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1  |  INTRODUC TION

When facing changing environments, organisms can persist by 
one of three strategies: fleeing (migration), coping (plasticity), or 
adapting. If migration and plasticity can lead to rapid and revers-
ible changes in the average phenotype of a population, adaptation 
proceeds through genetic changes and toward phenotypes with 
the highest fitness in a given environment. The literature describing 

adaptation in natural populations is vast (Bay et al., 2017; Côté & 
Reynolds, 2012; Kremer et al., 2012; Olson-Manning et al., 2012), 
and the recent rise of next generation sequencing has enabled tre-
mendous progress in our knowledge about the genetic architecture 
of adaptation at the species level (Barrick & Lenski, 2013; Brown, 
2012; Fournier-Level et al., 2011; Jones et al., 2012).

Long-term temporal surveys (Visser, 2008) and resurrection 
studies, where ancestors and descendants are compared under 
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Abstract
Resurrection studies are a useful tool to measure how phenotypic traits have changed 
in populations through time. If these trait modifications correlate with the environ-
mental changes that occurred during the time period, it suggests that the phenotypic 
changes could be a response to selection. Selfing, through its reduction of effective 
size, could challenge the ability of a population to adapt to environmental changes. 
Here, we used a resurrection study to test for adaptation in a selfing population of 
Medicago truncatula, by comparing the genetic composition and flowering times across 
22 generations. We found evidence for evolution toward earlier flowering times by 
about two days and a peculiar genetic structure, typical of highly selfing populations, 
where some multilocus genotypes (MLGs) are persistent through time. We used the 
change in frequency of the MLGs through time as a multilocus fitness measure and 
built a selection gradient that suggests evolution toward earlier flowering times. Yet, 
a simulation model revealed that the observed change in flowering time could be ex-
plained by drift alone, provided the effective size of the population is small enough 
(<150). These analyses suffer from the difficulty to estimate the effective size in a 
highly selfing population, where effective recombination is severely reduced.
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common conditions (see box 1 in Franks et al., 2014) or stratified 
propagule banks (Orsini et al., 2013), are powerful tools to recon-
struct the evolutionary dynamics of populations that have faced en-
vironmental changes. Yet, observing a genetic change through time 
is not sufficient to claim that it is adaptation. Testing for selection 
as opposed to drift is one of the essential criteria for demonstrat-
ing adaptive responses, but is often overlooked (e.g., overlooked 
in 34% of the 44 reviewed studies based on phenotypic variation 
reviewed by Hansen et al., 2012). Demonstrating the influence of 
selection on a phenotypic change can be achieved by one of four 
methods (detailed in table 2 in Hansen et al., 2012; Merilä & Hendry, 
2014): reciprocal transplants (Blanquart et al., 2013), QST–FST com-
parisons (Le Corre & Kremer, 2012; Rhoné et al., 2010), genotypic 
selection estimates (Morrissey et al., 2012; Wilson et al., 2010), or 
tests of neutrality (pattern or rate tests, Lande, 1977). These meth-
ods all rely on measuring quantitative traits (fitness traits or traits 
supposed to be under selection) but require specific experimental 
settings. Pattern tests of neutrality rely on comparing evolution 
across replicates, for example, by comparing phenotypic or allele 
frequency changes across replicates in experimental populations, or 
across natural populations, assuming that they are independent rep-
licates of the evolutionary process (same effective size and selective 
pressure, no migration). Pattern tests can also apply through time if a 
long sequence of observations is available (Sheets & Mitchell, 2001). 
Alternatively, rate tests can be useful to examine the rate of genetic 
change in a population and compare it to the expectation under a 
neutral model with a given effective population size (Lande, 1976). 
The effective population size (thereafter Ne) is defined as the size 
of an ideal Wright-Fisher population experiencing the same rate of 
genetic drift as the population under consideration (Crow & Kimura, 
1970). Unlike experimental populations, where Ne can be monitored, 
an accurate estimate of Ne is required to perform such neutrality 
tests in natural populations. Temporal changes in allele frequency at 
neutral loci can be used to infer the effective size of the population 
considered (Nei & Tajima, 1981; Waples, 1989).

The ability for a population to adapt to environmental changes 
depends on several factors such as genetic variability, genera-
tion time, population size, or mating patterns, in particular self-
fertilization rates. In plants, a large fraction (40%) of species do, at 
least partially, reproduce through selfing (Goodwillie et al., 2005; 
Igic & Kohn, 2006). Selfing could challenge the process of adapta-
tion because it directly decreases the effective population size Ne 
(reduced number of independent gametes sampled for reproduction 
(Pollak, 1987); increased homozygosity; reduced efficacy of recom-
bination (Nordborg, 2000); and increased hitchhiking and back-
ground selection (Gordo & Charlesworth, 2001; Hedrick, 1980). It 
is therefore expected that genetic variability is reduced in selfing 
populations, and empirical measures of diversity from molecular 
markers strongly support this prediction (Barrett & Husband, 1990; 
Glémin et al., 2006; Hamrick & Godt, 1996). Furthermore, several 
theoretical models also predict that selfing reduces quantitative 
genetic variation within populations (Abu Awad & Roze, 2018; 
Charlesworth & Charlesworth, 1995; Lande & Porcher, 2015), which 

has been recently confirmed by a meta-analysis of empirical data 
(Clo et al., 2019).

We can expect that this depleted genetic variation in predomi-
nantly selfing populations will limit their ability to adapt to changing 
environmental conditions and their long-term persistence and dif-
ferent theoretical models support this prediction (Glémin & Ronfort, 
2013; Hartfield & Glémin, 2016; Kamran-Disfani & Agrawal, 2014). 
Yet, empirical data examining the response of predominantly selfing 
populations to environmental changes remain scarce, especially for 
data showing short-term adaptation in the face of climate change 
(Qian et al., 2020). In a recent review focusing on evolutionary and 
plastic responses to climate change in plants, Franks et al. (2014) 
reported “at least some evidence for evolutionary response to cli-
mate change […] in all of these studies,” and six of these 31 studies 
considered selfing populations.

