrichment analysis are available, they must 
be also be saved in this directory. d Results directory contains all 
results obtained for each project
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according to the experimental design to ease the inter-
pretation of the results in biological terms.

To create DiCoExpress, we use the R programming lan-
guage and several R-packages from CRAN and Biocon-
ductor [37, 38]. Each step of the analysis has a dedicated 
function available in the directory Sources. Seven func-
tions compose the core of DiCoExpress (Fig. 2), and they 
are combined in a script, stored in the directory Tem-
plate_scripts for each project to specify the steps of the 
analysis and the parameters to use. A full description of 
these seven functions is available in the Reference Man-
ual (Additional file 1).

Input files and data quality controls
To use DiCoExpress on a project, the user has to pro-
vide only two input files: one containing a count table 
summarizing the mapped reads for each gene, named 
Project_Name_COUNTS.csv, and a second one with a 
description of the project design according to the experi-
mental factors, named Project_Name_TARGET.csv. If 
functional gene annotations are available in a file, the 
user has the option to upload it. This information is inte-
grated into the result tables and can also be used to per-
form enrichment tests.

The (1) Load_Data_Files function allows the user to 
upload the Project_Name_COUNTS.csv and Project_
Name_TARGET.csv files. A check is done to be sure that 
both files are adequately built: the samples in Project_
Name_COUNTS.csv file must be organized in the same 
order as the rows of the Project_Name_TARGET.csv. If it 
is inconsistent, then the columns of the Project_Name_
COUNTS.csv are reorganized according to the column of 
the target file. DiCoExpress performs analysis for a com-
plete experimental design. If this condition is not veri-
fied, then an error message appears, and the script stops 
running. A filter option in Load_Data_Files is proposed 
to extract or remove a subset of samples, thus avoiding 
manual modifications of the expression file. The filtering 
rules are described according to the Project_Name_TAR-
GET.csv (see section Results for an example).

The (2) Quality_Control function produces a PDF file 
containing graphical outputs before and after normali-
sation: histograms of the library sizes, boxplots of the 
counts for each sample, heatmap, and principal compo-
nent analysis (PCA), as shown in Additional file  2. This 
step is optional, but we advise the users to perform it to 
evaluate the quality of the RNAseq data before further 
analyses.

Differential expression analysis
The differential analysis is based on a negative binomial 
GLM, where the log of the gene expression is modelled 
by all the factors describing the experiment. When the 

number of observations is two times greater than the 
number of parameters of the model, we advise to include 
interaction terms between the biological factors. Such 
terms in the gene expression definition might reveal 
meaningful interactions such as genotype-environment 
interaction and answer in a direct way to some biologi-
cal questions [39–41]. The (3) GLM_Contrasts func-
tion automatically writes a list of contrasts based on the 
model specified by the user. We focused on contrasts 

Fig. 2 Overview of DiCoExpress workflow. DiCoExpress is composed 
of seven functions written in R programming language and available 
in the directory Sources. After loading the input files with the 
(1) Load_Data_Files function, a data quality control is done with 
the (2) Quality_Control function. Differential expression analysis 
using generalized linear models is performed by using the (3) 
GLM_Contrasts and (4) DiffAnalysis_edgeR functions. The union or 
intersection lists of differentially expressed genes are generated by 
the (5) Venn_Intersection_Union function. A co‑expression analysis 
is performed on these lists by the (6) Coexpression_coseq function. 
Finally, the functional characterisation of lists of genes is tested by 
using the (7) Enrichment function
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involving the biological factors, and their names are suf-
ficiently explicit to understand the associated biological 
question addressed. For example, we proposed automatic 
writing of the difference between two modalities of a bio-
logical factor averaged on the second factor or for a given 
modality of the second factor. Running this function is 
a prerequisite to run the differential expression analysis. 
The (4) DiffAnalysis_edgeR function uses edgeR R-pack-
age to estimate the parameters of the GLM and then test 
every contrast chosen by the user. As proposed by Rigaill 
et  al. [31], the distribution of raw p-values of each con-
trast is inspected to assess the quality of the statistical 
modelling of the gene expression. Since the distribution 

of raw p-values is theoretically dominated by a uniform 
distribution, the fit between the statistical model and the 
data can be observed on these raw p-value histograms. If 
the raw p-value distribution is not satisfactory (see exam-
ple in the section Results and Fig. 3), we advise repeating 
the analysis using a more stringent cut-off for the filter-
ing step or another rule of filtering. If the raw p-value 
distribution remains unsatisfactory, the problem might 
come from a large number of parameters compared to 
the number of observations available to estimate them. 
In this case, we advise modifying the modeling of the 
gene expression removing, for example, the interaction 
term. For each contrast, a subdirectory is created to store 
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Fig. 3 Histograms of raw p‑values Brassica napus analysis. Histograms of the raw p‑value for the contrasts [MatureLeaf–Root] and [NoSi–Si] 
according to the CPM_Cutoff parameter when the filtering strategy is NbConditions a CPM_Cutoff = 1 (default argument). b CPM_Cutoff = 5
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information about all the tested genes and also about the 
differentially expressed genes (DEGs). The function also 
generates graphical outputs about the behaviour of the 
top list of the DEGs (Additional file 3). All these files are 
described in details in the Reference Manual (Additional 
file 1).

