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Introduction

Context

Increasing availibility of genomic time series data:
experimental evolution, gene banks, ancient DNA . . .

Objective: detect selection and estimate its intensity

Selection and time series Data

One time series per SNP

Sample size

Reference allele count

Need to model

Allele frequency evolution

Sampling variability
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Hidden Markov Model (Bollback et al, 2008)

Y0 Y1 Yk Yn−1 Yn

X0 X1 Xk Xn−1 Xn

t0 t1 tk tn−1 tn

g0

Q1

g1 gk gn−1

Qn

gn

Hidden states {Xk}k≥0: Population allele
frequencies, Markov chain, transition
Q = Qs,h,N

Observations {Yk}k≥0: Sample allele
counts, independent given {Xk}k≥0,
emission g
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Selection Inference

Likelihood L(y0, . . . , yn;Q, g) efficiently computed using the
Forward algorithm.

L(y0, . . . , yn;Q, g) = L(y0, . . . , yn; s,N, h)
→ evaluate on a grid for different values of s,N, h.
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Selection inference

Estimate s by maximum likelihood

Test selection using the Likelihood Ratio Statistic

2(log L(y0, . . . , yn; ŝ,N, h)− log L(y0, . . . , yn; 0,N, h))

chi-quare distributed under s = 0 (neutrality)

Computation of Q?
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Reference model: Wright-Fisher

Hypotheses

Panmixia, non overlapping
generations

Constant population size (N)

Xt : allele frequency at
generation t

Xt+1|Xt ∼ 1
NB(N,Xt)

Adding Selection

A1A1 A1A0 A0A0

1 + s 1 + sh 1

fs : fitness function

Xt+1|Xt ∼ 1
NB(N, fs(Xt)), P

Xt+u|Xt , Q = Pu
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Wright-Fisher’s Limitations

Wright-Fisher model:

Matrix Q has dimension N × N
Computing time: Q = Pu + forward algorithm
Memory load

Alternative: find a good approximation

Control Q dimension
Fits Wright-Fisher transitions
Mimics the statistical properties obtained with Wright-Fisher
transitions (parameter estimation and detection power)
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The method of moments (Lacerda and Seoighe, 2014)

Choose a parametric distribution

Set parameters such that its moments fit those of the
Wright-Fisher (WF).

Gaussian model (Ga): Popular approximation for short time
and intermediate allele frequency (Cavalli-Sforza et al, 1964;
Lacerda and Seoighe, 2014; Terhorst et al., 2015).

Nicholson Gaussian model (NG): Allocate the mass outside
(0, 1) to point masses in 0 and 1 (Nicholson et al, 2002).

Beta model (Be): Wide variety of shapes, distributed in
[0, 1] (Balding and Nichols, 1995; Hui and Burt, 2015).

Beta with spikes model (BwS): Adds fixation probabilities
to Beta model (Tataru et al, 2016).
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Moment fitting examples

Wright-Fisher distribution

Beta distribution

Gaussian distribution

Beta with spikes distribution
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Moment approximation: Delta-method

Taylor approximation (Lacerda and Seoighe, 2014)

µn+1 ≈ f (µn) µn ≈ E (Xn)
σ2
n+1 ≈ f ′(µn)2σ2

n σ2
n ≈ Var(Xn)

Accuracy (x0 = 0.1,N = 100, s = 0.1)

BwS: fixation proba. also approximated (Tataru et al, 2016).
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Simulations 1: fit to the WF model

Simulated process

Wright-Fisher with selection

Parameters

N = 100

x0 = 0.1 or 0.5

s = 0 to 1

10 sampling dates

30 alleles per sample

Total evolution time: T = 9
to 180 generations

Simulation examples
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Maximum Likelihood Estimation
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Likelihood Ratio Statistic
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Simulations 2: statistical properties

Data analysis only with BwS transitions.

N = 100, 1000 or 10000.

x0 and sampling design as before.

T/N as before: from 0.09 to 1.8.

Ns as before: from 0 to 100.
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Likelihood Ratio Test calibration

Neutral simulations

Good fit to the chi-quare distribution, except for
(T = 1.8, x0 = 0.5).
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Detection Power

Increases with Ns, T/N (up to a certain point).
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Detection Power
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Estimation of s

Unbiased except for (Ns,T/N) large (fixation probabilities).

Lower variance for large T/N.
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Motivation

Past positive selection can be detected from present time
molecular data.

Annotation of selection events more difficult: onset and
intensity of selection? adaptive trait?