Because there is no consensus between theoretical predictions, 
empirical, and experimental data, the ability of selfing populations 
to adapt to environmental changes remains an open question. This 
calls for further fine-scale population genetics analyses, with a 
focus on the evolutionary mechanisms involved and on the dy-
namics of adaptation. Here, we present a temporal survey in the 
barrel medic (Medicago truncatula) that enabled us to perform a 
resurrection study. M. truncatula is annual, diploid, predominantly 
self-fertilizing (>95% selfing, Bonnin et al., 2001; Siol et al., 2008) 
and has a circum-Mediterranean distribution. Flowering time is a 
major heritable trait (broad-sense heritability >0.5, Bonnin et al., 
1997) that synchronizes the initiation of reproduction with favor-
able environmental conditions and could play a role in the adap-
tation to climate change. In M. truncatula, flowering time is highly 
variable along the distribution range and within some populations 
(Bonnin et al., 1997). It is mainly controlled by two environmen-
tal cues: photoperiod and temperature (Hecht et al., 2005; Pierre 
et al., 2008). In the Mediterranean region, there has been a sig-
nificant increase in temperatures between the 80s and nowadays 
accompanied by a decrease in mean precipitations (http://www.
world​clim.org/). Most studies about adaptation in M. truncatula 
have so far relied on large collections of individuals representing 
the whole species with the aim of detecting selection footprints 
in the genome linked with flowering time (Burgarella et al., 2016; 
De Mita et al., 2011) or climatic gradients (Yoder et al., 2014). 
However, the complex population structure observed at the spe-
cies level can make it difficult to understand the selective history 
of those genes (De Mita et al., 2007). Indeed, natural populations 
of M. truncatula are composed of a set of highly differentiated gen-
otypes that co-occur at variable frequencies (Bonnin et al., 2001; 
Loridon et al., 2013; Siol et al., 2008), a genetic structure typical 
for predominantly selfing species. How does this peculiar genetic 
composition constrain adaptation to changing environments re-
mains unclear, but preliminary results in M. truncatula have shown 
that surveying the multilocus genotypic composition through time 
could reveal a large variance in the relative contributions of these 
genotypes to the next generations (Siol et al., 2007). Here, we ex-
amined the temporal change of flowering time at the population 

http://www.worldclim.org/
http://www.worldclim.org/
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level across 22  generations characterized by changing environ-
mental conditions (temperature and rainfall). We describe the 
peculiar genetic structure of this highly selfing species and inves-
tigate the genetic mechanisms involved in adaptation. In particu-
lar, we test for the role of selection as opposed to genetic drift, 
following four steps. First, we consider the direction of the change 
in trait value in relation to the environmental change. Second, we 
estimate the extent of genotypic selection (Morrissey et al., 2012; 
Wilson et al., 2010) using selection gradients for flowering time 
based on several fitness estimates (including an estimate of the 
realized fitness based on changes in frequency of the multilocus 
genotypes through time). Then, we estimate the effective popula-
tion size, test the rate of evolution for neutrality by simulating how 
the frequency of the multilocus genotypes would change under 
genetic drift alone, and explore the effect of the imprecision in 
the estimation of effective size. Finally, we examine the change in 
flowering time during the same time period at the regional scale, 
using one individual per population across the distribution range 
of M. truncatula in Corsica. A similar genetic change at the regional 
scale would lend weight to the hypothesis that the change in flow-
ering time occurred in response to selection.

2  |  MATERIAL S AND METHODS

2.1  |  Studied population and experimental design

The focus population (F20089 or CO3 according to Jullien et al., 
2019) is located in Cape Corsica (42°58.406′N–9°22.015′E). In 1987 
and 2009, around 100 pods were collected along three transects 
running across the population, with at least one meter distance 

between each pod collected, in order to avoid over-sampling the 
progeny of a single individual. Seeds collected in 1987 were stored 
in a cold room. In 2011, pods collected in 1987 and 2009 were 
threshed and seeds were replicated through selfing in standard-
ized greenhouse conditions to control for maternal effects and build 
families of full-sibs produced by selfing. Seeds for this generation of 
multiplication were randomly selected from pooled samples of seeds 
from 1987 and 2009. 64 families collected in 1987 and 96 in 2009 
were successfully multiplied. Out of these, 55 families for each of 
the two sampling years were randomly chosen in 2012. Seeds from 
the 110 families were scarified to ease germination and were trans-
ferred in Petri dishes with water at room temperature for six hours. 
We then used two different vernalization treatments (at 5°C during 
7 or 14 days) to compare the vernalization requirement between the 
two years. Five replicates from each vernalization treatment were 
transferred back to the greenhouse, according to a randomized 
block design (five blocks and two treatments, adding up to a total 
of ten replicates per family, 1100 plants in total). Data loggers were 
placed on each table to monitor temperature and humidity. For each 

individual, the number of days after germination to form the first 
flower was recorded. In addition, the total number of seeds pro-
duced by each plant throughout its lifetime was measured as a proxy 
for fitness.

2.2  |  Temporal changes in flowering time

Individual flowering times were converted to thermal times fol-
lowing Bonhomme (2000). The thermal time was calculated as 
the sum of the mean daily effective temperatures of each day be-
tween sowing and the emergence of the first flower, where the 
mean daily effective temperature is the day's mean temperature 
minus the base temperature (Tb). We used Tb = 5°C, as reported 
by Moreau et al. (2007) for the M. truncatula reference line A17. 
Plants noted as sick or failing to produce leaves were removed 
from the datasets (22 individuals removed). Collected measures 
were tested for normality using quantile–quantile (Q–Q) plots 
(Nobre & Singer, 2007). All analyses were conducted using R ver-
sion 2.15.2. We used linear mixed models (lme4 package) to test 
for a significant change in flowering time between the sampling 
years. The model included two fixed effects: sampling year (1987 
or 2009) and treatment (short or long vernalization) as well as their 
interaction. Block (nested in treatment), block × year, and family 
were random effects. The family effect was nested in years be-
cause we were interested in estimating the genetic variance within 
population each year of collection. The interaction between fam-
ily and treatment was included in the family effect as a vectorial 
random effect. The complete model is summarized in Equation (1), 
where Y denotes the flowering time, μ the average flowering time 
over the whole sample, and � the residuals:

This maximal model was simplified, using likelihood ratio tests 
(LRT) to compare the models. In addition, we tested for a signifi-
cant change in genetic variance between 1987 and 2009 using a 
LRT between the model [1] and a model where family is not nested 
into year. Standard errors for variance components were estimated 
using jackknife resampling. We used the variance components esti-
mated for the random effects to calculate broad-sense heritability 
as H2 = VG∕VP, where VG is the genetic variance as estimated by the 
family effect and VP is the total phenotypic variance, including block, 
family, and residual variance. Standard errors for H2 were estimated 
through jackknife resampling on families (Sokal & Rohlf, 1995).