Co‑expression analysis
The (5) Venn_Intersection_Union function helps the user 
in the interpretation of the results by comparing differ-
ent DEG lists. This function also generates the union 
and/or the intersections of these DEG lists to perform a 
co-expression analysis with the (6) Coexpression_coseq 
function. This latter function uses coseq R-package [17] 
to transform the raw data into normalised expression 
profiles. We kept the filter function of coseq removing 
the genes with low mean normalised counts. Those dis-
carded genes are assigned in Cluster 0. A co-expression 
analysis is performed on the remaining genes using a 
Gaussian mixture after an arcsin transformation of the 
normalised expression profiles. Practically, multidimen-
sional Gaussian mixtures of 5–30 subpopulations with 
unequal proportions and general covariance matrix are 
estimated. The EM algorithm used to estimate the model 
parameters is known to be sensitive to the initialisation 
point. Coseq uses a small-EM strategy, and in DiCoEx-
press, we go further to get robust results. First, mixture 
models with 5, 10, 15, 20, 25, and 30 subpopulations are 
estimated 5 times each to identify an interval for the final 
number of co-expressed gene clusters. A second collec-
tion of models on this interval of a subpopulation is then 
estimated 40 times each (per default). The best mixture 
model is the one minimising the Integrated Completed 
Likelihood (ICL). The ICL curve is expected to be a con-
vex function of the number of subpopulations, and we 
use this criterion to assess that the chosen model fits well 
the data. When a different behaviour of the ICL curve 
is observed, we advise the user to modify the dataset 
removing some genes that show a too flat normalised 
profile. For the co-expression analyses, we recommend 
using a powerful calculation server. The RData object 
of the second loop is saved for each mixture model so, 
if the function is stopped, the analysis can be resumed. 
The RData of the selected model is also saved. Moreover, 
several tables and graphics are saved to check the analy-
sis quality and to explore the co-expression results. An 
example is discussed in the section Results, and all the 
files are described in details in the Reference Manual 
(Additional file 1).

Enrichment analysis
Once an RNAseq statistical data analysis is complete, 
researchers often evaluate the coherence of the results by 

comparing them with biological knowledge. To this end, 
the (7) Enrichment function performs hypergeometric 
tests to find annotation terms that are specifically over 
or under-represented in a given list of genes with respect 
to a reference specified by an annotation file. The enrich-
ment analysis can be performed both on the lists of dif-
ferentially expressed genes, and the co-expressed gene 
clusters.

Results and discussion
We illustrate the use of DiCoExpress by analysing a data-
set associated with the publication of Haddad et al. [42]. 
This RNAseq dataset describes gene expression in roots 
and mature leaves of Brassica napus with or without sili-
con (Si) treatment. Three biological replicates are avail-
able. The experimental design can be described by two 
biological factors Tissue and Treatment, and a techni-
cal factor Replicate with three modalities (Table  1). To 
illustrate the outputs of enrichment tests, we used the 
GO annotation of B. napus v.5 from the Brassica genome 
database [43, 44] to perform enrichment analyses.

We tested DiCoExpress on the full dataset available 
in contrast to Haddad et  al, who only focused on the 
root samples. The procedure is described in Additional 
file 4 as a tutorial of DiCoExpress. We started the anal-
ysis by filtering not expressed genes and those with low 
counts. We used the Counts Per Million (CPM) method 
with CPM_Cutoff = 1 and Filter_Strategy = “NbCondi-
tions” that are the default arguments of Quality_Control 
function. We choose the default method TMM to nor-
malise the RNAseq libraries. Checking the quality con-
trol results in Brassica_napus_Data_Quality_Control.
pdf output file, we observe a higher number of reads in 
the mature leaf samples compared to the root samples; 

Table 1 Target table of Brassica napus dataset in R

The target table provides the experimental design. Each row describes a sample 
by specifying the level for each factor in the columns