Usefulness of time series (biobanks) to (i) detect recent
selection or (ii) annotate signatures of historical selection?
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Case study: Asturiana de los Valles

Spanish autochtonous beef cattle breed.

North of Spain (Asturias).

Semi-extensive breeding conditions.

Evolution of genetic diversity along 35 years (1980 – 2015).
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Data

Genotype data (50K or 800K) for 137 animals.
15 animals sequenced at ≈ 8X coverage.
After quality filters, 14,328,987 SNPs detected from NGS
data, 35,656 in common with the chips.
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Final time series dataset

Generation time of 4 years.

Inbred or related animals removed.

Generation 1 2 3 4 5 6 7 8 9
First year 1980 1984 1988 1992 1996 2000 2004 2008 2012

Initial 1 5 11 15 21 40 38 12 10
sample size

Final 0 4 8 13 17 28 29 9 9
sample size
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Selection signatures: time series approach

Population size estimated with R package NB (Hui and Burt,
2015): N = 400 diploids.
No evidence of selection at the single SNP level.
5 regions enriched in low p-values using a local score approach
(Fariello et al, 2017).
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Candidate regions

Candidate genes related to carcass and meat traits (RBPMS2,
OAZ2) or milk traits (ARFIP1).

Chr Start (bp) End (bp) Length (bp) Nb SNP Genes
10 45387461 45564676 177215 7 RBPMS2, OAZ2

ZNF609, RF00413
13 41414256 41529941 115685 3 -
17 4675045 4750693 75648 4 FHDC1, ARFIP1
17 31268164 31632465 364301 8 -
22 39414833 39491373 76540 3 PTPRG
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Selection signatures: present time data approach

Signatures of historical selection detected from NGS data only
(15 animals from generations 8 and 9).

nSL statistic (Ferrer-Admetlla et al, 2014): looks for long
haplotypes at high frequency.

No proper p-value associated to a given nSL score: outlier
approach.

Focus on SNPs in common with the chip data: 5 regions with
’outlier’ p-values.
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Selection signatures: present time data approach

Chr Start (bp) End (bp) Nb SNP log10(pval) Genes
2 7169804 7270116 2 9.82 COL5A2, COL3A1
2 8476975 8476975 1 8.12 -
6 55360713 55360713 1 7.85 -

10 98290813 98290813 1 10.10 FLRT2
25 13647777 13647777 1 7.10 PARN, BFAR, PLA2G10

One region close to the MSTN gene (Chr2, ≈ 6,2Mb), whose
allele nt821(del11) associated to double muscling has been
selected in Asturiana (Dunner et al, 2003).

FLRT2: embryonic development, associated to calf birth
weight in Holstein (Cole et al, 2014).
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Comparison between approaches

Almost no correlation between the p-values obtained from the
time series and the nSL approach.
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Comparison between approaches

The top 5 SNPs of the time series approach show a clear shift
in allele frequency since 1980.

The top 5 nSL SNPs show a stable allele frequency since
1980, suggesting selection at these loci is older.
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Data (Le Bihan-Duval et al, 2018)

Two chicken lines, 5 generations of divergent selection for low
or high muscular ultimate pH (pHu).

Genotypes at 40,199 SNPs.

Haploid sample sizes:

Dates (in generations) 0 1 2 3 4 5

pHu+ 102 28 42 56 54 60
pHu- 102 34 46 44 54 56
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Results

Estimated population sizes: N = 157 haploids in pHu+ and
N = 123 with pHu-.

39 significant SNPs detected, at a FDR of 5%.

12 regions: 8 in pHu+, 1 in pHu-, 3 in both.

Comparison with tests based on the differentiation between
lines : FLK (Bonhomme et al, 2009) and hapFLK (Fariello et
al, 2013):

6 regions in common, 6 new.
New regions: allele frequency change only in one line.
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Results
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Conclusions

Beta with Spikes: perfect fit to the WF (for the problem
considered here), very good alternative for large N
(computation time).

Inclusion of fixation probabilities.

Ns = 10 generally sufficient to detect selection from time
series, but depends on T/N, x0 and sampling design.

Estimation of s difficult for (T/N,Ns) ≥ (1, 100).

Time series complimentary to present time data and allow a
better annotation of selection events.

Publication in G3 (early online), code in github.
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Perspectives

Joint estimation of N and s (genome-wide data).

Optimize the code.

Account for variations of N and s.

Extend to halotype data.
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