2.3  |  Temporal changes in sensitivity to 
vernalization

Selection on a trait in an environment can shift both the mean 
and the plasticity of that trait. Here, we considered the sensitivity 
to vernalization cues, measured as the slope of the regression line 

(1)Yijkl = � + yeari + treatmentj + yeari × treatmentj + blockk + yeari × blockk + familyl|
(
yeari × treatmentj

)
+ �ijkl
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between individual values and the environmental value (estimated 
as the average phenotype, Y ) (Falconer & Mackay, 1996), for each 
individual i:

For each family, the five individuals in each treatment were 
paired according to their position in the greenhouse (block 1 with 
block 5, etc.). This coefficient assumes that reaction norms are linear 
(Gavrilets & Scheiner, 1993; Scheiner, 1993) and this approximation 
is expected to work well (Chevin et al., 2013). We used a linear mixed 
model, with sampling year (1987 or 2009) as a fixed effect, a random 
block effect and its interaction with year, and a family effect (ge-
netic effect) nested into year. As for flowering time, we estimated 
the broad-sense heritability of the vernalization sensitivity.

A genetic correlation between flowering time and sensitivity to 
vernalization would affect the response to selection in the context 
of climate change. We therefore used a bivariate model with the sen-
sitivity to vernalization and the flowering time measured in the short 
vernalization treatment as two dependent variables to estimate their 
genetic covariance with a random family effect, including block as a 
random effect, using AsReml (Gilmore et al., 2009). We ran an inde-
pendent model for each sampling year. The significance of genetic 
covariances was tested by comparing the residual deviance of the 
final model with that of a model with a fixed covariance of zero in a 
log-likelihood ratio test.

2.4  |  Selection gradient for flowering date: genetic 
covariance analysis

In the absence of selection for the trait considered, its observed var-
iation is expected to be independent from fitness. We tested this by 
measuring the selection gradient, that is, the statistical relationship 
between a trait and the fitness. Selection gradients were established 
for each year (and per treatment) following the Robertson-Price 
identity that states that ΔZ, the expected evolutionary change in the 
mean phenotypic trait z per generation is equal to Θa (z,w), the addi-
tive genetic covariance of the trait z, and the relative fitness w (Price, 
1970; Robertson, 1966):

Here, we estimated the broad-sense genetic covariance Θg. Assuming 
that the dominance variance is negligible due to the very high levels 
of homozygosity in selfing populations (Holland et al., 2010), genetic 
covariance should be a good approximation of the additive genetic 
covariance (we neglect maternal genetic effects here). As a prelimi-
nary step, we checked whether our proxy for fitness, the relative 
seed production, had significant genetic variance. The relative seed 
production was measured as the individual seed production stand-
ardized by the average seed production of individuals from the same 
year and treatment. A mixed model was used to analyze the relative 

seed production, including two random effects for block and family. 
Then, we provided there was significant genetic variance for rela-
tive seed production in the population each year, and we analyzed 
it in a bivariate model with flowering time to estimate the genetic 
covariance with a random family effect, including block as a random 
effect, using AsReml (Gilmore et al., 2009). Again, the significance of 
genetic covariances was estimated by comparing the residual devi-
ance of the final model with that of a model with a fixed covariance 
of zero in a log-likelihood ratio test.

2.5  |  Genetic analyses

During the multiplication generation in the greenhouse (2011), 
200 mg of leaves was sampled from each plant for DNA extrac-
tion, using DNeasy Plant Mini Kit (Qiagen). Twenty microsatellite 
loci were used for genotyping (see the details of amplification reac-
tions and analyses of amplified products in Jullien et al., 2019; Siol 
et al., 2007). Briefly, samples were prepared by adding 3  μl of di-
luted PCR products to 16.5 μl of ultrapure water and 0.5 μl of the 
size marker AMM524. Amplified products were analyzed on an ABI 
prism 3130 Genetic Analyzer, and genotype reading was performed 
using GeneMapper Software version 5.

2.5.1  |  Single-locus analyses assuming 
independence among loci

As a preliminary step, the data were filtered to reduce the percentage 
of missing data (loci or individuals with >10% missing data were re-
moved), and to discard monomorphic loci. After filtering, the dataset 
comprised 145 individuals (representing 145 families) and 16 loci (64 
from the year 1987 and 81 from the year 2009). We measured the 
genetic diversity of the population each year using the allelic rich-
ness Na− rar (Hurlbert, 1971) and the expected heterozygosity He. In 
this predominantly selfing population, we expect a strong deviation 
from Hardy–Weinberg heterozygosity expectations. Thus, for each 
sampling year, we estimated the inbreeding fixation coefficient FIS 
and its confidence interval using 5000 bootstraps over loci. Between 
year differences for Na− rar, He and FIS across loci were tested using 
Wilcoxon signed-rank tests. Analyses were performed in R using the 
packages adegenet (Jombart, 2008) and hierfstat (Goudet, 2005) 
and the program ADZE for rarefaction analyses (Szpiech et al., 
2008). The percentage of pairs of loci showing significant linkage 
disequilibrium (LD) was calculated using Genepop (Rousset, 2008) 
with a threshold of 0.05. Finally, we measured the temporal variance 
in allele frequencies using the FST estimator by Weir and Cockerham 
(1984). To estimate the effective population size (Ne, measured in 
number of diploid individuals) from the temporal variance of allele 
frequencies, we used FST estimates to account for the correlation 
of alleles identity within individuals due to selfing (Navascués et al., 
2020) and followed the method outlined in Frachon et al. (2017). We 
measured a confidence interval for Ne using an approximate boot-
strap method (DiCiccio & Efron, 1996) over loci.

Y
long vernalization

i
− Yshort vernalization

i

Y
long vernalization

− Y
short vernalization

(2)ΔZ = Θa (z,w)
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2.5.2  |  Analyses based on multilocus genotypes

We used the program RMES to estimate selfing rates from the distri-
bution of multilocus heterozygosity (David et al., 2007). We tested 
for a difference in selfing rates between years using a likelihood ratio 
test between models where the selfing rate was constrained to be 
constant or not. For each sample (1987 and 2009), we examined the 
genetic structure by sorting out the number of multilocus genotypes 
(thereafter called MLG) and measuring their frequency and redun-
dancy through time using GENETHAPLO (available on GitHub at 
https://github.com/lauga​y/Genet​Haplo and described in Appendix 
S1: Section S1). GENETHAPLO takes into account the uncertainty of 
the assignment of a genotype to a MLG group due to missing data: 
In case of ambiguity, an individual is randomly assigned to one of the 
candidate MLG group with a probability proportional to the MLG 
group size. The approach also considers a genotyping error rate: If 
two individuals differ by less than the error rate, they are consid-
ered to belong to the same MLG. After an initial run with an error 
rate of zero, we checked the distribution of the distances between 
MLGs. We found an excess of small distances, which could indicate 
errors in genotype assignation (Arnaud-Haond & Belkhir, 2007). We 
corrected this by re-running the program with an error rate of 1/16 
(= one mis-read locus). GENETHAPLO also searches for residual 
heterozygosity (defined as the proportion of heterozygous loci in 
the multilocus genotype) and evidence for recombination (S1). To 
identify putative recombination events between MLGs, it uses the 
genetic distances: a MLG is a recombinant candidate if the sum of 
its allele differences with two other MLGs (“parental MLGs”) equals 
the number of allele differences between these two parental MLGs.