Sample Tissue Treatment Replicate

MatureLeaf_NoSi_R1 MatureLeaf NoSi R1

MatureLeaf_NoSi_R2 MatureLeaf NoSi R2

MatureLeaf_NoSi_R3 MatureLeaf NoSi R3

MatureLeaf_Si_R1 MatureLeaf Si R1

MatureLeaf_Si_R2 MatureLeaf Si R2

MatureLeaf_Si_R3 MatureLeaf Si R3

Root_NoSi_R1 Root NoSi R1

Root_NoSi_R2 Root NoSi R2

Root_NoSi_R3 Root NoSi R3

Root_Si_R1 Root Si R1

Root_Si_R2 Root Si R2

Root_Si_R3 Root Si R3
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nonetheless, the normalisation seems suitable for fur-
ther analysis since the boxplots of normalised counts are 
almost similar across all the samples (Additional file  2: 
Fig. A, B). A hierarchical clustering heatmap and prin-
cipal component analysis graphs are generated to look 
at the sample similarities. In our analysis, we observe, 
as expected, a clear difference between the two tissues 
as well as an apparent clustering of mature leaf samples 
according to the treatment (Additional file 2: Fig. C, D).

We performed a differential expression analysis using a 
GLM with both biological factors and the technical rep-
licate factor. We included an interaction between the two 
biological factors in the model. We checked the quality 
by looking at the raw p-value histograms of the seven 
contrasts automatically written by the GLM_Contrasts 
function. For the three contrasts, [MatureLeaf-Root], 
[NoSi_MatureLeaf-NoSi_Root], and [Si_MatureLeaf-
Si_Root], the end of the histograms of raw p-values cor-
responds to a uniform distribution indicating a good 
fit of the GLM model. However, on the histograms of 
the four other contrasts, [NoSi-Si], [MatureLeaf_NoSi-
MatureLeaf_Si], [Root_NoSi-Root_Si] and [MatureLeaf_
NoSi-MatureLeaf_Si]-[Root_NoSi-Root_Si], we observe 
an increase of the frequency around 1: this usually sug-
gests that data are not properly filtered (Fig. 3a). Follow-
ing this observation, we went back to the beginning of 
the analysis, setting a more stringent CPM_Cutoff = 5, 
and we obtained satisfying raw p-value histograms for 
the seven contrasts (Fig.  3b). We observed, as expected 
that the highest number of differentially expressed genes 
is found for the comparison of both tissues with 28 261, 
25 734, and 25 757 DEGs for the contrasts [Mature-
Leaf-Root], [NoSi_MatureLeaf-NoSi_Root] and [Si_
MatureLeaf-Si_Root], respectively. A small number of 
differentially expressed genes is identified between the 
two treatments: 218, 754 and 173 DEGs for the contrasts 
[NoSi-Si], [MatureLeaf_NoSi-MatureLeaf_Si] and [Root_
NoSi-Root_Si], respectively (Additional file  3: Fig. A). 
An advantage of using a GLM with an interaction term 
is to identify straightforward genes that respond differ-
ently to the Silicon treatment in the two tissues using the 
[MatureLeaf_NoSi-MatureLeaf_Si]-[Root_NoSi-Root_Si] 
contrast. In this interaction analysis, we found 106 genes 
differentially expressed, and an example of a gene in this 
list is shown in Additional file 3: Fig. B. The hierarchical 
clustering on the top 50 DEGs ranking on their p-val-
ues for this contrast is also proposed by DiCoExpress 
(Additional file 3: Fig. C). On the bottom of this plot, we 
observe groups of genes with a clear opposite behaviour 
between the two tissues. For the others, the behaviour is 
more variable, but all these genes are declared to be the 
most impacted genes by the treatment and in different 
ways in the two tissues.