If a MLG has a high fitness in a given environment, plants car-
rying this MLG will produce on average a larger progeny and the 
frequency of the MLG will rise in the following generations. We 
therefore propose to use the absolute change in frequency of the 
fully homozygous MLGs through time as an indicator of their “real-
ized fitness.” As a preliminary step, we checked whether selection 
quantified in the greenhouse is likely to mirror the predominant 
selection between 1987 and 2009 using a linear model to verify 
whether the change in MLG frequencies covaries positively with 
and can be predicted by the seed production in the greenhouse. We 
then measured the selection gradient for flowering time as the slope 
of the regression of the change in frequency of the MLGs between 
1987 and 2009 with the genetic value of flowering time (measured 
as the average flowering time for a given MLG in the short vernal-
ization treatment). We compared this pattern with the predictions 
from the Robertson-Price selection gradient. The MLGs found in 
2009 but absent in 1987 may have been undetected in 1987 due to 
low frequency, or may be recent migrants. Their change in frequency 
between 1987 and 2009 is thus necessarily positive and may not ac-
curately reflect their realized fitness. We therefore reiterated these 
analyses using a dataset restricted to the MLGs present in 1987 only. 
For each of these models, we verified the normality of the residuals 
and estimated a confidence interval for the slope using profile likeli-
hood confidence bounds.

In addition, we tested whether the change in frequencies of 
the MLGs reflects a response to selection or can be expected by 
drift alone. This was tested by simulating the effect of 22 genera-
tions of drift, using an extension to multi-allelic data of the approach 
described in Frachon et al. (2017) and inspired by Goldringer and 
Bataillon (2004). Again, only the fully homozygous MLGs were kept 
for this analysis. We assumed complete selfing during the time in-
terval so the whole genome behaves as a single super-locus. Details 
about the procedure used to simulate individual MLG frequency 
trajectories are provided in Appendix S1: Section S2. We simulated 
each generation of drift by drawing MLG counts from a multinomial 
distribution parameterized with the effective population size Ne 
estimated from the temporal FST, and the MLG frequencies in the 
previous generation. Note that this simulation assumes a generation 
time of one year and therefore neglects seed dormancy and that the 
presence of a seed bank would reduce the rate of genetic drift. After 
22  simulated generations, we randomly sampled 75 individuals to 
estimate the frequencies of each MLG and measured the change in 
MLG frequencies across the 22 generations. This was repeated for 
104 replicates in order to draw the distribution of the change in MLG 
frequency expected by drift alone. To account for the potentially 
large estimation variance for the FST (as observed in the simulations 
performed in Appendix S1: Section S3), we examined the sensitiv-
ity of the analysis to the effective population size using a range of 
values (10 ≤ Ne ≤ 500). Finally, we examined the simulated selection 
gradient as the relationship between the simulated changes in MLG 
frequencies through time and the genetic value of flowering time 
previously measured for each MLG, using a linear model. This pro-
vided us with a null distribution of the slopes of the regression be-
tween frequency change and flowering time, expected under drift 
alone. We then tested for the significance of the observed slope 
against the simulated distribution, by computing the proportion of 
the simulated slopes that were greater than the observed value.

2.6  |  Regional analysis

Finally, we attempted to disentangle selection and drift by consider-
ing other populations located in the same geographic region as the 
focal population and therefore likely submitted to the same selec-
tive pressure due to climatic constraints (pattern test, as described 
in the Section 1). For this regional analysis, we used 16 populations 
of M. truncatula across Corsica that were sampled twice, once in the 
80s and again in the early 2000s (listed in Table S1). Samples con-
sisted of around 100 pods collected along transects running across 
the populations. Seeds collected were stored in a cold room. In 
2010, one pod randomly selected from each sample (80s and 2000s) 
was threshed and one plant per population per year was replicated 
through selfing in standardized greenhouse conditions. This green-
house generation allowed suppressing potential maternal effects (as 
in the experiment with the Cape Corsica population) and resulted in 
32 families (16 populations × 2 years) of full-sibs produced by self-
ing. In 2011, seeds from the 32 families were germinated following 

https://github.com/laugay/GenetHaplo
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the same protocol as described earlier for the intrapopulation analy-
sis, but with only one vernalization treatment at 5°C during seven 
days. Five plants for each family were then transferred to tables 
in the greenhouse according to a randomized block design (five 
blocks). We monitored the temperature and humidity and the flow-
ering time for each plant.

Individual flowering times were converted in thermal time, in the 
same way as it was done for the intrapopulation analysis. Again, we 
used linear mixed models (lme4 package) to test for the effect of 
sampling year on flowering time. The model included a single fixed 
effect for the sampling year (1980s or 2000s). The block effect was 
included as a random effect, along with its interaction with sampling 
year. A random population effect was also included and replaced the 
“family” effect of Equation (1) seen as there was only one family per 
year in this regional sample. The resulting model was written as:

Again, this maximal model was simplified using likelihood ratio 
tests.