As users often need to compare DEG lists, in DiCoEx-
press, we propose the Venn_Intersection_Union func-
tion to generate these lists quickly. In the Brassica napus 
dataset, we unite three contrasts: [MatureLeaf_NoSi-
MatureLeaf_Si], [Root_NoSi-Root_Si] and [Mature-
Leaf_NoSi-MatureLeaf_Si]-[Root_NoSi-Root_Si] to 
study genes impacted in their transcription by the treat-
ment (Additional file  5: Fig. A). Within the Venn dia-
gram, we can distinguish genes whose expression varies 
in response to treatment in a specific tissue or in both 
treatments with a similar or different behaviour depend-
ing on the tissue and examples from each class is shown 
in Additional file 5: Fig. B. This grouping of genes using 
a Venn diagram is based only on the results of the sin-
gle contrast differential analysis. However, by performing 
a co-expression analysis, we can go further in the inter-
pretation by clustering these genes according to their 
average expression profile in all samples. We applied 
the Coexpression_coseq function with default param-
eters to group the 945 DEGs from the union of the three 
contrasts. The ICL curve has a clear minimum which 
is a marker of a good quality clustering analysis (Addi-
tional file  4), and seven clusters of co-expressed genes 
are found (Fig.  4). Three genes with low mean normal-
ised counts were assigned in Cluster 0, i.e., coseq could 
not assign them to a cluster. Clusters 3 and 6 (71 and 106 
genes, respectively) contain genes with low expression 
and no change in the roots, but their expression varies in 
response to the Si treatment in the mature leaves (over-
expression in Cluster 3 and under-expression in Cluster 
6). Conversely, Cluster 7 (201 genes) show low expression 
with no significant change in the mature leaves, but they 
are strongly expressed in the roots with a slight reduc-
tion following the treatment. Cluster 1 and 4 (203 and 
146 genes, respectively) include genes more expressed 
in one tissue compared to the other one (higher expres-
sion in mature leaves for cluster 4 and higher expression 
in roots for cluster 1) but without significant Si treat-
ment response. In cluster 2 (85 genes) and cluster 5 (130 
genes) are grouped genes showing a small difference in 
expression levels between the two tissues. For both clus-
ters, genes show over-expression following the treatment 
in leaves (more apparent in cluster 5), but no significant 
change in roots. The cluster composition based on prob-
abilistic modelling of the normalised gene profiles is, as 
it could be expected, different from the groups of genes 
found with the DEG list comparisons (Additional file 6). 
Following the co-expression analysis, that finishes the 
statistical analysis of this dataset used to illustrate the 
use of DiCoExpress, we performed enrichment analy-
ses on these 7 clusters, and also of the 106 DEGs for the 
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interaction contrast, and they are available in the tutorial 
(Additional file 4). Further interpretation and discussion 

of the biology behind these enrichments are beyond the 
scope of our presentation of the DiCoExpress usage.
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Conclusions
DiCoExpress is an R script-based tool for analysing effi-
ciently multifactorial RNAseq transcriptome experiments 
from quality controls to co-expression analysis through 
differential expression analysis. We based the develop-
ment of DiCoExpress on neutral comparison studies 
combining the most performant statistical approaches 
for each step of a standard RNAseq analysis. The choice 
of a statistics defined framework, limiting the free selec-
tion of models and methods, was deliberate to propose to 
the users the possibility to perform RNAseq analysis in a 
standardised manner. In DiCoExpress, we used general-
ized linear models implemented in the R-package edgeR 
for differential gene expression analysis and Gaussian 
mixture models implemented in the R-package coseq to 
perform the co-expression analysis. DiCoExpress sim-
plifies the GLM analysis proposing automated writing 
of all possible contrasts and optimises the co-expression 
analysis with the re-estimation of the collection of Gauss-
ian models. DiCoExpress produces a collection of files 
to visualise the results and multiple summary files of the 
data for further data exploration. The integrated enrich-
ment analysis with the hypergeometric test gives the user 
the first glimpse at potential biological functions under-
lying the different gene lists. In conclusion, DiCoExpress 
allows the user to perform RNAseq data analysis with 
validated statistical methods with a set of R-scripts in a 
pre-existing and organised working environment.

Availability and requirements

• Project name: DiCoExpress
• Project home page: https ://forge mia.inra.fr/GNet/

dicoe xpres s
• Operating system(s): Windows, Mac OS, Linux
• Programming language: R
• Other requirements: R version 3.5.0 or higher with 

FactoMineR_2.0
• License: GPL-2 | GPL-3
• Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1300 7‑020‑00611 ‑7.

Additional file 1. Reference Manual.

Additional file 2. Data quality control Brassica napus results. Data quality 
control after the filtering and TMM normalisation (A) Library sizes for each 
sample (B) Boxplot of normalised counts for each sample (C) Heatmap 
made with the Euclidean distance and the Ward distance to cluster the 
samples (D) First and second axes of the Principal Component Analysis 

on the normalised counts. Samples corresponding to mature leaves are 
coloured in green and those of roots in brown.

Additional file 3. Differential expression Brassica napus analysis results. 
Differential expression analysis results with (A) the barplot of Up and 
Down differentially expressed genes for each contrast, (B) an example of 
one gene differentially expressed in the interaction contrast. (C) Hierarchi‑
cal clustering of the top 50 DEGs for the interaction contrast. 

Additional file 4. Analysis Tutorial.

Additional file 5. Brassica napus GLM contrasts results. Organisation of 
the genes impacted in their transcription by the silicon treatment issued 
from the GLM differential analysis. (A) Venn diagram describing the num‑
bers of differentially expressed genes in the three contrasts [MatureLeaf_
NoSi‑MatureLeaf_Si], [Root_NoSi‑Root_Si] and [MatureLeaf_NoSi‑Mature‑
Leaf_Si]‑[Root_NoSi‑Root_Si], and their overlaps: (B) Gene expression of 
genes representative of each group of the Venn diagram (described with 
small letters from a to g). 

Additional file 6. Comparison of DEG lists and clusters of co‑expression.
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