3  |  RESULTS

3.1  |  Changes in flowering time

Visual inspection of the Q–Q plots indicated that the residuals from all 
the linear models we used were normally distributed. We found that 
flowering time differed significantly between years: plants sampled in 
2009 flowered on average over two days earlier than plants sampled 
in 1987 (Table 1, Figure 1). This effect remained significant when we 
analyzed flowering time as a number of days rather than degree.days 
(results not shown). Longer vernalization also sped flowering up (treat-
ment effect, Table 1). The block effect only explained a low proportion 
of variance (micro-environment) and the largest variance component 

was the family effect, for all combinations of years and treatments. 
The comparison of a model where family was nested in years only or in 
years × treatments showed that the family × treatment interaction was 
significant (χ2 = 66.1; df = 7; p = 9 × 10−12). It means that the reaction 
norms for the different genotypes were not parallel (Figure 1), because 
the genotypes responded differently when exposed for a shorter pe-
riod to cold temperatures. To account for this genotype  ×  environ-
ment interaction, the heritability for flowering time was estimated in 
each vernalization treatment separately (four components of variance, 
Table 1). It varied between 0.53 and 0.77 (Table 2). The genetic vari-
ance for flowering time in the population remained the same in 1987 
and 2009, as shown by a LRT between the full model (Equation 1) and 
a model where family was not nested in year (χ2 = 6.65; df = 7; p = .47). 
We found no significant year effect on the sensitivity to vernalization 
(χ2 = 1.7; df = 1; p = .185). There was no significant difference in the 
family effect between years (interaction family × year not significant; 
LRT: χ2 = 1.2; df = 2; p = .552), but the family effect was highly signifi-
cant (χ2 = 32.6; df = 1; p = 1 × 10−8, Table S2) and the heritability of 
the sensitivity to vernalization was 0.19 (±0.04) (Table 2). Finally, the 
multivariate analysis highlighted a strong positive genetic correlation 
between flowering time (measured in the short vernalization treat-
ment) and the sensitivity to vernalization (in 1987: 0.54 p =  .008; in 
2009: 0.60 p <  .0001), which means that early flowering plants are 
less sensitive to vernalization cues. Using the flowering time measured 
in the long vernalization treatment, we observed the same pattern of 
correlation.

3.2  |  Selection gradient for flowering date

The relative seed production showed significant genetic variance 
(family effect, Table S3, heritability of 0.34, Table 2), which enabled 
us to build multivariate models to examine selection gradients fol-
lowing Equation (2). In 1987, we found a significant genetic covari-
ance between flowering time and relative fitness: Θa (z,w) = −20.5; 

(3)Yijk = � + yeari + blockj + yeari × blockj + populationk + �ijk

TA B L E  1 Effect of sampling year and treatment on flowering time in the cape Corsica population, taking into account the family effect 
(genetic effect). Effect values on mean flowering time are given for fixed effects and variance components are given for random effects 
(with standard errors in brackets). The family effect was nested into year (1987 or 2009) and treatment (T1: short vernalization treatment; 
T2: long vernalization treatment), leading to four variance components. For each component, the degrees of freedom, likelihood ratio (χ2), 
and p-values are reported. None of the interactions considered in the complete model [1] were significant: between year and treatment (LRT 
χ2 = 1.8; df = 1; p = . 178); between block and year (χ2 = 0.0006; df = 1; p = . 981)

Tested effect on flowering time Mean effect or variance component (SE) df χ2 p

Year −28.76a 1 7.3 .007

Treatment −162.84 1 42.2 8 × 10
−11

Block 92.34 (9.61) 1 34.5 4 × 10
−9

Family|year × treatment 1987-T1: 2807.90 (872.97) 10 850.4 2 × 10
−16

1987-T2: 1793.51 (500.25)

2009-T1: 5449.80 (1200.16)

2009-T2: 3557.01 (1408.88)

Error 1500 (38.73) 1081

aAssuming an average daily temperature of 15°C over the time period considered, the difference of 28.76 degree.days corresponds to two days.
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LRT comparing this model with a model where the genetic covari-
ance was constrained to be zero: χ2 = 60.2; df = 1; p = 8 × 10−15. The 
covariance remained significantly different from zero when we used 
the lines derived from the sampling in 2009: Θa (z,w) = −18.5; LRT: 
χ2 = 12.4; df = 1; p = 6 × 10−7. A similar negative relationship was 
observed among lines derived from each of the two years, which 
means that the selection gradients predict an evolution toward early 
flowering under the environmental conditions of the greenhouse 
(Figure 2).

3.3  |  Changes in the genetic 
composition of the population

The analysis of microsatellite data highlighted high levels of genetic 
diversity for both sampling years, with an increase between 1987 
and 2009 only significant for He (Table S4). This suggests that the 

increased diversity between 1987 and 2009 reveals more balanced 
allele frequencies rather than an increase in the average number 
of alleles. The temporal differentiation measured using the 16  loci 
was high (FST  =  0.226; 95% confidence interval: 0.182–0.269), 
which translates into a particularly small effective size (Ne  =  19 
diploid individuals; 95% confidence interval: 15–25). According 
to equation 16 in Nordborg and Donnelly (1997), we predict that 
He = 1 − (1∕(1 + 4Ne�)), where Ne is the effective size as estimated 
above. Using mutation rates for dinucleotide microsatellite loci 
measured in Arabidopsis thaliana (5 × 10−5 to 2 × 10−3) (Marriage 
et al., 2009), and assuming an isolated population at equilibrium, 
we expect that He should lie between 0.004 and 0.134, which is 
nearly three times lower than the He estimated here (Table S4). The 
observed heterozygosity was particularly low, resulting in large FIS 
estimates, as expected for a predominantly selfing species. The esti-
mated selfing rate was about 94% in 1987 and rose to 98% in 2009 
(statistically significant increase, Table S5). This high selfing rate 
results in extensive linkage disequilibrium between loci (nearly all 
pairs of loci are in linkage disequilibrium, Table S4), which makes the 
analysis of multilocus genotypes particularly relevant.

The analysis of MLG identified 60 different MLGs in this sample of 
145 individuals. Out of the 60 MLGs, 48 were fully homozygous at the 
16 loci and 12 MLGs displayed some level of heterozygosity (Figure 
S1). We found no evidence for a link in terms of recombination or seg-
regation between the heterozygous MLGs and any of the fully ho-
mozygous MLGs. These heterozygous MLGs were therefore excluded 
from the following analyses, leaving us with 48 MLGs (58 individuals 
in 1987 and 75 in 2009). The two predominant MLGs represented 
more than 50% of the population in 1987 and nearly 20% in 2009. 
These, as well as three other MLGs, were observed in both years 
(Figure S2). The absolute changes in homozygous MLGs frequencies 
through time tended to covary positively with the total number of 
seeds produced by a plant in the greenhouse (Figure 3a, regression 
only significant with the sample restricted to the MLGs present in 
1987, n = 12 MLGs), which provides support to use it as a proxy to 
estimate the realized fitness. We therefore used the change in fre-
quency of the 48 MLG (58 individuals in 1987 and 75 in 2009) to build 
selection gradients for flowering time. Again, we found a gradient 
with a negative slope (Figure 3b), suggesting that the late flowering 
MLGs have a reduced realized fitness compared to earlier ones. This 
confirms the reduced fitness of late flowering genotypes observed 
in our greenhouse experiment (Figure 2). Yet, the effect of flowering 
date on the realized fitness was small and only significant when the 
dataset was restricted to the MLGs present in 1987 and measured in 

F I G U R E  1 Average flowering time per family for the two 
sampling years and the two vernalization treatments. Short 
vernalization is in gray and long vernalization in black. The large 
dots and the horizontal lines stand for the average flowering 
date for each vernalization treatment, for the years 1987 (dotted 
lines) or 2009 (dashed lines). Black crossing lines indicate that 
the reaction norms differ between families, as expected if 
genotype × environment interactions are significant

Trait

H2 (SE) CVg

1987 2009 1987 2009

Flowering time T1: 0.64 (0.06) T1: 0.77 (0.04) 5.70 8.11

T2: 0.53 (0.07) T2: 0.69 (0.07) 5.49 8.03

Sensitivity to vernalization 0.19 (0.04) 18.14

Relative seed production 0.34 (0.03) 30.00

TA B L E  2 Heritabilities (H2) and 
coefficients of genetic variance (CVg) 
for flowering time in each vernalization 
treatment (T1: short vernalization; T2: 
long vernalization) and each sampling year, 
for sensitivity to vernalization, and for 
relative seed production
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the short vernalization treatment (n = 12; Figure 3b). In addition, the 
negative slope was mostly supported by the decreasing frequency of 
the two late flowering MLGs that were prevalent in 1987. The simula-
tion of 22 years of drift with an effective population size of 19 showed 
that the slope of the observed selection gradient did not deviate sig-
nificantly from the distribution expected by drift alone (p = .182). Yet, 
again, when we restricted the dataset to the MLGs that were present 
in 1987, the observed selection gradient deviated significantly from 
the distribution expected by drift alone (p  =  .047), which suggests 
that the drift-alone hypothesis could be rejected.

Because selfing reduces the effective recombination, it reduces 
the number of independent loci. Measuring FST from linked loci there-
fore amounts to measuring it from a lower number of markers, and it is 
known that FST estimates based on a few loci suffer from a large sam-
pling variance (Weir & Hill, 2002). Alternatively, we could have concat-
enated the genotypes at the different loci to compute a diploid version 
of the haplotype-based FST (Mehta et al., 2019). Using the changes of 
frequencies for 48 homozygous MLGs, we estimated a temporal FST 
of 0.075, which corresponds to an estimated effective size of 136. 
However, our simulations (Appendix S1: Section S3) show that these 

haplotype-based FST estimates are strongly downward biased, due to 
the dependency of FST with allelic diversity (Alcala & Rosenberg, 2017; 
Edge & Rosenberg, 2014; Jakobsson et al., 2013) and could therefore 
overestimate the effective population size. Instead of using this unreli-
able estimate of 136, we assessed the sensitivity of our neutrality test 
for MLG frequency changes to the effective population size estimates, 
using a range of values (10 ≤ Ne ≤ 500). We found that the observed 
selection gradient can no longer be explained by drift alone if the ef-
fective population size exceeds 150 (or even 10 if we consider only the 
MLGs present in 1987, Figure 4).

3.4  |  Changes in flowering time at the regional level

At the regional level (Equation 3), we found no effect of the interac-
tion between block and sampling year (LRT χ2 = 0; df = 1; p = 1). 
All other effects were significant (Table 3): The random block ef-
fect only explained 5% of the total variance, whereas the population 
effect accounted for 34% of variance. The significant year effect 
showed that the material we collected in 2005 or 2009 in Corsica 

F I G U R E  2 Selection gradients for 
flowering time. Established as the 
relationship between the genetic value for 
flowering time (family average, in degree.
days) and the genetic value for relative 
fitness (family average of the relative 
number of seeds), for each sampling year 
and vernalization treatment. Lines stand 
for the linear regression
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flowered about five days earlier (78 degree.days, Table 3) compared 
to the one we collected between 1987 and 1990.

4  |  DISCUSSION

Pairing up a resurrection study with population genetic analyses 
proved highly insightful to understand how flowering time changed 

through time in M. truncatula and to get insights into the mechanisms 
involved. Growing plants collected in the Cape Corsica population 
22 generations apart in a common garden experiment provided evi-
dence for a diminution of flowering times by about two days (i.e., a 
reduction between 2 and 4% in flowering time). This study also high-
lighted the peculiar genetic structure of this highly selfing popula-
tion, where some multilocus genotypes are persistent through time. 
This enabled us to measure the fitness of a genotype as its frequency 

F I G U R E  3 Analyses of the “realized fitness,” estimated as the absolute change in frequency of the MLGs through time. MLGs with 
residual heterozygosity were removed from this analysis. (a) Relationship with the average number of seeds produced by plants of a given 
MLG in the greenhouse. (b) Selection gradient for flowering time. Each point stands for the average flowering date for a given MLG. The 
black regression lines are estimated using all points (n = 48; a: slope = 5 × 10

−5 points of frequency per seed p = .094; b: slope = −0.0002 
95% confidence interval: −0.0006; 0.0001 p = .179). This includes MLGs that were not observed in 1987 (black dots), for which the change 
in frequency is necessarily always positive. The dotted lines are the regression lines for the analysis restricted to the MLGs present in 1987 
(white dots only; n = 12; a: slope = 0.0002 p = .024; b: slope = −0.0009 95% confidence interval: −0.0017; −0.0002 p = .038). Q–Q plots for 
the selection gradients are provided in Figure S3

F I G U R E  4 Test of selection for increasing values of Ne. p-Value, defined as the proportion of simulated datasets where the slope of the 
selection gradient is steeper than the observed slope, for the simulations of drift alone (a) considering all the homozygous MLGs (n = 48) or 
(b) considering only the MLGs that were already present in 1987 (n = 12). The dotted line indicates the 0.05 threshold value for significance. 
The vertical dashed line is the effective size estimated using the temporal FST and considering the 16 microsatellite loci as independent 
(Ne = 19; p = .182 with n = 48 (a); p = .047 with n = 12 (b))
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change through time and to establish a multilocus selection gradient. 
We used this multilocus fitness measure as well as a fitness measure 
based on individual seed production in the greenhouse to estimate 
the selection gradient for flowering time. Both gradients predict 
evolution toward earlier flowering but only the selection gradient 
using seed production in the greenhouse as a proxy for fitness was 
significant. It should be kept in mind that the selection gradient could 
change if the plants were growing in their natural environment, due 
to potential Genotype x Environment interactions. Simulating evo-
lution across 22  generations showed that the observed change in 
flowering time can be caused by drift alone, providing the effective 
size of the population is lower than 150. These analyses suffer from 
the difficulty to estimate the effective size in a highly selfing popula-
tion, where effective recombination is severely reduced.

4.1  |  Can we use effective population size 
estimates to test whether the genetic change is 
caused by selection or drift in a predominantly selfing 
population?

As pointed out in the Introduction, simulating drift is one of the 
methods to test whether selection has occurred, but it requires 
knowledge about the effective population size. Using changes in 
allele frequencies between 1987 and 2009 in a natural population, 
we estimated a temporal FST of 22.6%, which corresponds to an 
effective size of 19 (95% confidence interval: 15–25). This estimate 
is several orders of magnitude lower than the census population 
size (>2000 individuals) and lower than expected given the ob-
served levels of diversity (Nordborg & Donnelly, 1997). Similarly, 
low effective population sizes have been estimated previously in 
other M. truncatula populations, based on the temporal variance in 
allele frequencies (Siol et al., 2007), and attributed to the high self-
ing rate of this species. Yet, the observed levels of polymorphism 
are often incompatible with such drastically low effective sizes (see 
figure 3c in Hereford, 2009; Jullien et al., 2019). Ne estimates are 
likely biased and/or imprecise, because some of the assumptions 
underlying the temporal method are violated, for example, isola-
tion of the populations under scrutiny, absence of selection, and 
independence of marker loci (Jullien et al., 2019). For example, the 

quick change in allele frequency caused by a migration event will be 
misinterpreted as strong drift because temporal methods estimate 
Ne using the pace at which allele frequency changes and therefore 
underestimate it (Wang & Whitlock, 2003). In addition, strong self-
ing affects the precision of temporal FST estimates because the 
number of independent loci is reduced (Appendix S1: Section S3). 
In our focal population, the whole genome behaves practically as 
a single locus, which limits the precision of our effective size es-
timates. Unfortunately, we show in Appendix S1: Section S3 that 
inferring effective size from the variation of MLG frequencies (i.e., 
considering a single, multi-allelic superlocus) is unlikely to improve 
the quality of our estimates.

Finally, if selection occurs in a nonrandom mating population, it 
will exacerbate the Hill-Robertson effect and further reduce the ef-
fective size (Comeron et al., 2007). Indeed, selection will create her-
itable variance in fitness among individuals, thereby locally reducing 
Ne (Barton, 1995; Charlesworth & Willis, 2009; Robertson, 1961). In 
predominantly selfing species, due to drastically reduced effective 
recombination (Nordborg, 2000), selection will extend the reduction 
in diversity caused by the selective sweep to a larger proportion of 
the genome compared to a random mating population (Caballero & 
Santiago, 1995; Kamran-Disfani & Agrawal, 2014). With selection, 
the effective size estimated using the temporal variance in allele fre-
quencies can therefore not be considered as a “neutral” effective 
size but rather reflects the combined effects of inbreeding and se-
lection (Le Rouzic et al., 2015). Overall, due to the reduced effective 
recombination and potential migration, predominantly selfing pop-
ulations can strongly deviate from the assumptions of the tempo-
ral method to estimate effective size and such estimates should be 
treated with caution (see figure 3 in Jullien et al., 2019).

If highly selfing organisms strongly deviate from the general as-
sumptions of population genetics models, a major benefit, however, 
is that the temporal survey of MLGs provides a highly integrative 
measure of fitness, which is analogous to measures of genotype-
specific growth rates in asexual organisms. Our results show that 
changes in frequencies of MLGs through time are positively cor-
related with the fitness measured as the seed production in the 
greenhouse (Figure 3a). This relationship is not significant if we con-
sider all the MLGs found in 2009, but this is not surprising consider-
ing the potentially strong environmental variance in the field and the 

TA B L E  3 Effect of sampling year on flowering time at the regional scale, taking into account the effect of the population of origin of each 
line. The effect on the mean flowering time is given for the fixed year effect and variance components are given for random effects (with 
standard errors in brackets). For each component, the degrees of freedom, likelihood ratio (χ2), and p-values are reported

Tested effect on flowering time
Mean effect or variance 
component (SE) df χ2 p

Year −78.00a 1 9.3 .002

Block 2379 (1029) 1 5.7 .017

Line 14,874 (4423) 1 40.1 2 × 10
−10

Error 26,971 (8260) 167

Total variance 44,224

aAssuming an average daily temperature of 15°C over the time period considered, the difference of 78.00 degree.days corresponds to five days.
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approximation due to the possibility that a MLG that was absent in 
1987 appeared within the 22 years of time period. A larger sample 
size in 1987 or additional temporal samples could help improve this 
analysis. Despite these imprecision, such integrative estimates of fit-
ness are highly valuable because of the difficulty to obtain lifetime 
measures of fitness in the field (Shaw et al., 2008), which are gener-
ally hindered by pervasive trade-offs between life history traits such 
as reproduction and survival (Ågren et al., 2013; Anderson et al., 
2014).

4.2  |  What selective pressure could have led to 
this genetic change in flowering time? Insights from 
ecophysiology

The evidence that the change in phenology observed in this popula-
tion across 22 generations is the result of selection as opposed to 
drift remains equivocal. A further step toward evaluating whether 
selection is responsible for the genetic change observed is to char-
acterize the potential selective pressure involved. Phenological 
changes associated with climate change have been reported in a 
large number of plants (Amano et al., 2010; Cleland et al., 2007; 
Parmesan & Yohe, 2003; Root et al., 2003). In this context, ecophysi-
ological models of phenology are insightful to understand how cli-
mate change can affect traits such as flowering time (Chuine, 2000; 
Oddou-Muratorio & Davi, 2014). The phenological response to cli-
mate change is complex, because the promoting effect of increased 
temperatures opposes the influence of reduced vernalization 
(Wilczek et al., 2010). Ecophysiological models generally predict a 
plastic shift toward earlier flowering times, as long as vernalization is 
sufficient during winter (Morin et al., 2009). In agreement with these 
predictions, a meta-analysis exploring the phenological response 
to climate change in plant populations showed that phenotypic 
changes are mostly plastic, while evidence for genetic adaptation re-
mains relatively scarce (Merilä & Hendry, 2014, and other references 
of Evolutionary Applications special issue, January 2014). However, 
a large part of the intraspecific variation observed in phenology is 
genetic (Hendry & Day, 2005) and the architecture of the network 
underlying flowering time variation is well described in some spe-
cies such as Arabidopsis thaliana (Sasaki et al., 2018; Wilczek et al., 
2010). How climate change will affect the genetic values of pheno-
logical traits remains uncertain. In a first hypothesis, we may assume 
that the phenotypic optimum for flowering time is not affected by 
climate change. We therefore expect a genetic change occurring in 
the opposite direction than that of the plastic response (Figure 5a). 
This hypothesis resembles counter-gradient variation, which occurs 
when the genetic influence on a trait along a gradient opposes the 
environmental influence, resulting in reduced phenotypic variation 
across the gradient (Levins, 1969). Counter-gradients are wide-
spread along geographic gradients, as shown by the meta-analysis 
by Conover et al. (2009), who found evidence for counter-gradient 
in 60 species and for cogradients in 11 species. Therefore, assuming 
that the same mechanism observed across spatial gradients could 

occur in temporal gradients, we would expect the genetic response 
of flowering time to counterbalance the plastic response to climate 
change. This could be achieved for example with a genetic change 
increasing the base temperature Tb (temperature below which the 
development is supposed to be nil).

Yet, our temporal survey rejects the countergradient hypothesis, 
both at the population and at the regional scale. Instead, we found 
evidence for a genetic change toward earlier flowering, in the same 
direction as the plastic response to the environmental change (here 
a rise in temperatures). Such a co-gradient is expected if climate 
change has shifted the phenotypic optimum toward earlier flowering 
dates (Figure 5b). Several hypotheses could explain such a shift and 
the resulting cogradient. First, in a plant with undetermined flow-
ering such as M. truncatula, reduced frost risk early in the season 
should favor earlier flowering, because plants that manage to flower 
early in the season will carry on producing flowers until summer 
drought becomes limiting (end of May–June). We can therefore ex-
pect that the earliest a plant flowers, the highest its fitness. Second, 
climate change in the Mediterranean region also tends to reduce 
precipitations in spring and early summer (Goubanova & Li, 2007; 
Schröter et al., 2005), thereby shortening the reproductive period. 
Severe early summer drought could therefore create a strong selec-
tive pressure toward earlier flowering. Such a genetic shift in flower-
ing time in response to extended drought has been reported before 
in the literature (Franks et al., 2007). In terms of ecophysiology, it can 
be caused by lower requirements of degree.days, or a reduction of 
the base temperature Tb.

Finally, although it is generally assumed that flowering date 
should be under stabilizing selection in order to avoid frost or 
drought when flowering occurs, respectively, too early or too late, a 
recent meta-analysis found widespread evidence for frequent direc-
tional selection toward early flowering (Munguía-Rosas et al., 2011). 
Selection estimates considered in this meta-analysis largely ignore 
the effect of variation in number of flowers and plant size, which 
could bias the results. Yet, it remains that early flowering could have 
several advantages, among which an increased time for seed mat-
uration in early reproducing plants and a longer period of growth 
for the progeny issued from seeds that germinate immediately (as 
reviewed by Elzinga et al., 2007; Kudo, 2006). Under this scenario 
of directional selection, we also expect a pattern of cogradient, as 
observed in the data (Figure 5c).

Besides the evidence for a genetic change in flowering date in 
M. truncatula in Corsica, we found no evidence for a change in the 
sensitivity to vernalization, despite genetic variance for this trait 
in the population (H2 = 0.19). In the literature, most studies have 
found at least some genetic variation for plasticity, but correspond-
ing heritabilities were generally low (Scheiner, 1993). Our results 
also suggest that the sensitivity to vernalization is not independent 
from flowering date, because the intercept and the slope of the 
reaction norm to the vernalization treatment are genetically cor-
related (Gavrilets & Scheiner, 1993). Therefore, a lower number of 
chilling units received during winter (short vernalization treatment) 
result in higher heritability of flowering date. This correlation could 
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favor the selective response of flowering date to climate warming 
because warmer winters will inflate the genetic variance of flow-
ering date. Alternatively, if early flowering genotypes are selected 
for, or arrive in the population by migration, the evolution of the 
sensitivity to vernalization might be constrained by the positive ge-
netic correlation with flowering time: Early flowering genes tend to 
be associated with genes reducing the sensitivity to vernalization 
cues.

5  |  CONCLUSIONS

Because it is difficult to rule out the effect of drift on the observed 
genetic change in phenology, our results do not entirely answer the 
question of the adaptive potential in selfing populations raised in 
the Introduction. Yet, several lines of evidence support the role of 
selection. First, the observed genetic change is in the direction ex-
pected for a response to raising temperatures and reduced rainfalls 

F I G U R E  5 Hypotheses for the 
expected selective pressure on flowering 
time under climate change. (a) Selective 
response expected under the hypothesis 
that the phenotypic optimum for 
flowering date remains the same. The 
selective response is expected in the 
opposite direction compared to the plastic 
response to increased temperatures. 
This corresponds to the countergradient 
hypothesis. (b) Selective response 
expected under the hypothesis that the 
phenotypic optimum for flowering date is 
displaced with climate change and that it 
becomes advantageous to flower earlier. 
The selective response is expected in the 
same direction as the plastic response to 
increased temperatures. This corresponds 
to the cogradient hypothesis. (c) Selective 
response expected under the hypothesis 
that flowering time is under directional 
selection
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in the Mediterranean region. Second, the selection gradient meas-
ured in the greenhouse suggests that early flowering genotypes 
produce more seeds. The changes in MLG composition through 
time provide more equivocal results, but are also compatible with 
the hypothesis that MLGs with early flowering times had a better 
reproductive success than later flowering genotypes and replaced 
them, resulting in the observed genetic change in flowering time. 
Our simulations of the effect of drift are impacted by uncertainty 
in effective population size estimations, but the highest effective 
population size compatible with the observed change caused by 
drift alone remains relatively low (Ne ≈ 150, Figure 4a). Finally, the 
shift in flowering date observed in the Cape Corsica population 
was also detected at the regional scale, which suggests that the 
set of populations studied could be geographic replicates for this 
response to the selection of flowering times in M. truncatula in 
Corsica. Ultimately, only a longer survey of this population com-
bined with a pattern test (Sheets & Mitchell, 2001) could provide a 
definitive answer to the question of adaptation to climate change 
through a genetic change in flowering time in this predominantly 
selfing population. Finally, it is worth pointing out that, in contrast 
with the theoretical predictions presented in the Introduction, this 
population displays significant genetic variance for a quantitative 
trait such as flowering time. As suggested before for M. truncatula 
(Jullien et al., 2019), it is likely that other evolutionary mechanisms, 
such as migration, contribute to maintain the adaptive potential of 
populations in this predominantly selfing species.
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